imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

4.8 kHz Ultralow Noise 24-Bit Sigma-Delta ADC with PGA

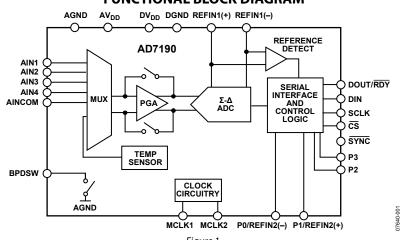
AD7190

FEATURES

RMS noise: 8.5 nV @ 4.7 Hz (gain = 128) 16 noise free bits @ 2.4 kHz (gain = 128) Up to 22.5 noise free bits (gain = 1) Offset drift: 5 nV/°C Gain drift: 1 ppm/°C Specified drift over time 2 differential/4 pseudo differential input channels Automatic channel sequencer Programmable gain (1 to 128) Output data rate: 4.7 Hz to 4.8 kHz Internal or external clock Simultaneous 50 Hz/60 Hz rejection 4 general-purpose digital outputs **Power supply** AV_{DD}: 4.75 V to 5.25 V DVDD: 2.7 V to 5.25 V Current: 6 mA Temperature range: -40°C to +105°C Interface 3-wire serial SPI, QSPI™, MICROWIRE™, and DSP compatible Schmitt trigger on SCLK **Qualified for automotive applications**

APPLICATIONS

Weigh scales Strain gauge transducers Pressure measurement Temperature measurement Chromatography PLC/DCS analog input modules Data acquisition Medical and scientific instrumentation


GENERAL DESCRIPTION

The AD7190 is a low noise, complete analog front end for high precision measurement applications. It contains a low noise, 24-bit sigma-delta (Σ - Δ) analog-to-digital converter (ADC). The on-chip low noise gain stage means that signals of small amplitude can be interfaced directly to the ADC.

The device can be configured to have two differential inputs or four pseudo differential inputs. The on-chip channel sequencer allows several channels to be enabled, and the AD7190 sequentially converts on each enabled channel. This simplifies communication with the part. The on-chip 4.92 MHz clock can be used as the clock source to the ADC or, alternatively, an external clock or crystal can be used. The output data rate from the part can be varied from 4.7 Hz to 4.8 kHz.

The device has two digital filter options. The choice of filter affects the rms noise/noise-free resolution at the programmed output data rate, the settling time, and the 50 Hz/60 Hz rejection. For applications that require all conversions to be settled, the AD7190 includes a zero latency feature.

The part operates with 5 V analog power supply and a digital power supply from 2.7 V to 5.25 V. It consumes a current of 6 mA. It is housed in a 24-lead TSSOP package.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Rev. C

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2008–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

AD7190* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

AD7190 Evaluation Board

DOCUMENTATION

Application Notes

- AN-0979: Digital Filtering Options: AD7190, AD7192
- AN-1069: Zero Latency for the AD7190, AD7192, AD7193, AD7194, and AD7195
- AN-1084: Channel Switching: AD7190, AD7192, AD7193, AD7194, AD7195
- AN-1131: Chopping on the AD7190, AD7192, AD7193, AD7194, and AD7195

Data Sheet

• AD7190: 4.8 kHz Ultralow Noise 24-Bit Sigma-Delta ADC with PGA Data Sheet

User Guides

• UG-222: Evaluation Board for the AD7190/AD7192 4.8 kHz Ultralow Noise 24-Bit Sigma-Delta ADCs

SOFTWARE AND SYSTEMS REQUIREMENTS

- · AD7190 Microcontroller No-OS Driver
- AD7192 IIO High Precision ADC Linux Driver

TOOLS AND SIMULATIONS \square

- AD7190/AD7192 Digital Filter Models
- Download the Active Functional Model to evaluate and debug AD719x

REFERENCE DESIGNS

• CN0102

REFERENCE MATERIALS

Solutions Bulletins & Brochures

 Test & Instrumentation Solutions Bulletin, Volume 10, Issue 3

Tutorials

 Tutorial on Technical and Performance Benefits of AD719x Family

DESIGN RESOURCES

- AD7190 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD7190 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features 1
Applications1
General Description
Functional Block Diagram 1
Revision History
Specifications
Timing Characteristics7
Circuit and Timing Diagrams7
Absolute Maximum Ratings
Thermal Resistance
ESD Caution9
Pin Configuration and Function Descriptions10
Typical Performance Characteristics
RMS Noise and Resolution15
Sinc ⁴ Chop Disabled15
Sinc ³ Chop Disabled16
Sinc ⁴ Chop Enabled
Sinc ³ Chop Enabled
On-Chip Registers 19
Communications Register19
Status Register
Mode Register 20
Configuration Register
Data Register
ID Register
GPOCON Register
Offset Register

REVISION HISTORY

2/13-Rev. B to Rev. C

Added Automotive Information (Throughout)	1
Added Automotive Specifications, Table 1	3
Changes to Ordering Guide	39
5/09—Rev. A to Rev. B	
Changes to Table 3	9
5/09—Rev. 0 to Rev. A	
Changes to Table 1	
Changes to Table 3 and Table 4	9
Changes to Table 5	10
Changes to Table 6 and Table 7	15
Changes to Status Register Section	
Changes to Table 17	
Changes to Table 19	

Full-Scale Register	. 25
ADC Circuit Information	. 26
Overview	26
Filter, Output Data Rate, Settling Time	. 26
Digital Interface	29
Circuit Description	. 33
Analog Input Channel	33
PGA	33
Bipolar/Unipolar Configuration	33
Data Output Coding	33
Clock	33
Burnout Currents	34
Reference	34
Reference Detect	34
Reset	34
System Synchronization	35
Temperature Sensor	35
Bridge Power-Down Switch	35
Logic Outputs	. 35
Enable Parity	36
Calibration	. 36
Grounding and Layout	. 37
Applications Information	38
Weigh Scales	. 38
Outline Dimensions	. 39
Ordering Guide	39
Automotive Products	39

Changes to Table 20 2	24
Added ID Register Section 2	24
Changes to Table 21 2	25
Changes to Filter, Output Data Rate, Settling Time Section 2	26
Changes to Continuous Conversion Mode Section 3	51
Changes to Analog Input Channel and Bipolar/Unipolar	
Configuration Sections	53
Changes to Burnout Currents, Reference, Reference Detect, and	d
Reset Sections	64
Changes to Temperature Sensor Section 3	5
Changes to Calibration Section	6
Changes to Grounding and Layout Section 3	57
Changes to Weigh Scales Section	8
Changes to Ordering Guide 3	;9
10/08—Revision 0—Initial Version	

SPECIFICATIONS

 AV_{DD} = 4.75 V to 5.25 V, DV_{DD} = 2.7 V to 5.25 V, AGND = DGND = 0 V, REFINx(+) = AV_{DD} , REFINx(-) = AGND, MCLK = 4.92 MHz, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.

Table 1.

Parameter	AD7190B	Unit	Test Conditions/Comments ¹
ADC			
Output Data Rate	4.7 to 4800	Hz nom	Chop disabled.
	1.17 to 1200	Hz nom	Chop enabled, sinc ⁴ filter.
	1.56 to 1600	Hz nom	Chop enabled, sinc ³ filter.
No Missing Codes ²	24	Bits min	FS > 1, sinc ⁴ filter ³ .
	24	Bits min	FS > 4, sinc ³ filter ³ .
Resolution	See the RMS Noise and Resolution section		
RMS Noise and Output Data Rates	See the RMS Noise and Resolution section		
Integral Nonlinearity			
B Grade	±5	ppm of FSR max	± 1 ppm typical, gain = 1.
	±15	ppm of FSR max	± 5 ppm typical, gain > 1.
WB Grade	±7	ppm of FSR max	± 1 ppm typical, gain = 1.
	±30	ppm of FSR max	± 5 ppm typical, gain > 1.
Offset Error ^{4, 5}	±75/gain	μV typ	Chop disabled.
	±0.5	μV typ	Chop enabled.
Offset Error Drift vs. Temperature⁵	±100/gain	nV/°C typ	Gain = 1 to 16. chop disabled.
	±5	nV/°C typ	Gain = 32 to 128. chop disabled.
	±5	nV/°C typ	Chop enabled.
Offset Error Drift vs. Time	25	nV/1000 hours typ	Gain ≥ 32.
Gain Error⁴			
B Grade	±0.005	% max	± 0.001 % typical, gain = 1, T _A = 25°C, AV _{DD} = 5 V ⁶ .
WB Grade	±0.0075	% max	± 0.001 % typical, gain = 1, T_{A} = 25°C, AV_{DD} = 5 V6.
	±0.0075	% typ	Gain > 1, post internal full-scale calibration
Gain Drift vs. Temperature	±1	ppm/°C typ	
Gain Drift vs. Time	10	ppm/1000 hours typ	Gain = 1.
Power Supply Rejection	95	dB typ	$Gain = 1, V_{IN} = 1 V.$
B Grade	100	dB min	Gain > 1, $V_{IN} = 1 V/gain. 110 dB typical.$
WB Grade	95	dB min	Gain > 1, $V_{IN} = 1 V/gain. 110 dB typical.$
Common-Mode Rejection			
@ DC	100	dB min	Gain = 1, V_{IN} = 1 V^2 .
	110	dB min	$Gain > 1, V_{IN} = 1 V/gain.$
@ 50 Hz, 60 Hz ²	120	dB min	10 Hz output data rate, 50 \pm 1 Hz, 60 \pm 1 H
@ 50 Hz, 60 Hz ²	120	dB min	50 ± 1 Hz (50 Hz output data rate), 60 \pm 1 H (60 Hz output data rate).
Normal Mode Rejection ² Sinc ⁴ Filter			
Internal Clock			
@ 50 Hz, 60 Hz	100	dB min	10 Hz output data rate, 50 \pm 1 Hz, 60 \pm 1 Hz
@ JUTI2, UUTI2	74	dB min	50 Hz output data rate, 30 ± 1 Hz, 30 ± 1 Hz, 30 ± 1 Hz, 50 ± 1 Hz, 50 ± 1 Hz, 60 ± 1 Hz.
@ 50 Hz	96	dB min	50 Hz output data rate, 50 \pm 1 Hz.
@ 60 Hz	97	dB min	60 Hz output data rate, $60 \pm 1 \text{ Hz}$.

AD7190

Parameter	AD7190B	Unit	Test Conditions/Comments ¹
External Clock			
@ 50 Hz, 60 Hz	120	dB min	10 Hz output data rate, 50 \pm 1 Hz, 60 \pm 1 Hz.
	82	dB min	50 Hz output data rate, REJ60 ⁷ = 1, 50 \pm 1 Hz, 60 \pm 1 Hz.
@ 50 Hz	120	dB min	50 Hz output data rate, 50 \pm 1 Hz.
@ 60 Hz	120	dB min	60 Hz output data rate, 60 \pm 1 Hz.
Sinc ³ Filter			
Internal Clock			
@ 50 Hz, 60 Hz	75	dB min	10 Hz output data rate, 50 \pm 1 Hz, 60 \pm 1 Hz
	60	dB min	50 Hz output data rate, REJ60 = 1, 50 \pm 1 Hz, 60 \pm 1 Hz.
@ 50 Hz	70	dB min	50 Hz output data rate, 50 \pm 1 Hz.
@ 60 Hz	70	dB min	60 Hz output data rate, $60 \pm 1 \text{ Hz}$.
External Clock			
@ 50 Hz, 60 Hz	100	dB min	10 Hz output data rate, 50 \pm 1 Hz, 60 \pm 1 Hz.
@ 30 Hz, 00 Hz	67	dB min	50 Hz output data rate, $BU = 112, 00 \pm 112, 50 \pm 112, 50 \pm 112, 50 \pm 112, 50 \pm 1$ Hz, 50 ± 1 Hz, 60 ± 1 Hz.
@ 50 Hz	95	dB min	50 Hz output data rate, 50 \pm 1 Hz.
@ 60 Hz	95	dB min	60 Hz output data rate, 60 \pm 1 Hz.
ANALOG INPUTS			
Differential Input Voltage Ranges	±V _{REF} /gain	V nom	$V_{REF} = REFINx(+) - REFINx(-),$ gain = 1 to 128.
	±(AV _{DD} – 1.25 V)/gain	V min/max	Gain > 1.
Absolute AIN Voltage Limits ²			
Unbuffered Mode	AGND – 50 mV	V min	
	$AV_{DD} + 50 \text{ mV}$	V max	
Buffered Mode	AGND + 250 mV	V min	
	AV _{DD} – 250 mV	V max	
Analog Input Current Buffered Mode			
Input Current ²	±2	nA max	Gain = 1.
	±3	nA max	Gain > 1.
Input Current Drift	±5	pA/°C typ	
Unbuffered Mode			
Input Current	±5	μA/V typ	Gain = 1, input current varies with input voltage.
	±1	μA/V typ	Gain > 1.
Input Current Drift	±0.05	nA/V/°C typ	External clock.
	±1.6	nA/V/°C typ	Internal clock.
REFERENCE INPUT			
REFIN Voltage	AV _{DD}	V nom	REFIN = REFINx(+) - REFINx(-).
Reference Voltage Range ²	1	Vmin	
hererence voltage hange	AV _{DD}	V max	The differential input must be limited to $\pm (AV_{DD} - 1.25 V)/gain when gain > 1.$
Absolute REFIN Voltage Limits ²	AGND – 50 mV	V min	
Absolute her in voltage ennits	AUVD = 50 mV $AV_{DD} + 50 \text{ mV}$	V max	
Average Reference Input Current	7	μA/V typ	
Average Reference Input Current Drift	±0.03	nA/V/°C typ	External clock.
	1.3	nA/V/°C typ	Internal clock.

Data Sheet

Parameter	AD7190B Unit		Test Conditions/Comments ¹	
Normal Mode Rejection ²	Same as for analog inputs			
Common-Mode Rejection	95	dB typ		
Reference Detect Levels	0.3	V min		
	0.6	V max		
TEMPERATURE SENSOR				
Accuracy	±2	°C typ	Applies after user calibration at 25°C.	
Sensitivity	2815	Codes/°C typ	Bipolar mode.	
BRIDGE POWER-DOWN SWITCH				
Ron	10	Ωmax		
Allowable Current ²	30	mA max	Continuous current.	
BURNOUT CURRENTS		-		
AIN Current	500	nA nom	Analog inputs must be buffered and chop	
Anvearent	500		disabled.	
DIGITAL OUTPUTS (P0 to P3)		1		
Output High Voltage, V_{OH^2}	4	V min	$AV_{DD} = 5V$, $I_{SOURCE} = 200 \ \mu A$.	
Output Low Voltage, Vol ²	0.4	V max	$AV_{DD} = 5V$, $I_{SINK} = 800 \ \mu$ A.	
Floating-State Leakage Current	±100	nA max		
Floating-State Output	10	pF typ		
Capacitance		1. 26		
INTERNAL/EXTERNAL CLOCK		1		
Internal Clock				
Frequency	4.92 ± 4%	MHz min/max		
Duty Cycle	50:50	% typ		
External Clock/Crystal ²		7- 7 F		
Frequency	4.9152	MHz nom		
inequency	2.4576/5.12	MHz min/max		
Input Low Voltage, VINL	0.8	V max	$DV_{DD} = 5 V.$	
	0.4	V max	$DV_{DD} = 3V.$	
Input High Voltage, V _{INH}	2.5	V min	$DV_{DD} = 3V.$	
input high voltage, vinh	3.5	Vmin	$DV_{DD} = 5 V.$	
Input Current	±10	μA max	D V D = 3 V.	
	±10	μΑ παχ		
Input High Voltage, V _{INH²}	2	Vmin		
Input Low Voltage, V _{INL²}	0.8	V max		
Hysteresis ²	0.1/0.25	V min/V max		
	±10	µA max		
LOGIC OUTPUT (DOUT/RDY)				
Output High Voltage, V _{OH} ²	DV _{DD} – 0.6	V min	$DV_{DD} = 3 V$, $I_{SOURCE} = 100 \mu A$.	
Output Low Voltage, VoL ²	0.4	V max	$DV_{DD} = 3 V$, $I_{SINK} = 100 \mu A$.	
Output High Voltage, V _{OH²}	4	V min	$DV_{DD} = 5 V$, $I_{SOURCE} = 200 \mu A$.	
Output Low Voltage, V_{OL^2}	0.4	V max	$DV_{DD} = 5 V$, $I_{SINK} = 1.6 mA$.	
Floating-State Leakage Current	±10	μA max		
Floating-State Output Capacitance	10	pF typ		
Data Output Coding	Offset binary			
SYSTEM CALIBRATION ²				
Full-Scale Calibration Limit	1.05 × FS	V max		
Zero-Scale Calibration Limit	-1.05 × FS	V min		
Input Span	$0.8 \times FS$	V min		
1 · · · · P	2.1 × FS	V max		

AD7190

Parameter	AD7190B Unit		Test Conditions/Comments ¹		
POWER REQUIREMENTS ⁸					
Power Supply Voltage					
AV _{DD} – AGND	4.75/5.25	V min/max			
DV _{DD} – DGND	2.7/5.25	V min/max			
Power Supply Currents					
Ald Current	1	mA max	0.85 mA typical, gain = 1, buffer off.		
	1.3	mA max	1.1 mA typical, gain = 1, buffer on.		
B Grade	4.5	mA max	3.5 mA typical, gain = 8, buffer off.		
	4.75	mA max	4 mA typical, gain = 8, buffer on.		
	6.2	mA max	5 mA typical, gain = 16 to 128, buffer off.		
	6.75	mA max	5.5 mA typical, gain = 16 to 128, buffer on.		
WB Grade	5	mA max	3.5 mA typical, gain = 8, buffer off.		
	5.3	mA max	4 mA typical, gain = 8, buffer on.		
	6.8	mA max	5 mA typical, gain = 16 to 128, buffer off.		
	7.4	mA max	5.5 mA typical, gain = 16 to 128, buffer on.		
DI _{DD} Current	0.4	mA max	0.35 mA typical, $DV_{DD} = 3 V$.		
	0.6	mA max	0.5 mA typical, $DV_{DD} = 5 V$.		
	1.5	mA typ	External crystal used.		
I _{DD} (Power-Down Mode)					
B Grade	2	μA max			
WB Grade	5	μA max			

¹ Temperature range: $T_{MIN} = -40^{\circ}$ C, $T_{MAX} = +105^{\circ}$ C. ² Specification is not production tested but is supported by characterization data at initial product release.

³ FS = decimal equivalent of Bit FS9 to Bit FS0 in the mode register.
⁴ Following a system or internal zero-scale calibration, the offset error is in the order of the noise for the programmed gain and output data rate selected. A system full-scale calibration reduces the gain error to the order of the noise for the programmed gain and output data rate.

⁵ The analog inputs are configured for differential mode.

⁶ Applies at the factory calibration conditions (AV_{DD} = 5 V, gain = 1, T_A = 25°C). ⁷ REJ60 is a bit in the mode register. When the output data rate is set to 50 Hz, setting REJ60 to 1 places a notch at 60 Hz, allowing simultaneous 50 Hz/60 Hz rejection. ⁸ Digital inputs equal to DV_{DD} or DGND.

TIMING CHARACTERISTICS

 $AV_{DD} = 4.75 \text{ V}$ to 5.25 V, $DV_{DD} = 2.7 \text{ V}$ to 5.25 V, AGND = DGND = 0 V, Input Logic 0 = 0 V, Input Logic $1 = DV_{DD}$, unless otherwise noted.

Parameter	rameter Limit at T _{MIN} , T _{MAX} (B Version)		Conditions/Comments ^{1, 2}	
t ₃	100	ns min	SCLK high pulse width	
t ₄	100	ns min	SCLK low pulse width	
READ OPERATION				
t1	0	ns min	CS falling edge to DOUT/RDY active time	
	60	ns max	$DV_{DD} = 4.75 V \text{ to } 5.25 V$	
	80	ns max	DV _{DD} = 2.7 V to 3.6 V	
t ₂ ³	0	ns min	SCLK active edge to data valid delay ⁴	
	60	ns max	$DV_{DD} = 4.75 V \text{ to } 5.25 V$	
	80	ns max	DV _{DD} = 2.7 V to 3.6 V	
t5 ^{5, 6}	10	ns min	Bus relinquish time after \overline{CS} inactive edge	
	80	ns max		
t ₆	0	ns min	SCLK inactive edge to \overline{CS} inactive edge	
t ₇	10	ns min	SCLK inactive edge to DOUT/RDY high	
WRITE OPERATION				
t ₈	0	ns min	CS falling edge to SCLK active edge setup time ⁴	
t9	30	ns min	Data valid to SCLK edge setup time	
t ₁₀	25	ns min	Data valid to SCLK edge hold time	
t11	0	ns min	CS rising edge to SCLK edge hold time	

¹ Sample tested during initial release to ensure compliance. All input signals are specified with $t_R = t_F = 5$ ns (10% to 90% of DV_{DD}) and timed from a voltage level of 1.6 V. ² See Figure 3 and Figure 4.

 3 These numbers are measured with the load circuit shown in Figure 2 and defined as the time required for the output to cross the V_{0L} or V_{0H} limits.

⁴ The SCLK active edge is the falling edge of SCLK.

⁵ These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit shown in Figure 2. The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus relinquish times of the part and, as such, are independent of external bus loading capacitances.

⁶ RDY returns high after a read of the data register. In single conversion mode and continuous conversion mode, the same data can be read again, if required, while RDY is high, although care should be taken to ensure that subsequent reads do not occur close to the next output update. If the continuous read feature is enabled, the digital word can be read only once.

CIRCUIT AND TIMING DIAGRAMS

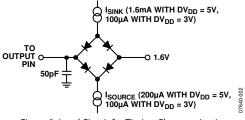
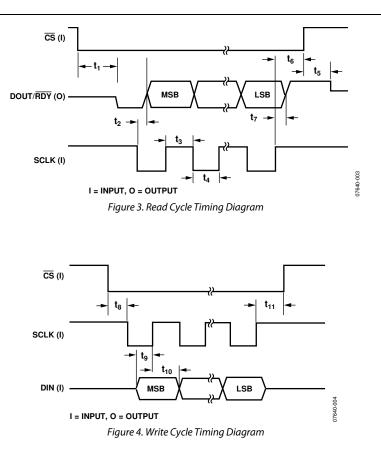



Figure 2. Load Circuit for Timing Characterization

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
AV _{DD} to AGND	–0.3 V to +6.5 V
DV _{DD} to AGND	–0.3 V to +6.5 V
AGND to DGND	–0.3 V to +0.3 V
Analog Input Voltage to AGND	-0.3 V to AV _{DD} + 0.3 V
Reference Input Voltage to AGND	-0.3 V to AV _{DD} + 0.3 V
Digital Input Voltage to DGND	$-0.3V$ to DV_{DD} + 0.3 V
Digital Output Voltage to DGND	$-0.3V$ to DV_{DD} + 0.3 V
AIN/Digital Input Current	10 mA
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	-65°C to +150°C
Maximum Junction Temperature	150°C
Lead Temperature, Soldering	
Reflow	260°C

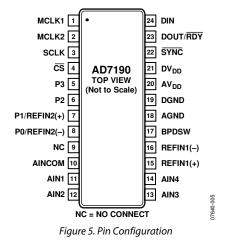
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	θ」	θıc	Unit
24-Lead TSSOP	128	42	°C/W


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

AD7190

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	MCLK1	When the master clock for the device is provided externally by a crystal, the crystal is connected between MCLK1 and MCLK2.
2	MCLK2	Master Clock Signal for the Device. The AD7190 has an internal 4.92 MHz clock. This internal clock can be made available on the MCLK2 pin. The clock for the AD7190 can be provided externally also in the form of a crystal or external clock. A crystal can be tied across the MCLK1 and MCLK2 pins. Alternatively, the MCLK2 pin can be driven with a CMOS-compatible clock and the MCLK1 pin left unconnected.
3	SCLK	Serial Clock Input. This serial clock input is for data transfers to and from the ADC. The SCLK has a Schmitt- triggered input, making the interface suitable for opto-isolated applications. The serial clock can be continuous with all data transmitted in a continuous train of pulses. Alternatively, it can be a noncon- tinuous clock with the information transmitted to or from the ADC in smaller batches of data.
4	<u>cs</u>	Chip Select Input. This is an active low logic input used to select the ADC. \overline{CS} can be used to select the ADC in systems with more than one device on the serial bus or as a frame synchronization signal in communicating with the device. \overline{CS} can be hardwired low, allowing the ADC to operate in 3-wire mode with SCLK, DIN, and DOUT used to interface with the device.
5	P3	Digital Output Pin. This pin can function as a general-purpose output bit referenced between AV _{DD} and AGND.
6	P2	Digital Output Pin. This pin can function as a general-purpose output bit referenced between AV _{DD} and AGND.
7	P1/REFIN2(+)	Digital Output Pin/Positive Reference Input. This pin functions as a general-purpose output bit referenced between AV _{DD} and AGND. When REFSEL = 1, this pin functions as REFIN2(+). An external reference can be applied between REFIN2(+) and REFIN2(-). REFIN2(+) can lie anywhere between AV _{DD} and AGND + 1 V. The nominal reference voltage, (REFIN2(+) – REFIN2(–)), is AV _{DD} , but the part functions with a reference from 1 V to AV _{DD} .
8	P0/REFIN2(-)	Digital Output Pin/Negative Reference Input. This pin functions as a general-purpose output bit referenced between AV _{DD} and AGND. When REFSEL = 1, this pin functions as REFIN2(–). This reference input can lie anywhere between AGND and $AV_{DD} - 1 V$.
9	NC	No Connect. This pin should be tied to AGND.
10	AINCOM	Analog Input AIN1 to Analog Input AIN4 are referenced to this input when configured for pseudo differential operation.
11	AIN1	Analog Input. It can be configured as the positive input of a fully differential input pair when used with AIN2 or as a pseudo differential input when used with AINCOM.
12	AIN2	Analog Input. It can be configured as the negative input of a fully differential input pair when used with AIN1 or as a pseudo differential input when used with AINCOM.

Data Sheet

Pin No.	Mnemonic	Description
13	AIN3	Analog Input. It can be configured as the positive input of a fully differential input pair when used with AIN4 or as a pseudo differential input when used with AINCOM.
14	AIN4	Analog Input. It can be configured as the negative input of a fully differential input pair when used with AIN3 or as a pseudo differential input when used with AINCOM.
15	REFIN1(+)	Positive Reference Input. An external reference can be applied between REFIN1(+) and REFIN1(-). REFIN1(+) can lie anywhere between AV_{DD} and AGND + 1 V. The nominal reference voltage, (REFIN1(+) – REFIN1(-)), is AV_{DD} , but the part functions with a reference from 1 V to AV_{DD} .
16	REFIN1(-)	Negative Reference Input. This reference input can lie anywhere between AGND and AV _{DD} – 1 V.
17	BPDSW	Bridge Power-Down Switch to AGND.
18	AGND	Analog Ground Reference Point.
19	DGND	Digital Ground Reference Point.
20	AVDD	Analog Supply Voltage, 4.75 V to 5.25 V. AV _{DD} is independent of DV _{DD} .
21	DVDD	Digital Supply Voltage, 2.7 V to 5.25 V. DV_{DD} is independent of AV_{DD} .
22	SYNC	Logic input that allows for synchronization of the digital filters and analog modulators when using multiple AD7190 devices. While SYNC is low, the nodes of the digital filter, the filter control logic, and the calibration control logic are reset and the analog modulator is held in its reset state. SYNC does not affect the digital interface but does reset RDY to a high state if it is low. SYNC has a pull-up resistor internally to DV _{DD} .
23	DOUT/RDY	Serial Data Output/Data Ready Output. DOUT/RDY serves a dual purpose. It functions as a serial data output pin to access the output shift register of the ADC. The output shift register can contain data from any of the on-chip data or control registers. In addition, DOUT/RDY operates as a data ready pin, going low to indicate the completion of a conversion. If the data is not read after the conversion, the pin goes high before the next update occurs. The DOUT/RDY falling edge can be used as an interrupt to a processor, indicating that valid data is available. With an external serial clock, the data can be read using the DOUT/RDY pin. With CS low, the data/control word information is placed on the DOUT/RDY pin on the SCLK falling edge and is valid on the SCLK rising edge.
24	DIN	Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the control registers in the ADC, with the register selection bits of the communications register identifying th appropriate register.

TYPICAL PERFORMANCE CHARACTERISTICS

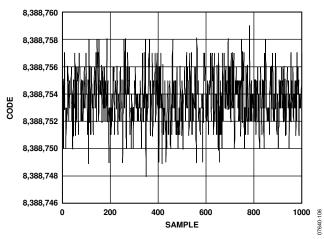


Figure 6. Noise (V_{REF} = 5 V, Output Data Rate = 4.7 Hz, Gain = 128, Chop Disabled, Sinc⁴ Filter)

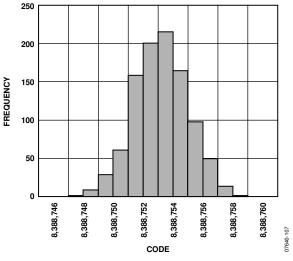


Figure 7. Noise Distribution Histogram ($V_{REF} = 5 V$, Output Data Rate = 4.7 Hz, Gain = 128, Chop Disabled, Sinc⁴ Filter)

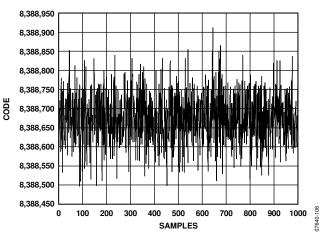


Figure 8. Noise (V_{REF} = 5 V, Output Data Rate = 4800 Hz, Gain = 128, Chop Disabled, Sinc⁴ Filter)

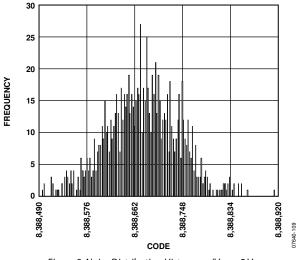


Figure 9. Noise Distribution Histogram ($V_{REF} = 5 V$, Output Data Rate = 4800 Hz, Gain = 128, Chop Disabled, Sinc⁴ Filter)

Data Sheet

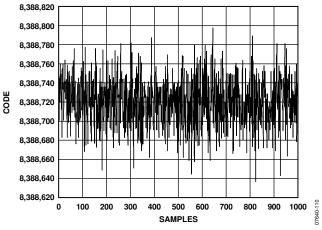
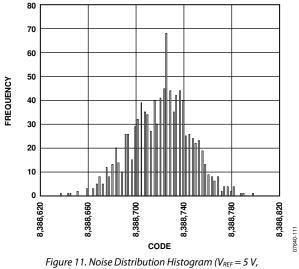
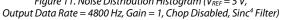




Figure 10. Noise ($V_{REF} = 5 V$, Output Data Rate = 4800 Hz, Gain = 1, Chop Disabled, Sinc⁴ Filter)

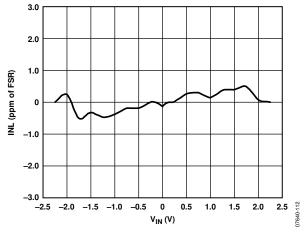
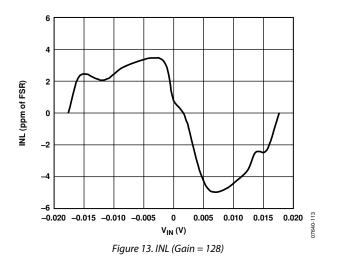
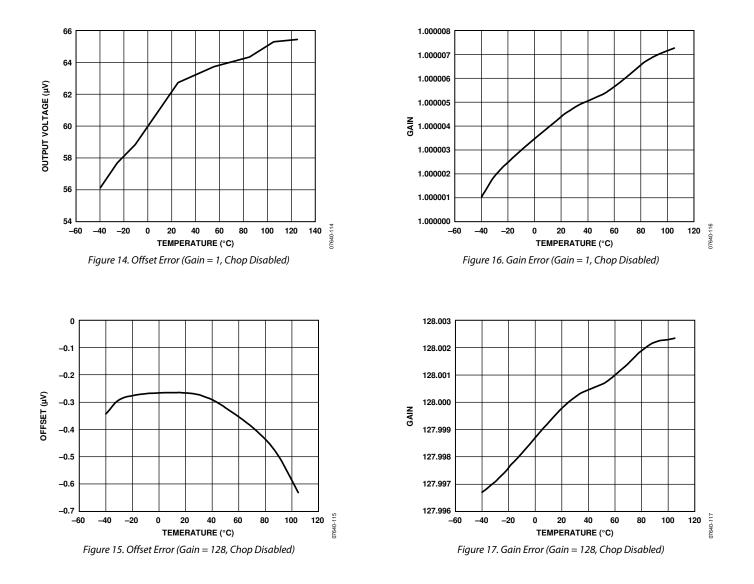




Figure 12. INL (Gain = 1)

AD7190

RMS NOISE AND RESOLUTION

The AD7190 has a choice of two filter types: sinc⁴ and sinc³. In addition, the AD7190 can be operated with chop enabled or chop disabled.

The following tables show the rms noise of the AD7190 for some of the output data rates and gain settings with chop disabled and enabled for the sinc⁴ and sinc³ filters. The numbers given are for the bipolar input range with the external 5 V reference. These numbers are typical and are generated with a differential input voltage of 0 V when the ADC is continuously converting on a single channel. The effective resolution is also shown, and the output peak-to-peak (p-p) resolution, or noise-free resolution, is listed in parentheses. It is important to note that the effective resolution is calculated using the rms noise, wheras the p-p resolution is calculated based on peak-to-peak noise. The p-p resolution represents the resolution for which there is no code flicker. These numbers are typical and are rounded to the nearest ½ LSB.

SINC⁴ CHOP DISABLED

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
1023	4.7	852.5	250	38	21	12	10	8.5
640	7.5	533	310	45	25	16	12	10.5
480	10	400	330	50	30	18	14	11.5
96	50	80	900	125	78	45	33	28
80	60	66.7	970	140	88	52	36	31
32	150	26.7	1460	215	125	75	55	48
16	300	13.3	1900	285	170	100	75	67
5	960	4.17	3000	480	280	175	140	121
2	2400	1.67	5000	780	440	280	220	198
1	4800	0.83	14,300	1920	1000	550	380	295

Table 7. Effective Resolution (Peak-to-Peak Resolution) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1 ¹	Gain of 8 ¹	Gain of 16 ¹	Gain of 32 ¹	Gain of 64 ¹	Gain of 128 ¹
1023	4.7	852.5	24 (22.5)	24 (22)	24 (22)	24 (22)	24 (21)	23 (20.5)
640	7.5	533	24 (22)	24 (22)	24 (22)	24 (21.5)	23.5 (21)	23 (20)
480	10	400	24 (22)	24 (22)	24 (21.5)	24 (21.5)	23.5 (20.5)	22.5 (20)
96	50	80	23.5 (20.5)	23.5 (20.5)	23 (20)	22.5 (20)	22 (19.5)	21.5 (18.5)
80	60	66.7	23.5 (20.5)	23 (20.5)	22.5 (20)	22.5 (20)	22 (19.5)	21.5 (18.5)
32	150	26.7	22.5 (20)	22.5 (19.5)	22.5 (19.5)	22 (19.5)	21.5 (18.5)	20.5 (18)
16	300	13.3	22.5 (19.5)	22 (19.5)	22 (19)	21.5 (19)	21 (18.5)	20 (17.5)
5	960	4.17	21.5 (19)	21.5 (18.5)	21 (18.5)	21 (18)	20 (17.5)	19.5 (16.5)
2	2400	1.67	21 (18)	20.5 (18)	20.5 (17.5)	20 (17.5)	19.5 (16.5)	18.5 (16)
1	4800	0.83	19.5 (16.5)	19.5 (16.5)	19.5 (16.5)	19 (16.5)	18.5 (16)	18 (15.5)

SINC³ CHOP DISABLED

Table 8. RMS Noise (nV) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
1023	4.7	639.4	270	42	23	13.5	10.5	9
640	7.5	400	320	50	27	17	13	11.5
480	10	300	350	60	35	19	15	12.5
96	50	60	1000	134	86	50	35	29
80	60	50	1050	145	95	55	40	32
32	150	20	1500	225	130	80	58	50
16	300	10	1950	308	175	110	83	73
5	960	3.125	4000	590	330	200	150	133
2	2400	1.25	56,600	7000	3500	1800	900	490
1	4800	0.625	442,000	55,000	28,000	14,000	7000	3450

Table 9. Effective Resolution (Peak-to-Peak Resolution) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1 ¹	Gain of 8 ¹	Gain of 16 ¹	Gain of 32 ¹	Gain of 64 ¹	Gain of 128 ¹
1023	4.7	639.4	24 (22.5)	24 (22)	24 (22)	24 (21.5)	24 (21)	23 (20.5)
640	7.5	400	24 (22)	24 (22)	24 (21.5)	24 (21.5)	23.5 (21)	22.5 (20)
480	10	300	24 (22)	24 (21.5)	24 (21.5)	24 (21)	23.5 (20.5)	22.5 (20)
96	50	60	23.5 (20.5)	23 (20.5)	23 (20)	22.5 (20)	22 (19.5)	21.5 (18.5)
80	60	50	23 (20.5)	23 (20.5)	22.5 (20)	22.5 (19.5)	22 (19)	21 (18.5)
32	150	20	22.5 (20)	22.5 (19.5)	22 (19.5)	22 (19)	21.5 (18.5)	20.5 (18)
16	300	10	22.5 (19.5)	22 (19)	22 (19)	21.5 (18.5)	21 (18)	20 (17.5)
5	960	3.125	21.5 (18.5)	21 (18.5)	21 (18)	20.5 (18)	20 (17.5)	19 (16.5)
2	2400	1.25	17.5 (14.5)	17.5 (14.5)	17.5 (14.5)	17.5 (14.5)	17.5 (14.5)	17.5 (14.5)
1	4800	0.625	14.5 (11.5)	14.5 (11.5)	14.5 (11.5)	14.5 (11.5)	14.5 (11.5)	14.5 (11.5)

SINC⁴ CHOP ENABLED

Table 10. RM	MS Noise (nV) vs	. Gain and Out	put Data Rate
--------------	------------------	----------------	---------------

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
· /	. ,						Gaill 01 04	
1023	1.175	1702	177	27	15	8.5	7	6
640	1.875	1067	219	32	18	11.5	8.5	7.5
480	2.5	800	234	36	21	13	10	8.5
96	12.5	160	637	89	55	32	24	20
80	15	133	686	99	63	37	26	22
32	37.5	53	1033	152	89	53	39	34
16	75	26.7	1343	202	120	71	53	48
5	240	8.33	2121	340	198	124	99	86
2	600	3.33	3536	552	311	198	156	140
1	1200	1.67	10,200	1360	707	389	26	209

Table 11. Effective Resolution (Peak-to-Peak Resolution) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1 ¹	Gain of 8 ¹	Gain of 16 ¹	Gain of 32 ¹	Gain of 64 ¹	Gain of 128 ¹
1023	1.175	1702	24 (23)	24 (22.5)	24 (22.5)	24 (22.5)	24 (21.5)	23.5 (21)
640	1.875	1067	24 (22.5)	24 (22.5)	24 (22.5)	24 (22)	24 (21.5)	23.5 (20.5)
480	2.5	800	24 (22.5)	24 (22.5)	24 (22)	24 (22)	24 (21)	23 (20.5)
96	12.5	160	24 (21)	24 (21)	23.5 (20.5)	23 (20.5)	22.5 (20)	22 (19)
80	15	133	24 (21)	23.5 (21)	23.5 (20.5)	23 (20.5)	22.5 (20)	22 (19)
32	37.5	53	23 (20.5)	23 (20)	23 (20)	22.5 (20)	22 (19)	21 (18.5)
16	75	26.7	23 (20)	22.5 (20)	22.5 (19.5)	22 (19.5)	21.5 (19)	20.5 (18)
5	240	8.33	22 (19.5)	22 (19)	21.5 (19)	21.5 (18.5)	20.5 (18)	20 (17)
2	600	3.33	21.5 (18.5)	21 (18.5)	21 (18)	20.5 (18)	20 (17)	19 (16.5)
1	1200	1.67	20 (17)	20 (17)	20 (17)	19.5 (17)	19 (16.5)	18.5 (16)

SINC³ CHOP ENABLED

Table 12. RMS Noise (nV) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
1023	1.56	1282	191	30	16.5	10	8	6.5
640	2.5	800	226	36	19	12	9	8.5
480	3.33	600	248	43	25	14	11	9
96	16.6	120	708	95	61	36	25	21
80	20	100	743	103	68	39	29	23
32	50	40	1061	159	92	57	41	36
16	100	20	1380	218	124	78	59	52
5	320	6.25	2829	418	234	142	106	94
2	800	2.5	40,100	4950	2475	1273	637	347
1	1600	1.25	312,550	38,540	19,800	9900	4950	2440

Table 13. Effective Resolution (Peak-to-Peak Resolution) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1 ¹	Gain of 8 ¹	Gain of 16 ¹	Gain of 32 ¹	Gain of 64 ¹	Gain of 128 ¹
1023	1.56	1282	24 (23)	24 (22.5)	24 (22.5)	24 (22)	24 (21.5)	23.5 (21)
640	2.5	800	24 (22.5)	24 (22.5)	24 (22)	24 (22)	24 (21.5)	23 (20.5)
480	3.33	600	24 (22.5)	24 (22)	24 (22)	24 (21.5)	24 (21)	23 (20.5)
96	16.6	120	24 (21)	23.5 (21)	23.5 (20.5)	23 (20.5)	22.5 (20)	22 (19)
80	20	100	23.5 (21)	23.5 (21)	23 (20.5)	23 (20)	22.5 (19.5)	21.5 (19)
32	50	40	23 (20.5)	23 (20)	22.5 (20)	22.5 (19.5)	22 (19)	21 (18.5)
16	100	20	23 (20)	22.5 (19.5)	22.5 (19.5)	22 (19)	21.5 (18.5)	20.5 (18)
5	320	6.25	22 (19)	21.5 (19)	21.5 (18.5)	21 (18.5)	20.5 (18)	19.5 (17)
2	800	2.5	18 (15)	18 (15)	18 (15)	18 (15)	18 (15)	18 (15)
1	1600	1.25	15 (12)	15 (12.5)	15 (12)	15 (12)	15 (12)	15 (12)

ON-CHIP REGISTERS

The ADC is controlled and configured via a number of on-chip registers, which are described in the following sections. In the descriptions, set implies a Logic 1 state and cleared implies a Logic 0 state, unless otherwise noted.

COMMUNICATIONS REGISTER

(RS2, RS1, RS0 = 0, 0, 0)

The communications register is an 8-bit write-only register. All communications to the part must start with a write operation to the communications register. The data written to the communications register determines whether the next operation is a read or write operation and in which register this operation takes place. For read or write operations, when the subsequent read or write operation to the selected register is complete, the interface returns to where it expects a write operation to the communications register. This is the default state of the interface and, on power-up or after a reset, the ADC is in this default state waiting for a write operation to the communications register. In situations where the interface sequence is lost, a write operation of at least 40 serial clock cycles with DIN high returns the ADC to this default state by resetting the entire part. Table 14 outlines the bit designations for the communications register. CR0 through CR7 indicate the bit locations, CR denoting that the bits are in the communications register. CR7 denotes the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit.

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
WEN(0)	R/ W (0)	RS2(0)	RS1(0)	RS0(0)	CREAD(0)	0(0)	0(0)

Bit Location	Bit Name	Description
CR7	WEN	Write enable bit. A 0 must be written to this bit for a write to the communications register to occur. If a 1 is the first bit written, the part does not clock on to subsequent bits in the register. It stays at this bit location until a 0 is written to this bit. After a 0 is written to the WEN bit, the next seven bits are loaded to the communications register.
CR6	R/W	A 0 in this bit location indicates that the next operation is a write to a specified register. A 1 in this position indicates that the next operation is a read from the designated register.
CR5 to CR3	RS2 to RS0	Register address bits. These address bits are used to select which registers of the ADC are selected during the serial interface communication. See Table 15.
CR2	CREAD	Continuous read of the data register. When this bit is set to 1 (and the data register is selected), the serial interface is configured so that the data register can be continuously read; that is, the contents of the data register are automatically placed on the DOUT pin when the SCLK pulses are applied after the RDY pin goes low to indicate that a conversion is complete. The communications register does not have to be written to for subsequent data reads. To enable continuous read, the instruction 01011100 must be written to the communications register while the RDY pin is low. While continuous read is enabled, the ADC monitors activity on the DIN line so that it can receive the instruction to disable continuous read. Additionally, a reset occurs if 40 consecutive 1s are seen on DIN. Therefore, DIN should be held low until an instruction is to be written to the device.
CR1 to CR0		These bits must be programmed to Logic 0 for correct operation.

Table 14. Communications Register Bit Designations

Table 15. Register Selection

RS2	RS1	RS0	Register	Register Size
0	0	0	Communications register during a write operation	8 bits
0	0	0	Status register during a read operation	8 bits
0	0	1	Mode register	24 bits
0	1	0	Configuration register	24 bits
0	1	1	Data register/data register plus status information	24 bits/32 bits
1	0	0	ID register	8 bits
1	0	1	GPOCON register	8 bits
1	1	0	Offset register	24 bits
1	1	1	Full-scale register	24 bits

STATUS REGISTER

(RS2, RS1, RS0 = 0, 0, 0; Power-On/Reset = 0x80)

The status register is an 8-bit, read-only register. To access the ADC status register, the user must write to the communications register, select the next operation to be a read, and load Bit RS2, Bit RS1, and Bit RS0 with 0. Table 16 outlines the bit designations for the status register. SR0 through SR7 indicate the bit locations, SR denoting that the bits are in the status register. SR7 denotes the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
RDY(1)	ERR(0)	NOREF(0)	Parity(0)	0(0)	CHD2(0)	CHD1(0)	CHD0(0)

Bit Location	Bit Name	Description
SR7	RDY	Ready bit for the ADC. Cleared when data is written to the ADC data register. The RDY bit is set automatically after the ADC data register is read, or a period of time before the data register is updated with a new conversion result, to indicate to the user that the conversion data should not be read. It is also set when the part is placed in power-down mode or idle mode or when SYNC is taken low.
		The end of a conversion is also indicated by the DOUT/RDY pin. This pin can be used as an alternative to the status register for monitoring the ADC for conversion data.
SR6	ERR	ADC error bit. This bit is written to at the same time as the RDY bit. The ERR bit is set to indicate that the result written to the ADC data register is clamped to all 0s or all 1s. Error sources include overrange or underrange or the absence of a reference voltage. The bit is cleared by a write operation to start a conversion.
SR5	NOREF	No external reference bit. This bit is set to indicate that the selected reference (REFIN1 or REFIN2) is at a voltage that is below a specified threshold. When set, conversion results are clamped to all 1s. This bit is cleared to indicate that a valid reference is applied to the selected reference pins. The NOREF bit is enabled by setting the REFDET bit in the configuration register to 1.
SR4	Parity	Parity check of the data register. If the ENPAR bit in the mode register is set, the parity bit is set if there is an odd number of 1s in the data register. It is cleared if there is an even number of 1s in the data register. The DAT_STA bit in the mode register should be set when the parity check is used. When the DAT_STA bit is set, the contents of the status register are transmitted along with the data for each data register read.
SR3	0	This bit will be set to 0.
SR2 to SR0	CHD2 to CHD0	These bits indicate which channel corresponds to the data register contents. They do not indicate which channel is presently being converted but indicate which channel was selected when the conversion contained in the data register was generated.

Table 16. Status Register Bit Designations

MODE REGISTER

(RS2, RS1, RS0 = 0, 0, 1; Power-On/Reset = 0x080060)

The mode register is a 24-bit register from which data can be read or to which data can be written. This register is used to select the operating mode, the output data rate, and the clock source. Table 17 outlines the bit designations for the mode register. MR0 through MR23 indicate the bit locations, MR denoting that the bits are in the mode register. MR23 denotes the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit. Any write to the mode register resets the modulator and filter and sets the RDY bit.

MR23	MR22	MR21	MR20	MR19	MR18	MR17	MR16
MD2(0)	MD1(0)	MD0(0)	DAT_STA(0)	CLK1(1)	CLK0(0)	0	0
MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8
Sinc3(0)	0	ENPAR(0)	0	Single(0)	REJ60(0)	FS9(0)	FS8(0)
MR7	MR6	MR5	MR4	MR3	MR2	MR1	MRO
FS7(0)	FS6(1)	FS5(1)	FS4(0)	FS3(0)	FS2(0)	FS1(0)	FS0(0)

Table 17. Mode Register Bit Designations

Bit Location	Bit Name	Descript	ion							
MR23 to MR21	MD2 to MD0	Mode sel	ect bits. T	hese bits select the operating mode of the AD7190 (see Table 18).						
MR20	DAT_STA	DAT_STA This func	This bit enables the transmission of status register contents after each data register read. When DAT_STA is set, the contents of the status register are transmitted along with each data register read. This function is useful when several channels are selected because the status register identifies the channel to which the data register value corresponds.							
MR19 to MR18	CLK1 to CLK0	These bits are used to select the clock source for the AD7190. Either the on-chip 4.92 MHz clock or an external clock can be used. The ability to use an external clock allows several AD7190 devices to be synchronized. Also, 50 Hz/60 Hz rejection is improved when an accurate external clock drives the AD7190.								
		CLK1	CLK0	ADC Clock Source						
		0	0	External crystal. The external crystal is connected from MCLK1 to MCLK2.						
		0	1	External clock. The external clock is applied to the MCLK2 pin.						
		1	0	Internal 4.92 MHz clock. Pin MCLK2 is tristated.						
		1	1	Internal 4.92 MHz clock. The internal clock is available on MCLK2.						
MR17 to MR16		These bit	s must be	programmed with a Logic 0 for correct operation.						
MR15	SINC3	the sinc ³ when cho while the 50 Hz/60 missing c	filter is us op is disat sinc ⁴ filte Hz rejecti odes for a	it. When this bit is cleared, the sinc ⁴ filter is used (default value). When this bit is set, ed. The benefit of the sinc ³ filter compared to the sinc ⁴ filter is its lower settling time oled. For a given output data rate, f_{ADC} , the sinc ³ filter has a settling time of $3/f_{ADC}$ er has a settling time of $4/f_{ADC}$. The sinc ⁴ filter, due to its deeper notches, gives better ion. At low output data rates, both filters give similar rms noise and similar no a given output data rate. At higher output data rates (FS values less than 5), the sinc ⁴ performance than the sinc ³ filter for rms noise and no missing codes.						
MR14			This bit must be programmed with a Logic 0 for correct operation.							
MR13	ENPAR	Enable pa in the mo	Enable parity bit. When ENPAR is set, parity checking on the data register is enabled. The DAT_STA bit in the mode register should be set when the parity check is used. When the DAT_STA bit is set, the contents of the status register are transmitted along with the data for each data register read.							
MR12				ogrammed with a Logic 0 for correct operation.						
MR11	Single	Single cy that it fur	cle conve	rsion enable bit. When this bit is set, the AD7190 settles in one conversion cycle so a zero latency ADC. This bit has no affect when multiple analog input channels are he single conversion mode is selected.						
MR10	REJ60	filter note		notch at 60 Hz when the first notch of the sinc filter is at 50 Hz. When REJ60 is set, a ed at 60 Hz when the sinc filter first notch is at 50 Hz. This allows simultaneous ion.						
MR9 to MR0	FS9 to FS0	cutoff fre associatio resolutio	Filter output data rate select bits. The 10 bits of data programmed into these bits determine the filter cutoff frequency, the position of the first notch of the filter, and the output data rate for the part. In association with the gain selection, it also determines the output noise (and, therefore, the effective resolution) of the device. (see Table 6 through Table 13)							
		Outpu where FS fmod is th results in frequence When ch Outpu where: FS is the o fmod is th results in filter's firs	at Data Ra is the dec ne modula a output y is equal op is enak at Data Ra decimal en ne modula a convers st notch fr	bled and continuous conversion mode is selected, the output data rate equals te = (fmod/64)/FS cimal equivalent of the code in bits FS0 to FS9 and is in the range 1 to 1023, and ator frequency, which is equal to MCLK/16. With a nominal MCLK of 4.92 MHz, this data rate from 4.69 Hz to 4.8 kHz. With chop disabled, the filter first notch to the output data rate when converting on a single channel. bled, the output data rate equals $te = (fmod/64)/(N \times FS)$ quivalent of the code in Bit FS0 to Bit FS9 and is in the range 1 to 1023. ator frequency, which is equal to MCLK/16. With a nominal MCLK of 4.92 MHz, this sion rate from 4.69/N Hz to 4.8/N kHz, where N is the order of the sinc filter. The sinc equency is equal to N × Output Data Rate. The chopping introduces notches at odd of (Output Data Rate/2).						

Table 18. Operating Modes

MD2	MD1	MD0	Mode
0	0	0	Continuous conversion mode (default). In continuous conversion mode, the ADC continuously performs conversions and places the result in the data register. The DOUT/ RDY pin and the RDY bit in the status register go low when a conversion is complete. The user can read these conversions by setting the CREAD bit in the communications register to 1, which enables continuous read. When continuous read is enabled, the conversions are automatically placed on the DOUT line when SCLK pulses are applied. Alternatively, the user can instruct the ADC to output each conversion by writing to the communications register. After power-on, a reset, or a reconfiguration of the ADC, the complete settling time of the filter is required to generate the first valid conversion. Subsequent conversions are available at the selected output data rate, which is dependent on filter choice.
0	0	1	Single conversion mode. When single conversion mode is selected, the ADC powers up and performs a single conversion on the selected channel. The internal clock requires up to 1 ms to power up and settle. The ADC then performs the conversion, which requires the complete settling time of the filter. The conversion result is placed in the data register, RDY goes low, and the ADC returns to power-down mode. The conversion remains in the data register and RDY remains active (low) until the data is read or another conversion is performed.
0	1	0	Idle mode. In idle mode, the ADC filter and modulator are held in a reset state even though the modulator clocks are still provided.
0	1	1	Power-down mode. In power-down mode, all AD7190 circuitry, except the bridge power-down switch, is powered down. The bridge power-down switch remains active because the user may need to power up the sensor prior to powering up the AD7190 for settling reasons. The external crystal, if selected, remains active.
1	0	0	Internal zero-scale calibration. An internal short is automatically connected to the input. RDY goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	0	1	Internal full-scale calibration. A full-scale input voltage is automatically connected to the input for this calibration. RDY goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale coefficient is placed in the full-scale register of the selected channel. A full-scale calibration is required each time the gain of a channel is changed to minimize the full- scale error.
1	1	0	System zero-scale calibration. The user should connect the system zero-scale input to the channel input pins as selected by the CH7 to CH0 bits in the configuration register. RDY goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel. A system zero-scale calibration is required each time the gain of a channel is changed.
1	1	1	System full-scale calibration. The user should connect the system full-scale input to the channel input pins as selected by the CH7 to CH0 bits in the configuration register. RDY goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale coefficient is placed in the full-scale register of the selected channel. A full-scale calibration is required each time the gain of a channel is changed.

CONFIGURATION REGISTER

(RS2, RS1, RS0 = 0, 1, 0; Power-On/Reset = 0x000117)

The configuration register is a 24-bit register from which data can be read or to which data can be written. This register is used to configure the ADC for unipolar or bipolar mode, to enable or disable the buffer, to enable or disable the burnout currents, to select the gain, and to select the analog input channel.

Table 19 outlines the bit designations for the configuration register. CON0 through CON23 indicate the bit locations. CON denotes that the bits are in the configuration register. CON23 denotes the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit.

CON23	CON22	CON21	CON20	CON19	CON18	CON17	CON16
Chop(0)	0(0)	0(0)	REFSEL(0)	0(0)	0(0)	0(0)	(0)
CON15	CON14	CON13	CON12	CON11	CON10	CON9	CON8
CH7(0)	CH6(0)	CH5(0)	CH4(0)	CH3(0)	CH2(0)	CH1(0)	CH0(1)
CON7	CON6	CON5	CON4	CON3	CON2	CON1	CON0
Burn(0)	REFDET(0)	0(0)	BUF(1)	U/B (0)	G2(1)	G1(1)	G0(1)

Table 19. Configuration Register Bit Designations

Bit Location	Bit Name	Descript	Description						
CON23	Chop	Chop enable bit. When the chop bit is cleared, chop is disabled. When the chop bit is set, chop is enabled. When chop is enabled, the offset and offset drift of the ADC are continuously minimized. However, this increases the conversion time and settling time of the ADC. For example, when FS = 96 decimal and the sinc ⁴ filter is selected, the conversion time with chop enabled equals 80 ms and the settling time equals 160 ms. With chop disabled, higher conversion rates are allowed. For an FS word of 96 decimal and the sinc ⁴ filter selected, the conversion time is 20 ms and the settling time is 80 ms. However, at low gains, periodic calibrations may be required to remove the offset and offset drift.							
CON22, CON21		These bit	ts must be	programmed w	ith a Logic 0 fo	r correct operation.			
CON20	REFSEL		e select bit	s. The reference	e source for the	ADC is selected using these bits.			
		REFSEL		Reference Vo	oltage				
		0		External refer	ence applied b	etween REFIN1(+) and REFIN1(–).			
		1	1 External reference applied between the P1/REFIN2(+) and P0/REFIN2(-) pins.						
CON19 to CON16		These bit	ts must be	programmed w	vith a Logic 0 fo	r correct operation.			
CON15 to CON8	CH7 to CH0	Several c	Channel select bits. These bits are used to select which channels are enabled on the AD7190. See Table 2 Several channels can be selected, and the AD7190 automatically sequences them. The conversion on each channel requires the complete settling time.						
CON7	Burn	burnout	When this bit is set to 1, the 500 nA current sources in the signal path are enabled. When burn = 0, the burnout currents are disabled. The burnout currents can be enabled only when the buffer is active and when chop is disabled.						
CON6	REFDET	external	reference b	peing used by t		the NOREF bit in the status register indicates when the circuit or less than 0.6 V maximum. The reference tive.			
CON5		This bit r	nust be pro	ogrammed with	n a Logic 0 for c	orrect operation.			
CON4	BUF	power co source in disabled When th	onsumption npedances , the voltag e buffer is e	n of the device. on the front er je on the analog	If set, the analo nd without cont g input pins car irres some heac	l, the analog inputs are unbuffered, lowering the og inputs are buffered, allowing the user to place tributing gain errors to the system. With the buffer n be from 50 mV below AGND to 50 mV above AV _{DD} . Iroom; therefore, the voltage on any input pin must be			
CON3	U/B	operatio	n is selecte	d.		eration is selected. When this bit is cleared, bipolar			
CON2 to CON0	G2 to G0	Gain sele	ect bits. Wri	tten by the use	r to select the A	ADC input range as follows:			
		G2	G1	G0	Gain	ADC Input Range (5 V Reference, Bipolar Mode)			
		0	0	0	1	±5 V			
		0	0	1	Reserved				
		0	1	0	Reserved				
		0	1	1	8	±625 mV			
		1	0	0	16	±312.5 mV			
		1	0	1	32	±156.2 mV			
		1	1	0	64	±78.125 mV			
		1	1	1	128	±39.06 mV			

Table 20. Channel Selection

Chanı	Channel Enable Bits in the Configuration Register					gister		Channel Enable	d		
CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	СНО	Positive Input AIN(+)	Negative Input AIN(–)	Status Register Bits CHD[2:0]	Calibration Register Pair
							1	AIN1	AIN2	000	0
						1		AIN3	AIN4	001	1
					1			Tempera	ture sensor	010	None
				1				AIN2	AIN2	011	0
			1					AIN1	AINCOM	100	0
		1						AIN2	AINCOM	101	1
	1							AIN3	AINCOM	110	2
1								AIN4	AINCOM	111	3

DATA REGISTER

(RS2, RS1, RS0 = 0, 1, 1; Power-On/Reset = 0x000000)

The conversion result from the ADC is stored in this data register. This is a read-only, 24-bit register. On completion of a read operation from this register, the RDY pin/bit is set. When the DAT_STA bit in the mode register is set to 1, the contents of the status register are appended to each 24-bit conversion. This is advisable when several analog input channels are enabled because the three LSBs of the status register (CHD2 to CHD0) identify the channel from which the conversion originated.

ID REGISTER

RS2, RS1, RS0 = 1, 0, 0; Power-On/Reset = 0xX4

The identification number for the AD7190 is stored in the ID register. This is a read-only register.

GPOCON REGISTER

(RS2, RS1, RS0 = 1, 0, 1; Power-On/Reset = 0x00)

The GPOCON register is an 8-bit register from which data can be read or to which data can be written. This register is used to enable the general-purpose digital outputs.

Table 21 outlines the bit designations for the GPOCON register. GP0 through GP7 indicate the bit locations. GP denotes that the bits are in the GPOCON register. GP7 denotes the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit.