: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

4.8 kHz, Ultralow Noise, 24-Bit Sigma-Delta ADC with PGA

FEATURES

RMS noise: 11 nV @ 4.7 Hz (gain=128)
15.5 noise-free bits @ $2.4 \mathbf{k H z}($ gain = 128)

Up to 22 noise-free bits (gain = 1)
Offset drift: $5 \mathbf{n V} /{ }^{\circ} \mathrm{C}$
Gain drift: 1 ppm $/{ }^{\circ} \mathrm{C}$
Specified drift over time
2 differential/4 pseudo differential input channels
Automatic channel sequencer
Programmable gain (1 to 128)
Output data rate: 4.7 Hz to 4.8 kHz
Internal or external clock
Simultaneous $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection
4 general-purpose digital outputs
Power supply
AV ${ }_{\text {DD }} 3 \mathrm{~V}$ to 5.25 V
DV ${ }^{D D}$: 2.7 V to 5.25 V

Current: $\mathbf{4 . 3 5 \mathrm { mA }}$

Temperature range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Package: 24-lead TSSOP

INTERFACE

3-wire serial

SPI, QSPI ${ }^{\text {™ }}$, MICROWIRE $^{\text {™ }}$, and DSP compatible
Schmitt trigger on SCLK

APPLICATIONS

Weigh scales

Strain gage transducers
Pressure measurement

Temperature measurement
Chromatography
PLC/DCS analog input modules
Data acquisition
Medical and scientific instrumentation

GENERAL DESCRIPTION

The AD7192 is a low noise, complete analog front end for high precision measurement applications. It contains a low noise, 24-bit sigma-delta ($\Sigma-\Delta$) analog-to-digital converter (ADC). The on-chip low noise gain stage means that signals of small amplitude can be interfaced directly to the ADC.
The device can be configured to have two differential inputs or four pseudo differential inputs. The on-chip channel sequencer allows several channels to be enabled, and the AD7192 sequentially converts on each enabled channel. This simplifies communication with the part. The on-chip 4.92 MHz clock can be used as the clock source to the ADC or, alternatively, an external clock or crystal can be used. The output data rate from the part can be varied from 4.7 Hz to 4.8 kHz .
The device has two digital filter options. The choice of filter affects the rms noise/noise-free resolution at the programmed output data rate, the settling time, and the $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection. For applications that require all conversions to be settled, the AD7192 includes a zero latency feature.

The part operates with a power supply from 3 V to 5.25 V . It consumes a current of 4.35 mA . It is housed in a 24 -lead TSSOP package.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD7192* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- AD7192 Evaluation Board

DOCUMENTATION

Application Notes

- AN-0979: Digital Filtering Options: AD7190, AD7192
- AN-1069: Zero Latency for the AD7190, AD7192, AD7193, AD7194, and AD7195
- AN-1084: Channel Switching: AD7190, AD7192, AD7193, AD7194, AD7195
- AN-1131: Chopping on the AD7190, AD7192, AD7193, AD7194, and AD7195
- AN-1186: Radiated Immunity Performance of the AD7192 in Weigh Scale Applications

Data Sheet

- AD7192: 4.8 kHz Ultra-Low Noise 24-Bit Sigma-Delta ADC with PGA Data Sheet

User Guides

- UG-222: Evaluation Board for the AD7190/AD7192 4.8 kHz Ultralow Noise 24-Bit Sigma-Delta ADCs

SOFTWARE AND SYSTEMS REQUIREMENTS

- AD7190 - Microcontroller No-OS Driver
- AD7192 IIO High Precision ADC Linux Driver

TOOLS AND SIMULATIONS

- AD7190/AD7192 Digital Filter Models
- Download the Active Functional Model to evaluate and debug AD719x

REFERENCE DESIGNS

- CN0119
- CN0251
- CN0371

REFERENCE MATERIALS

Solutions Bulletins \& Brochures

- Test \& Instrumentation Solutions Bulletin, Volume 10, Issue 3
Technical Articles
- High-resolution ADCs - an overview

Tutorials

- Tutorial on Technical and Performance Benefits of AD719x Family

DESIGN RESOURCES

- AD7192 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD7192 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

AD7192

TABLE OF CONTENTS

Features 1
Interface 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Timing Characteristics 7
Circuit and Timing Diagrams 7
Absolute Maximum Ratings 9
Thermal Resistance 9
ESD Caution 9
Pin Configuration and Function Descriptions. 10
Typical Performance Characteristics 12
RMS Noise and Resolution 14
Sinc ${ }^{4}$ Chop Disabled 14
Sinc ${ }^{3}$ Chop Disabled 15
Sinc ${ }^{4}$ Chop Enabled 16
Sinc ${ }^{3}$ Chop Enabled 17
On-Chip Registers 18
Communications Register 18
Status Register 19
Mode Register 19
Configuration Register 21
Data Register 23
ID Register 23
GPOCON Register 24
REVISION HISTORY
5/09—Rev. 0 to Rev. A
Change to Gain Error Specification 3
Changes to Table 3 9
5/09—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{AV}_{\mathrm{DD}}=3 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{DV} \mathrm{DD}=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V} ; \operatorname{REFINx}(+)=\mathrm{AV} \mathrm{DD}^{\mathrm{D}}, \operatorname{REFINx}(-)=\mathrm{AGND}, \mathrm{MCLK}=4.92 \mathrm{MHz}$, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

Table 1.

Parameter	AD7192B	Unit	Test Conditions/Comments ${ }^{1}$
ADC			
Output Data Rate	4.7 to 4800	Hz nom	Chop disabled
	1.17 to 1200	Hz nom	Chop enabled, sinc ${ }^{4}$ filter
	1.56 to 1600	Hz nom	Chop enabled, sinc^{3} filter
No Missing Codes ${ }^{2}$	24	Bits min	FS >1, sinc^{4} filter 3
	24	Bits min	FS $>4, \operatorname{sinc}^{3}$ filter ${ }^{3}$
Resolution			See the RMS Noise and Resolution section
RMS Noise and Output Data Rates			See the RMS Noise and Resolution section
Integral Nonlinearity			
Gain $=1^{2}$	± 10	ppm of FSR max	± 2 ppm typical, $\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}$
	± 15	ppm of FSR max	± 2 ppm typical, $A V_{\text {DD }}=3 \mathrm{~V}$
Gain > 1	± 30	ppm of FSR max	± 5 ppm typical, $\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}$
	± 30	ppm of FSR max	± 12 ppm typical, $\mathrm{AV}_{\mathrm{DD}}=3 \mathrm{~V}$
Offset Error ${ }^{4} 5$	$\pm 150 /$ gain	$\mu \mathrm{V}$ typ	Chop disabled
	± 0.5	$\mu \mathrm{V}$ typ	Chop enabled
Offset Error Drift vs. Temperature	$\pm 150 /$ gain	$\mathrm{nV} /{ }^{\circ} \mathrm{C}$ typ	Gain = 1 to 16; chop disabled
	± 5	$n \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ	Gain = 32 to 128; chop disabled
	± 5	nV/ ${ }^{\circ} \mathrm{C}$ typ	Chop enabled
Offset Error Drift vs. Time Gain Error ${ }^{4}$	25	nV/1000 hours typ	Gain ≥ 32
	± 0.001	\% typ	$A V_{D D}=5 \mathrm{~V}$, gain $=1, T_{A}=25^{\circ} \mathrm{C}$ (factory calibration conditions)
	-0.39	\% typ	Gain $=128$, before full-scale calibration (see Table 23)
	± 0.003	\% typ	Gain > 1, after internal full-scale calibration, $A V_{D D} \geq 4.75 \mathrm{~V}$.
	± 0.005	\% typ	$\begin{aligned} & \text { Gain }>1 \text {, after internal full-scale calibration, } \\ & A V_{D D}<4.75 \mathrm{~V} \end{aligned}$
Gain Drift vs. Temperature	± 1	ppm/ ${ }^{\circ} \mathrm{C}$ typ	
Gain Drift vs. Time	10	ppm/1000 hours typ	Gain $=1$.
Power Supply Rejection	90	dB typ	Gain $=1, \mathrm{~V}_{1 \times}=1 \mathrm{~V}$.
	95	dB min	Gain $>1, \mathrm{~V}_{\mathbb{I N}}=1 \mathrm{~V} /$ gain, 110 dB typ.
Common-Mode Rejection			
@ DC ${ }^{2}$	100	$d B$ min	Gain $=1, \mathrm{~V}_{\text {IN }}=1 \mathrm{~V}$.
@ DC	110	dB min	Gain > $1, \mathrm{~V}_{\mathbb{I}}=1 \mathrm{~V} /$ gain.
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	120	$d B$ min	10 Hz output data rate, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}$.
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	120	$d B$ min	$50 \pm 1 \mathrm{~Hz}$ (50 Hz output data rate), $60 \pm 1 \mathrm{~Hz}$ (60 Hz output data rate).
Normal Mode Rejection ${ }^{2}$			
Sinc ${ }^{4}$ Filter			
Internal Clock			
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	100	$d B$ min	10 Hz output data rate, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}$.
	74	$d B$ min	50 Hz output data rate, REJ $60^{6}=1$, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}$
@ 50 Hz	96	$d B$ min	50 Hz output data rate, $50 \pm 1 \mathrm{~Hz}$.
@ 60 Hz	97	dB min	60 Hz output data rate, $60 \pm 1 \mathrm{~Hz}$.

AD7192

Parameter	AD7192B	Unit	Test Conditions/Comments ${ }^{1}$
Average Reference Input Current Drift Normal Mode Rejection ${ }^{2}$ Common-Mode Rejection Reference Detect Levels	```\pm0.03 \pm1.3 Same as for analog inputs 100 0.3 0.6```	nA/V/ ${ }^{\circ} \mathrm{C}$ typ nA/V/ ${ }^{\circ} \mathrm{C}$ typ dB typ V min V max	External clock. Internal clock.
TEMPERATURE SENSOR Accuracy Sensitivity	$\begin{aligned} & \pm 2 \\ & 2815 \end{aligned}$	${ }^{\circ} \mathrm{C}$ typ Codes/ ${ }^{\circ} \mathrm{C}$ typ	Applies after user calibration at $25^{\circ} \mathrm{C}$. Bipolar mode.
BRIDGE POWER-DOWN SWITCH Ron Allowable Current ${ }^{2}$	$\begin{aligned} & 10 \\ & 30 \end{aligned}$	Ω max mA max	Continuous current.
BURNOUT CURRENTS AIN Current	500	nA nom	Analog inputs must be buffered and chop disabled.
DIGITAL OUTPUTS (P0 to P3) Output High Voltage, Vон Output Low Voltage, Vol Output High Voltage, V он Output Low Voltage, Vol Floating-State Leakage Current ${ }^{2}$ Floating-State Output Capacitance	$\begin{aligned} & \mathrm{A} V_{\mathrm{DD}}-0.6 \\ & 0.4 \\ & 4 \\ & 0.4 \\ & \pm 100 \\ & 10 \end{aligned}$	\vee min V max V min V max nA max pF typ	
INTERNAL/EXTERNAL CLOCK Internal Clock Frequency Duty Cycle External Clock/Crystal Frequency Input Low Voltage $\mathrm{V}_{\mathrm{INL}}$ Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Current	$\begin{aligned} & 4.92 \pm 4 \% \\ & 50: 50 \\ & \\ & 4.9152 \\ & 2.4576 / 5.12 \\ & 0.8 \\ & 0.4 \\ & 2.5 \\ & 3.5 \\ & \pm 10 \end{aligned}$	MHz min/max \% typ MHz nom MHz min/max V max V max V min V min $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{DV} \mathrm{VD}_{\mathrm{DD}}=5 \mathrm{~V} . \\ & \mathrm{DV} . \\ & \mathrm{DV} . \\ & \mathrm{DV}=3 \mathrm{~V} . \\ & \mathrm{DV} . \\ & \mathrm{DV} \end{aligned}$
LOGIC INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{NH}}{ }^{2}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}{ }^{2}$ Hysteresis ${ }^{2}$ Input Currents	$\begin{aligned} & 2 \\ & 0.8 \\ & 0.1 / 0.25 \\ & \pm 10 \\ & \hline \end{aligned}$	V min V max V min/V max $\mu \mathrm{A}$ max	
LOGIC OUTPUT (DOUT/确) Output High Voltage, $\mathrm{V}_{\text {он }}{ }^{2}$ Output Low Voltage, Vol ${ }^{2}$ Output High Voltage, VOH^{2} Output Low Voltage, VoL^{2} Floating-State Leakage Current Floating-State Output Capacitance Data Output Coding	$\begin{aligned} & \mathrm{D} V_{\mathrm{DD}}-0.6 \\ & 0.4 \\ & 4 \\ & 0.4 \\ & \pm 10 \\ & 10 \\ & \\ & \text { Offset binary } \\ & \hline \end{aligned}$	\vee min V max V min V max $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & D_{D D}=3 \mathrm{~V}, I_{\text {SOURCE }}=100 \mu \mathrm{~A} . \\ & D V_{D D}=3 \mathrm{~V}, I_{\text {SIIK }}=100 \mu \mathrm{~A} . \\ & D V_{D D}=5 \mathrm{~V}, I_{\text {SOURCE }}=200 \mu \mathrm{~A} . \\ & D V_{D D}=5 \mathrm{~V}, I_{\text {SINK }}=1.6 \mathrm{~mA} . \end{aligned}$

AD7192

Parameter	AD7192B	Unit	Test Conditions/Comments ${ }^{1}$
SYSTEM CALIBRATION ${ }^{2}$ Full-Scale Calibration Limit Zero-Scale Calibration Limit Input Span	$\begin{aligned} & 1.05 \times \text { FS } \\ & -1.05 \times F S \\ & 0.8 \times F S \\ & 2.1 \times F S \end{aligned}$	\checkmark max V min V min V max	
POWER REQUIREMENTS ${ }^{7}$ Power Supply Voltage AV $V_{D D}$ - AGND DVDD - DGND Power Supply Currents AldD Current DIDD Current IdD (Power-Down Mode)	$3 / 5.25$ $2.7 / 5.25$ 0.6 0.85 3.2 3.6 4.5 5 0.4 0.6 1.5 3	V min/max V min/max mA max mA typ $\mu \mathrm{A}$ max	0.53 mA typical, gain $=1$, buffer off. 0.75 mA typical, gain $=1$, buffer on. 2.5 mA typical, gain $=8$, buffer off. 3 mA typical, gain $=8$, buffer on. 3.5 mA typical, gain $=16$ to 128 , buffer off. 4 mA typical, gain $=16$ to 128 , buffer on. 0.35 mA typical, $\mathrm{DV}_{\mathrm{DD}}=3 \mathrm{~V}$. 0.5 mA typical, $\mathrm{DV} \mathrm{VD}_{\mathrm{D}}=5 \mathrm{~V}$. External crystal used.

[^0]
TIMING CHARACTERISTICS

$A V_{\mathrm{DD}}=3 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{DV} \mathrm{DD}=2.7 \mathrm{~V}$ to 5.25 V , $\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$, Input Logic $0=0 \mathrm{~V}$, Input Logic $1=\mathrm{DV} \mathrm{V}_{\mathrm{D}}$, unless otherwise noted.
Table 2.

Parameter	Limit at $\mathrm{T}_{\text {MIN, }} \mathrm{T}_{\text {MAX }}$ (B Version)	Unit	Conditions/Comments ${ }^{1,2}$
t_{3}	100	ns min	SCLK high pulse width
t_{4}	100	$n s$ min	SCLK low pulse width
READ OPERATION t_{1}			
	0	$n \mathrm{nsin}$	$\overline{\mathrm{CS}}$ falling edge to DOUT/ $\overline{\mathrm{RDY}}$ active time
	60	ns max	DV $\mathrm{DD}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	DV $\mathrm{DD}=2.7 \mathrm{~V}$ to 3.6 V
$\mathrm{t}_{2}{ }^{3}$	0	ns min	SCLK active edge to data valid delay ${ }^{4}$
	60	ns max	DV $\mathrm{DD}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	$\mathrm{DV} \mathrm{V}_{\mathrm{D}}=2.7 \mathrm{~V}$ to 3.6 V
$\mathrm{t}_{5}{ }^{5,6}$	10	$n \mathrm{~ns}$ min	Bus relinquish time after $\overline{\mathrm{CS}}$ inactive edge
	80	ns max	
t_{6}	0	ns min	SCLK inactive edge to $\overline{\mathrm{CS}}$ inactive edge
t_{7}	10	ns min	SCLK inactive edge to DOUT/ $\overline{\text { RDY }}$ high
WRITE OPERATION			
t_{8}	0	ns min	$\overline{\mathrm{CS}}$ falling edge to SCLK active edge setup time ${ }^{4}$
t_{9}	30	ns min	Data valid to SCLK edge setup time
t_{10}	25	ns min	Data valid to SCLK edge hold time
t_{11}	0	ns min	$\overline{\mathrm{CS}}$ rising edge to SCLK edge hold time

${ }^{1}$ Sample tested during initial release to ensure compliance. All input signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=5 \mathrm{~ns}(10 \%$ to 90% of DV DD) and timed from a voltage level of 1.6 V .
${ }^{2}$ See Figure 3 and Figure 4.
${ }^{3}$ These numbers are measured with the load circuit shown in Figure 2 and defined as the time required for the output to cross the $V_{O L}$ or $V_{O H}$ limits.
${ }^{4}$ The SCLK active edge is the falling edge of SCLK.
${ }^{5}$ These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit shown in Figure 2 . The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus relinquish times of the part and, as such, are independent of external bus loading capacitances.
${ }^{6} \overline{\mathrm{RDY}}$ returns high after a read of the data register. In single conversion mode and continuous conversion mode, the same data can be read again, if required, while $\overline{\mathrm{RDY}}$ is high, although care should be taken to ensure that subsequent reads do not occur close to the next output update. If the continuous read feature is enabled, the digital word can be read only once.

CIRCUIT AND TIMING DIAGRAMS

Figure 2. Load Circuit for Timing Characterization

Figure 3. Read Cycle Timing Diagram

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
AV ${ }_{\text {DD }}$ to AGND	-0.3 V to +6.5 V
DV ${ }_{\text {DD }}$ to AGND	-0.3 V to +6.5 V
AGND to DGND	-0.3 V to +0.3 V
Analog Input Voltage to AGND	-0.3 V to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Reference Input Voltage to AGND	-0.3 V to AV DD +0.3 V
Digital Input Voltage to DGND	-0.3 V to $\mathrm{DV} \mathrm{VD}+0.3 \mathrm{~V}$
Digital Output Voltage to DGND	-0.3 V to $\mathrm{DV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
AIN/Digital Input Current	10 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature, Soldering Reflow	$260^{\circ} \mathrm{C}$

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\text {JA }}$	$\boldsymbol{\theta}_{\text {Jc }}$	Unit
24-Lead TSSOP	128	42	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	MCLK1	When the master clock for the device is provided externally by a crystal, the crystal is connected between MCLK1 and MCLK2.
2	MCLK2	Master Clock Signal for the Device. The AD7192 has an internal 4.92 MHz clock. This internal clock can be made available on the MCLK2 pin. The clock for the AD7192 can be provided externally also in the form of a crystal or external clock. A crystal can be tied across the MCLK1 and MCLK2 pins. Alternatively, the MCLK2 pin can be driven with a CMOS-compatible clock and the MCLK1 pin left unconnected.
3	SCLK	Serial Clock Input. This serial clock input is for data transfers to and from the ADC. The SCLK has a Schmitttriggered input, making the interface suitable for opto-isolated applications. The serial clock can be continuous with all data transmitted in a continuous train of pulses. Alternatively, it can be a noncontinuous clock with the information transmitted to or from the ADC in smaller batches of data.
4	$\overline{C S}$	Chip Select Input. This is an active low logic input used to select the ADC. $\overline{C S}$ can be used to select the ADC in systems with more than one device on the serial bus or as a frame synchronization signal in communicating with the device. $\overline{C S}$ can be hardwired low, allowing the ADC to operate in 3-wire mode with SCLK, DIN, and DOUT used to interface with the device.
5	P3	Digital Output Pin. This pin can function as a general-purpose output bit referenced between $A V_{D D}$ and $A G N D$.
6	P2	Digital Output Pin. This pin can function as a general-purpose output bit referenced between $A V_{D D}$ and $A G N D$.
7	P1/REFIN2(+)	Digital Output Pin/Positive Reference Input. This pin functions as a general-purpose output bit referenced between $A V_{D D}$ and $A G N D$. When the REFSEL bit in the configuration register $=1$, this pin functions as REFIN2(+). An external reference can be applied between REFIN2(+) and REFIN2(-). REFIN2(+) can lie anywhere between $A V_{D D}$ and $A G N D+1 \mathrm{~V}$. The nominal reference voltage, (REFIN2(+) - REFIN2(-)), is $A V_{D D}$, but the part functions with a reference from 1 V to $\mathrm{AV}_{\mathrm{DD}}$.
8	P0/REFIN2(-)	Digital Output Pin/Negative Reference Input. This pin functions as a general-purpose output bit referenced between $A V_{D D}$ and $A G N D$. When the REFSEL bit in the configuration register $=1$, this pin functions as REFIN2(-). This reference input can lie anywhere between $A G N D$ and $A V_{D D}-1 \mathrm{~V}$.
9	NC	No Connect. This pin should be tied to AGND.
10	AINCOM	Analog inputs AIN1 to AIN4 are referenced to this input when configured for pseudodifferential operation.
11	AIN1	Analog Input. This pin can be configured as the positive input of a fully differential input pair when used with AIN2 or as a pseudodifferential input when used with AINCOM.
12	AIN2	Analog Input. This pin can be configured as the negative input of a fully differential input pair when used with AIN1 or as a pseudodifferential input when used with AINCOM.

Pin No.	Mnemonic	Description
13	AIN3	Analog Input. This pin can be configured as the positive input of a fully differential input pair when used with AIN4 or as a pseudodifferential input when used with AINCOM.
14	AIN4	Analog Input. This pin can be configured as the negative input of a fully differential input pair when used with AIN3 or as a pseudodifferential input when used with AINCOM.
15	REFIN1 (+)	Positive Reference Input. An external reference can be applied between REFIN1(+) and REFIN1(-). REFIN1(+) can lie anywhere between $A V_{D D}$ and $A G N D+1$ V. The nominal reference voltage, (REFIN1(+) - REFIN1(-)), is $A V_{D D}$, but the part functions with a reference from 1 V to $A V_{D D}$.
16	REFIN1(-)	Negative Reference Input. This reference input can lie anywhere between AGND and AVDD - 1 V .
17	BPDSW	Bridge Power-Down Switch to AGND.
18	AGND	Analog Ground Reference Point.
19	DGND	Digital Ground Reference Point.
20	$\mathrm{AV}_{\mathrm{DD}}$	Analog Supply Voltage, 3 V to 5.25 V . $A V_{D D}$ is independent of $D V_{D D}$. Therefore, $D V_{D D}$ can be operated at 3 V with $A V_{D D}$ at 5 V or vice versa.
21	DVDD	Digital Supply Voltage, 2.7 V to 5.25 V . $\mathrm{DV} V_{D D}$ is independent of $A V_{D D}$. Therefore, $A V_{D D}$ can be operated at 3 V with $\mathrm{DV}_{\mathrm{DD}}$ at 5 V or vice versa.
22	$\overline{\text { SYNC }}$	Logic input that allows for synchronization of the digital filters and analog modulators when using a number of AD7192 devices. While SYNC is low, the nodes of the digital filter, the filter control logic, and the calibration control logic are reset, and the analog modulator is also held in its reset state. $\overline{\text { SYNC }}$ does not affect the digital interface but does reset $\overline{\mathrm{RDY}}$ to a high state if it is low. $\overline{\mathrm{SYNC}}$ has a pull-up resistor internally to $\mathrm{DV}_{\mathrm{DD}}$.
23	DOUT/ $/ \overline{\text { RDY }}$	Serial Data Output/Data Ready Output. DOUT/ $\overline{\operatorname{RDY}}$ serves a dual purpose. It functions as a serial data output pin to access the output shift register of the ADC. The output shift register can contain data from any of the on-chip data or control registers. In addition, DOUT/ $\overline{\mathrm{RDY}}$ operates as a data ready pin, going low to indicate the completion of a conversion. If the data is not read after the conversion, the pin goes high before the next update occurs. The DOUT/ $\overline{\mathrm{RDY}}$ falling edge can be used as an interrupt to a processor, indicating that valid data is available. With an external serial clock, the data can be read using the DOUT/RDY pin. With $\overline{\mathrm{CS}}$ low, the data-/control-word information is placed on the DOUT// $\overline{\operatorname{RDY}}$ pin on the SCLK falling edge and is valid on the SCLK rising edge.
24	DIN	Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the control registers in the ADC, with the register selection bits of the communications register identifying the appropriate register.

AD7192

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Noise $\left(V_{R E F}=A V_{D D}=5 \mathrm{~V}\right.$, Output Data Rate $=4.7 \mathrm{~Hz}$, Gain $=128$, Chop Disabled, Sinc ${ }^{4}$ Filter)

Figure 7. Noise Distribution Histogram $\left(V_{\text {REF }}=A V_{D D}=5 \mathrm{~V}\right.$, Output Data Rate $=4.7 \mathrm{~Hz}$, Gain $=128$, Chop Disabled, Sinc ${ }^{4}$ Filter)

Figure 8. Noise $\left(V_{\text {REF }}=A V_{D D}=5 \mathrm{~V}\right.$, Output Data Rate $=2400 \mathrm{~Hz}$, Gain = 1, Chop Disabled, Sinc ${ }^{4}$ Filter)

Figure 9. Noise Distribution Histogram ($V_{\text {REF }}=A V_{D D}=5 \mathrm{~V}$, Output Data Rate $=2400$ Hz, Gain $=1$, Chop Disabled, Sinc ${ }^{4}$ Filter)

Figure 10. Noise ($V_{\text {REF }}=A V_{D D}=5 \mathrm{~V}$, Output Data Rate $=2400 \mathrm{~Hz}$, Gain $=128$, Chop Disabled, Sinc ${ }^{4}$ Filter)

Figure 11. Noise Distribution Histogram ($V_{\text {REF }}=A V_{D D}=5 \mathrm{~V}$, Output Data Rate $=2400$ Hz, Gain $=128$, Chop Disabled, Sinc ${ }^{4}$ Filter)

Figure 12. INL $($ Gain $=1)$

Figure 13. INL $($ Gain $=128)$

Figure 14. Offset Error (Gain = 1, Chop Disabled)

Figure 15. Offset Error (Gain $=128$, Chop Disabled)

Figure 16. Gain Error (Gain = 1)

Figure 17. Gain Error (Gain = 128)

AD7192

RMS NOISE AND RESOLUTION

The AD7192 has a choice of two filter types: sinc^{4} and sinc^{3}. In addition, the AD7192 can be operated with chop enabled or chop disabled.

The following tables show the rms noise of the AD7192 for some of the output data rates and gain settings with chop disabled and enabled for the sinc^{4} and sinc^{3} filters. The numbers given are for the bipolar input range with the external 5 V reference. These numbers are typical and are generated with a differential input voltage of 0 V when the ADC is continuously converting
on a single channel. The effective resolution is also shown, and the output peak-to-peak (p-p) resolution, or noise-free resolution, is listed in parentheses. It is important to note that the effective resolution is calculated using the rms noise, whereas the p-p resolution is calculated based on peak-to-peak noise. The p-p resolution represents the resolution for which there is no code flicker. These numbers are typical and are rounded to the nearest $1 / 2$ LSB.

SINC ${ }^{4}$ CHOP DISABLED

Table 6. RMS Noise (nV) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time $(\mathbf{m s})$	Gain of 1	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
1023	4.7	852.5	350	50	30	18	13	11
640	7.5	533	425	62	36	21	15	13
480	10	400	490	85	43	23	17	15
96	50	80	2000	260	134	73	46	34
80	60	66.7	2100	273	139	77	48	38
40	120	33.3	2400	315	175	95	64	51
32	150	26.7	2500	335	185	110	71	58
16	300	13.3	3100	420	240	145	95	81
5	960	4.17	4800	690	390	240	170	145
2	2400	1.67	7500	1100	640	390	273	235
1	4800	0.83	16,300	2200	1200	670	427	345

Table 7. Effective Resolution (Peak-to-Peak Resolution) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate $(\mathbf{H z})$	Settling Time $(\mathbf{m s})$	Gain of $\mathbf{1}^{\mathbf{1}}$	GGain of 8 1	Gain of 16 1	Gain of 32 1	Gain of 64 1	Gain of 128 1
1023	4.7	852.5	$24(22)$	$24(22)$	$24(21.5)$	$24(21.5)$	$23.5(21)$	$22.5(20)$
640	7.5	533	$24(22)$	$24(21.5)$	$24(21.5)$	$23.5(21)$	$23(20.5)$	$22.5(20)$
480	10	400	$24(21.5)$	$23.5(21)$	$23.5(21)$	$23.5(21)$	$23(20.5)$	$22(19.5)$
96	50	80	$22(19.5)$	$22(19.5)$	$22(19.5)$	$22(19.5)$	$21.5(19)$	$21(18.5)$
80	60	66.7	$22(19.5)$	$22(19.5)$	$22(19.5)$	$21.5(19)$	$21.5(19)$	$20.5(18)$
40	120	33.3	$22(19.5)$	$21.5(19)$	$21.5(19)$	$21.5(19)$	$21(18.5)$	$20.5(18)$
32	150	26.7	$21.5(19)$	$21.5(19)$	$21.5(19)$	$21(18.5)$	$21(18.5)$	$20(17.5)$
16	300	13.3	$21.5(19)$	$21.5(19)$	$21(18.5)$	$21(18.5)$	$20.5(18)$	$19.5(17)$
5	960	4.17	$20.5(18)$	$20.5(18)$	$20.5(18)$	$20(17.5)$	$19.5(17)$	$19(16.5)$
2	2400	1.67	$20(17.5)$	$20(17.5)$	$19.5(17)$	$19.5(17)$	$19(16.5)$	$18(15.5)$
1	4800	0.83	$19(16.5)$	$19(16.5)$	$19(16.5)$	$18.5(16)$	$18.5(16)$	$17.5(15)$

[^1]
SINC ${ }^{3}$ CHOP DISABLED

Table 8. RMS Noise (nV) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time $\mathbf{(m s)}$	Gain of 1	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of $\mathbf{1 2 8}$
1023	4.7	639.4	350	51	30	18	15	12
640	7.5	400	440	62	36	22	18	15
480	10	300	500	87	45	26	19	17
96	50	60	2000	255	134	73	47	36
80	60	50	2100	273	139	77	49	40
40	120	25	2400	315	168	96	66	55
32	150	20	2500	335	185	105	73	62
16	300	10	3100	425	235	136	100	86
5	960	3.13	5300	745	415	250	180	156
2	2400	1.25	55800	7100	3600	1750	910	500
1	4800	0.625	446,000	55,400	28,000	14,000	7000	3500

Table 9. Effective Resolution (Peak-to-Peak Resolution) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1^{11}	Gain of $\mathbf{8}^{1}$	Gain of 16 ${ }^{1}$	Gain of 32 ${ }^{1}$	Gain of 64^{1}	Gain of 128 ${ }^{1}$
1023	4.7	639.4	24 (22)	24 (22)	24 (21.5)	24 (21.5)	23 (20.5)	22.5 (20)
640	7.5	400	24 (21.5)	24 (21.5)	24 (21.5)	23.5 (21)	23 (20.5)	22 (19.5)
480	10	300	24 (21.5)	23.5 (21)	23.5 (21)	23.5 (21)	22.5 (20)	22 (19.5)
96	50	60	22 (19.5)	22 (19.5)	22 (19.5)	22 (19.5)	21.5 (19)	21 (18.5)
80	60	50	22 (19.5)	22 (19.5)	22 (19.5)	21.5 (19)	21.5 (19)	20.5 (18)
40	120	25	22 (19.5)	21.5 (19)	21.5 (19)	21.5 (19)	21 (18.5)	20 (17.5)
32	150	20	21.5 (19)	21.5 (19)	21.5 (19)	21.5 (19)	21 (18.5)	20 (17.5)
16	300	10	21.5 (19)	21.5 (19)	21 (18.5)	21 (18.5)	20.5 (18)	19.5 (17)
5	960	3.13	20.5 (18)	20.5 (18)	20.5 (18)	20 (17.5)	19.5 (17)	18.5 (16)
2	2400	1.25	17 (14.5)	17 (14.5)	17 (14.5)	17 (14.5)	17 (14.5)	17 (14.5)
1	4800	0.625	14 (11.5)	14 (11.5)	14 (11.5)	14 (11.5)	14 (11.5)	14 (11.5)

[^2]
AD7192

SINC ${ }^{4}$ CHOP ENABLED

Table 10. RMS Noise (nV) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
1023	1.175	1702	248	36	22	13	9	8
640	1.875	1067	301	44	26	15	11	10
480	2.5	800	347	61	31	17	13	11
96	12.5	160	1420	184	95	52	33	25
80	15	133	1490	194	99	55	34	27
40	30	66.7	1700	223	124	68	46	37
32	37.5	53.3	1770	237	131	78	51	42
16	75	26.7	2200	297	170	103	68	58
5	240	8.33	3400	488	276	170	121	103
2	600	3.33	5310	780	453	276	194	167
1	1200	1.67	11,600	1560	849	474	302	244

Table 11. Effective Resolution (Peak-to-Peak Resolution) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1^{1}	Gain of $\mathbf{8}^{1}$	Gain of 16^{1}	Gain of 32 ${ }^{1}$	Gain of $64{ }^{1}$	Gain of 128 ${ }^{1}$
1023	1.175	1702	24 (22.5)	24 (22.5)	24 (22)	24 (22)	24 (21.5)	23 (20.5)
640	1.875	1067	24 (22.5)	24 (22)	24 (22)	24 (21.5)	23.5 (21)	23 (20.5)
480	2.5	800	24 (22)	24 (21.5)	24 (21.5)	24 (21.5)	23.5 (21)	22.5 (20)
96	12.5	160	22.5 (20)	22.5 (20)	22.5 (20)	22.5 (20)	22 (19.5)	21.5 (19)
80	15	133	22.5 (20)	22.5 (20)	22.5 (20)	22 (19.5)	22 (19.5)	21 (18.5)
40	30	66.7	22.5 (20)	22 (19.5)	22 (19.5)	22 (19.5)	21.5 (19)	21 (18.5)
32	37.5	53.3	22 (19.5)	22 (19.5)	22 (19.5)	21.5 (19)	21.5 (19)	20.5 (18)
16	75	26.7	22 (19.5)	22 (19.5)	21.5 (19)	21.5 (19)	21 (18.5)	20 (17.5)
5	240	8.33	21 (18.5)	21 (18.5)	21 (18.5)	20.5 (18)	20 (17.5)	19.5 (17)
2	600	3.33	20.5 (18)	20.5 (18)	20 (17.5)	20 (17.5)	19.5 (17)	18.5 (16)
1	1200	1.67	19.5 (17)	19.5 (17)	19.5 (17)	19 (16.5)	19 (16.5)	18 (15.5)

[^3]
SINC ${ }^{3}$ CHOP ENABLED

Table 12. RMS Noise (nV) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time $(\mathbf{m s})$	Gain of $\mathbf{1}$	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
1023	1.56	1282	248	37	22	13	11	9
640	2.5	800	312	44	26	16	13	11
480	3.33	600	354	62	32	19	14	13
96	16.6	120	1415	181	95	52	34	26
80	20	100	1485	194	99	55	35	29
40	40	50	1698	223	119	68	47	39
32	50	40	1768	237	131	75	52	44
16	100	20	2193	301	167	97	71	61
5	320	6.25	3748	527	294	177	128	111
2	800	2.5	39500	5020	2546	1240	644	354
1	1600	1.25	315,400	39,200	19,800	9900	4950	2500

Table 13. Effective Resolution (Peak-to-Peak Resolution) vs. Gain and Output Data Rate

Filter Word (Decimal)	Output Data Rate (Hz)	Settling Time (ms)	Gain of 1^{1}	Gain of 8 ${ }^{1}$	Gain of 16^{1}	Gain of 32 ${ }^{1}$	Gain of $64{ }^{1}$	Gain of 128 ${ }^{1}$
1023	1.56	1282	24 (22.5)	24 (22.5)	24 (22)	24 (22)	23.5 (21)	23 (20.5)
640	2.5	800	24 (22)	24 (22)	24 (22)	24 (21.5)	23.5 (21)	22.5 (20)
480	3.33	600	24 (22)	24 (21.5)	24 (21.5)	24 (21.5)	23 (20.5)	22.5 (20)
96	16.6	120	22.5 (20)	22.5 (20)	22.5 (20)	22.5 (20)	22 (19.5)	21.5 (19)
80	20	100	22.5 (20)	22.5 (20)	22.5 (20)	22 (19.5)	22 (19.5)	21 (18.5)
40	40	50	22.5 (20)	22 (19.5)	22 (19.5)	22 (19.5)	21.5 (19)	20.5 (18)
32	320	40	22 (19.5)	22 (19.5)	22 (19.5)	22 (19.5)	21.5 (19)	20.5 (18)
16	100	20	22(19.5)	22 (19.5)	21.5 (19)	21.5 (19)	21 (18.5)	20 (17.5)
5	320	6.25	21 (18.5)	20.5 (18)	20.5 (18)	20 (17.5)	19.5 (17)	18.5 (16)
2	800	2.5	17.5 (15)	17.5 (15)	17.5 (15)	17.5 (15)	17.5 (15)	17.5 (15)
1	1600	1.25	14.5 (12)	14.5 (12)	14.5 (12)	14.5 (12)	14.5 (12)	14.5 (12)

[^4]
ON-CHIP REGISTERS

The ADC is controlled and configured via a number of on-chip registers that are described on the following pages. In the following descriptions, "set" implies a Logic 1 state and "cleared" implies a Logic 0 state, unless otherwise noted.

COMMUNICATIONS REGISTER

(RS2, RS1, RSO = 0, 0, 0)

The communications register is an 8 -bit write-only register. All communications to the part must start with a write operation to the communications register. The data written to the communications register determines whether the next operation is a read or write operation and in which register this operation takes place. For read or write operations, when the subsequent read
or write operation to the selected register is complete, the interface returns to where it expects a write operation to the communications register. This is the default state of the interface and, on power-up or after a reset, the ADC is in this default state waiting for a write operation to the communications register. In situations where the interface sequence is lost, a write operation of at least 40 serial clock cycles with DIN high returns the ADC to this default state by resetting the entire part. Table 14 outlines the bit designations for the communications register. CR0 through CR7 indicate the bit location, CR denoting that the bits are in the communications register. CR7 denotes the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit.

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
$\overline{\operatorname{WEN}}(0)$	$\mathrm{R} / \overline{\mathrm{W}}(0)$	$\operatorname{RS} 2(0)$	$\operatorname{RS} 1(0)$	$\operatorname{RSO}(0)$	$\operatorname{CREAD}(0)$	$0(0)$	$0(0)$

Table 14. Communications Register Bit Designations

Bit Location	Bit Name	Description
CR7	$\overline{\text { WEN }}$	Write enable bit. A 0 must be written to this bit so that the write to the communications register actually occurs. If a 1 is the first bit written, the part does not clock on to subsequent bits in the register. It stays at this bit location until a 0 is written to this bit. After a 0 is written to the $\overline{\text { WEN bit, the next seven bits are }}$ loaded to the communications register. Idling the DIN pin high between data transfers minimizes the effects of spurious SCLK pulses on the serial interface.
CR6	R/W	A 0 in this bit location indicates that the next operation is a write to a specified register. A 1 in this position indicates that the next operation is a read from the designated register.
CR5 to CR3	RS2 to RS0	Register address bits. These address bits are used to select which registers of the ADC are selected during the serial interface communication (see Table 15).
CR2	CREAD	Continuous read of the data register. When this bit is set to 1 (and the data register is selected), the serial interface is configured so that the data register can be continuously read; that is, the contents of the data register are automatically placed on the DOUT pin when the SCLK pulses are applied after the RDY pin goes low to indicate that a conversion is complete. The communications register does not have to be written to for subsequent data reads. To enable continuous read, the Instruction 01011100 must be written to the communications register. To disable continuous read, the Instruction 01011000 must be written to the communications register while the RDY pin is low. While continuous read is enabled, the ADC monitors activity on the DIN line so that it can receive the instruction to disable continuous read. Additionally, a reset occurs if 40 consecutive 1s are seen on DIN. Therefore, DIN should be held low until an instruction is to be written to the device.
CR1 to CR0	0	These bits must be programmed to Logic 0 for correct operation.

Table 15. Register Selection

RS2	RS1	RS0	Register	Register Size
0	0	0	Communications register during a write operation	8 bits
0	0	0	Status register during a read operation	8 bits
0	0	1	Mode register	24 bits
0	1	0	Configuration register	24 bits
0	1	1	Data register/data register plus status information	$24 \mathrm{bits} / 32 \mathrm{bits}$
1	0	0	ID register	8 bits
1	0	1	GPOCON register	8 bits
1	1	0	Offset register	24 bits
1	1	1	Full-scale register	24 bits

STATUS REGISTER

(RS2, RS1, RSO = 0, 0, 0; Power-On/Reset = 0x80)

The status register is an 8-bit read-only register. To access the ADC status register, the user must write to the communications register, select the next operation to be a read, and load Bit RS2, Bit RS1, and Bit RS0 with 0 . Table 16 outlines the bit designations for the status register. SR0 through SR7 indicate the bit locations, SR denoting that the bits are in the status register. SR7 denotes the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
$\overline{\operatorname{RDY}}(1)$	$\operatorname{ERR}(0)$	NOREF(0)	PARITY(0)	$0(0)$	CHD2(0)	CHD1(0)	CHD0(0)

Table 16. Status Register Bit Designations

Bit Location	Bit Name	Description
SR7	$\overline{\mathrm{RDY}}$	Ready bit for the ADC. This bit is cleared when data is written to the ADC data register. The $\overline{\mathrm{RDY}}$ bit is set automatically after the ADC data register is read, or a period of time before the data register is updated, with a new conversion result to indicate to the user that the conversion data should not be read. It is also set when the part is placed in power-down mode or idle mode or when $\overline{\text { SYNC }}$ is taken low. The end of a conversion is also indicated by the DOUT $/ \overline{\operatorname{RDY}}$ pin. This pin can be used as an alternative to the status register for monitoring the ADC for conversion data.
SR6	ERR	ADC error bit. This bit is written to at the same time as the $\overline{\mathrm{RDY}}$ bit. This bit is set to indicate that the result written to the ADC data register is clamped to all 0 s or all 1 s . Error sources include overrange or underrange or the absence of a reference voltage. This bit is cleared when the result written to the data register is within the allowed analog input range again.
SR5	NOREF	No external reference bit. This bit is set to indicate that the selected reference (REFIN1 or REFIN2) is at a voltage that is below a specified threshold. When set, conversion results are clamped to all 1 s . This bit is cleared to indicate that a valid reference is applied to the selected reference pins. The NOREF bit is enabled by setting the REFDET bit in the configuration register to 1 .
SR4	PARITY	Parity check of the data register. If the ENPAR bit in the mode register is set, the PARITY bit is set if there is an odd number of 1 s in the data register. It is cleared if there is an even number of 1 s in the data register. The DAT_STA bit in the mode register should be set when the parity check is used. When the DAT_STA bit is set, the contents of the status register are transmitted along with the data for each data register read.
SR3	0	This bit is set to 0 .
SR2 to SR0	$\begin{aligned} & \text { CHD2 to } \\ & \text { CHD0 } \end{aligned}$	These bits indicate which channel corresponds to the data register contents. They do not indicate which channel is presently being converted but indicate which channel was selected when the conversion contained in the data register was generated.

MODE REGISTER

(RS2, RS1, RSO = 0, 0, 1; Power-On/Reset $=0 \times 080060$)

The mode register is a 24 -bit register from which data can be read or to which data can be written. This register is used to select the operating mode, the output data rate, and the clock source. Table 17 outlines the bit designations for the mode register. MR0 through MR23 indicate the bit locations, MR denoting that the bits are in the mode register. MR23 denotes the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit. Any write to the mode register resets the modulator and filter and sets the $\overline{\mathrm{RDY}}$ bit.

MR23	MR22	MR21	MR20	MR19	MR18	MR17	MR16
MD2(0)	MD1(0)	MD0(0)	DAT_STA(0)	CLK1(1)	CLK0(0)	0	0
MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8
SINC3(0)	0	ENPAR(0)	CLK_DIV(0)	SINGLE(0)	REJ60(0)	FS9(0)	FS8(0)
MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
FS7(0)	FS6(1)	FS5(1)	FS4(0)	FS3(0)	FS2(0)	FS1(0)	FS0(0)

AD7192

Table 17. Mode Register Bit Designations

Bit Location	Bit Name	Description		
MR23 to MR21	MD2 to MD0	Mode select bits. These bits select the operating mode of the AD7192 (see Table 18).		
MR20	DAT_STA	This bit enables the transmission of status register contents after each data register read. When DAT_STA is set, the contents of the status register are transmitted along with each data register read. This function is useful when several channels are selected because the status register identifies the channel to which the data register value corresponds.		
MR19, MR18	CLK1, CLK0	These bits are used to select the clock source for the AD7192. Either the on-chip 4.92 MHz clock or an external clock can be used. The ability to use an external clock allows several AD7192 devices to be synchronized. Also, $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection is improved when an accurate external clock drives the AD7192.		
		CLK1	CLKO	ADC Clock Source
		0 0 1 1	0 1 0 1	External crystal. The external crystal is connected from MCLK1 to MCLK2. External clock. The external clock is applied to the MCLK2 pin. Internal 4.92 MHz clock. Pin MCLK2 is tristated. Internal 4.92 MHz clock. The internal clock is available on MCLK2.
MR17, M	0	These bits must be programmed with a Logic 0 for correct operation.		
MR15	SINC3	Sinc^{3} filter select bit. When this bit is cleared, the sinc^{4} filter is used (default value). When this bit is set, the sinc^{3} filter is used. The benefit of the $\sin ^{3}$ filter compared to the sinc ${ }^{4}$ filter is its lower settling time. For a given output data rate, $f_{A D C}$, the sinc^{3} filter has a settling time of $3 / f_{A D C}$ while the sinc ${ }^{4}$ filter has a settling time of $4 / f_{A D C}$ when chop is disabled. The sinc ${ }^{4}$ filter, due to its deeper notches, gives better $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection. At low output data rates, both filters give similar rms noise and similar no missing codes for a given output data rate. At higher output data rates (FS values less than 5), the sinc ${ }^{4}$ filter gives better performance than the sinc ${ }^{3}$ filter for rms noise and no missing codes.		
MR14	0	This bit must be programmed with a Logic 0 for correct operation.		
MR13	ENPAR	Enable parity bit. When ENPAR is set, parity checking on the data register is enabled. The DAT_STA bit in the mode register should be set when the parity check is used. When the DAT_STA bit is set, the contents of the status register are transmitted along with the data for each data register read.		
MR12	CLK_DIV	Clock Divide by 2. When CLK_DIV is set, the master clock is divided by 2. For normal conversions, this bit should be set to 0 . When performing internal full-scale calibrations, this bit must be set when AVDD is less than 4.75 V . The calibration accuracy is optimized when chop is enabled and a low output data rate is used while performing the calibration. When $\mathrm{AV} \mathrm{VD}_{\mathrm{D}}$ is greater than or equal to 4.75 V , it is not compulsory to set the CLK_DIV bit when performing internal full-scale calibrations.		
MR11	SINGLE	Single cycle conversion enable bit. When this bit is set, the AD7192 settles in one conversion cycle so that it functions as a zero-latency ADC. This bit has no effect when multiple analog input channels are enabled or when the single conversion mode is selected.		
MR10	REJ60	This bit enables a notch at 60 Hz when the first notch of the sinc filter is at 50 Hz . When REJ60 is set, a filter notch is placed at 60 Hz when the sinc filter first notch is at 50 Hz . This allows simultaneous $50 \mathrm{~Hz} /$ 60 Hz rejection.		
MR9 to MR0	FS9 to FS0	Filter output data rate select bits. The 10 bits of data programmed into these bits determine the filter cut-off frequency, the position of the first notch of the filter, and the output data rate for the part. In association with the gain selection, they also determine the output noise (and, therefore, the effective resolution) of the device (see Table 6 through Table 13). When chop is disabled and continuous conversion mode is selected, Output Data Rate $=($ MCLK/1024 $) /$ /FS where FS is the decimal equivalent of the code in Bit FS0 to Bit FS9 and is in the range 1 to 1023, and MCLK is the master clock frequency. With a nominal MCLK of 4.92 MHz , this results in an output data rate from 4.69 Hz to 4.8 kHz . With chop disabled, the first notch frequency is equal to the output data rate when converting on a single channel. When chop is enabled, $\text { Output Data Rate }=(M C L K / 1024) /(N \times F S)$ where FS is the decimal equivalent of the code in Bit FS0 to Bit FS9 and is in the range 1 to 1023, and MCLK is the master clock frequency. With a nominal MCLK of 4.92 MHz , this results in a conversion rate from $4.69 / \mathrm{N} \mathrm{Hz}$ to $4.8 / \mathrm{N} \mathrm{kHz}$, where N is the order of the sinc filter. The sinc filter's first notch frequency is equal to $\mathrm{N} \times$ output data rate. The chopping introduces notches at odd integer multiples of (output data rate/2).		

Table 18. Operating Modes

MD2	MD1	MDO	Mode
0	0	0	Continuous conversion mode (default). In continuous conversion mode, the ADC continuously performs conversions and places the result in the data register. The DOUT/ $\overline{\mathrm{RDY}}$ pin and the $\overline{\mathrm{RDY}}$ bit in the status register go low when a conversion is complete. The user can read these conversions by setting the CREAD bit in the communications register to 1 , which enables continuous read. When continuous read is enabled, the conversions are automatically placed on the DOUT line when SCLK pulses are applied. Alternatively, the user can instruct the ADC to output each conversion by writing to the communications register. After power-on, a reset, or a reconfiguration of the ADC, the complete settling time of the filter is required to generate the first valid conversion. Subsequent conversions are available at the selected output data rate, which is dependent on filter choice.
0	0	1	Single conversion mode. When single conversion mode is selected, the ADC powers up and performs a single conversion on the selected channel. The internal clock requires up to 1 ms to power up and settle. The ADC then performs the conversion, which requires the complete settling time of the filter. The conversion result is placed in the data register. $\overline{\mathrm{RDY}}$ goes low, and the ADC returns to power-down mode. The conversion remains in the data register until another conversion is performed. $\overline{\mathrm{RDY}}$ remains active (low) until the data is read or another conversion is performed.
0	1	0	Idle mode. In idle mode, the ADC filter and modulator are held in a reset state even though the modulator clocks are still provided.
0	1	1	Power-down mode. In power-down mode, all AD7192 circuitry, except the bridge power-down switch, is powered down. The bridge power-down switch remains active because the user may need to power up the sensor prior to powering up the AD7192 for settling reasons. The external crystal, if selected, remains active.
1	0	0	Internal zero-scale calibration. An internal short is automatically connected to the input. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	0	1	Internal full-scale calibration. A full-scale input voltage is automatically connected to the input for this calibration. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale coefficient is placed in the full-scale register of the selected channel. A full-scale calibration is required each time the gain of a channel is changed to minimize the fullscale error. When AV ${ }_{D D}$ is less than 4.75 V , the CLK_DIV bit must be set when performing the internal full-scale calibration.
1	1	0	System zero-scale calibration. The user should connect the system zero-scale input to the channel input pins as selected by the CH7 to CH0 bits in the configuration register. $\overline{\text { RDY }}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel. A system zero-scale calibration is required each time the gain of a channel is changed.
1	1	1	System full-scale calibration. The user should connect the system full-scale input to the channel input pins as selected by the CH 7 to CH 0 bits in the configuration register. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale coefficient is placed in the full-scale register of the selected channel. A full-scale calibration is required each time the gain of a channel is changed.

CONFIGURATION REGISTER

(RS2, RS1, RSO = 0, 1, 0; Power-On/Reset = 0x000117)

The configuration register is a 24-bit register from which data can be read or to which data can be written. This register is used to configure the ADC for unipolar or bipolar mode, to enable or disable the buffer, to enable or disable the burnout currents, to select the gain, and to select the analog input channel.
Table 19 outlines the bit designations for the filter register. CON0 through CON23 indicate the bit locations. CON denotes that the bits are in the configuration register. CON23 denotes the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit.

CON23	CON22	CON21	CON20	CON19	CON18	CON17	CON16
CHOP(0)	$0(0)$	$0(0)$	REFSEL(0)	$0(0)$	$0(0)$	$0(0)$	(0)
CON15	CON14	CON13	CON12	CON11	CON10	CON9	CON8
CH7(0)	CH6(0)	CH5(0)	CH4(0)	CH3(0)	CH2(0)	CH1 (0)	CH0 (1)
CON7	CON6	CON5	CON4	CON3	CON2	CON1	CON0
BURN(0)	REFDET(0)	$0(0)$	BUF(1)	U/ $\bar{B}(0)$	G2(1)	G1 (1)	G0(1)

AD7192

Table 19. Configuration Register Bit Designations

AD7192

Table 20. Channel Selection

Channel Enable Bits in the Configuration Register								Channel Enabled		Status Register Bits CHD[2:0]	Calibration Register Pair
CH7	CH6	CH5	CH4	CH3	CH2	CH1	CHO	Positive Input AIN(+)	Negative Input $\operatorname{AIN}(-)$		
							1	AIN1	AIN2	000	0
						1		AIN3	AIN4	001	1
					1			Temper	ure sensor	010	None
				1				AIN2	AIN2	011	
			1					AIN1	AINCOM	100	
		1						AIN2	AINCOM	101	
	1							AIN3	AINCOM	110	2
1								AIN4	AINCOM	111	3

DATA REGISTER

(RS2, RS1, RSO = 0, 1, 1; Power-On/Reset $=0 \times 000000$)
The conversion result from the ADC is stored in this data register. This is a read-only, 24-bit register. On completion of a read operation from this register, the $\overline{\text { RDY }}$ pin/bit is set. When the DAT_STA bit in the mode register is set to 1 , the contents of the status register are appended to each 24 -bit conversion. This is advisable when several analog input channels are enabled because the three LSBs of the status register (CHD2 to CHD0) identify the channel from which the conversion originated.

ID REGISTER
(RS2, RS1, RS0 = 1, 0, 0; Power-On/Reset = 0xX0)
The identification number for the AD7192 is stored in the ID register. This is a read-only register.

GPOCON REGISTER

(RS2, RS1, RSO = 1, 0, 1; Power-On/Reset = 0x00)

The GPOCON register is an 8-bit register from which data can be read or to which data can be written. This register is used to enable the general-purpose digital outputs.

Table 21 outlines the bit designations for the GPOCON register. GP0 through GP7 indicate the bit locations. GP denotes that the bits are in the GPOCON register. GP7 denotes the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit.

GP7	GP6	GP5	GP4	GP3	GP2	GP1	GP0
$0(0)$	$\operatorname{BPDSW}(0)$	GP32EN(0)	GP10EN (0)	P3DAT (0)	P2DAT (0)	P1DAT (0)	P0DAT (0)

Table 21. Register Bit Designations

Bit Location	Bit Name	Description
GP7	0	This bit must be programmed with a Logic 0 for correct operation.
GP6	BPDSW	Bridge power-down switch control bit. This bit is set by the user to close the bridge power-down switch BPDSW to AGND. The switch can sink up to 30 mA. The bit is cleared by the user to open the bridge power- down switch. When the ADC is placed in power-down mode, the bridge power-down switch remains active.
GP5	GP32EN	Digital Output P3 and Digital Output P2 enable. When GP32EN is set, the P3 and P2 digital outputs are active. When GP32EN is cleared, the P3 and P2 pins are tristated, and the P3DAT and P2DAT bits are ignored.
GP4	GP10EN	Digital Output P1 and Digital Output P0 enable. When GP10EN is set, the P1 and P0 digital outputs are active. When GP10EN is cleared, the P1 and P0 outputs are tristated, and the P1DAT and P0DAT bits are ignored. The P1 and P0 pins can be used as a reference input to REFIN2 when the REFSEL bit in the configuration register is set to 1.
GP3	P3DAT	Digital Output P3. When GP32EN is set, the P3DAT bit sets the value of the P3 general-purpose output pin. When P3DAT is high, the P3 output pin is high. When P3DAT is low, the P3 output pin is low. When the GPOCON register is read, the P3DAT bit reflects the status of the P3 pin if GP32EN is set.
GP2	P1DAT	Digital Output P2. When GP32EN is set, the P2DAT bit sets the value of the P2 general-purpose output pin. When P2DAT is high, the P2 output pin is high. When P2DAT is low, the P2 output pin is low. When the GPOCON register is read, the P2DAT bit reflects the status of the P2 pin if GP32EN is set.
GP1	Digital Output P1. When GP10EN is set, the P1DAT bit sets the value of the P1 general-purpose output pin. When P1DAT is high, the P1 output pin is high. When P1DAT is low, the P1 output pin is low. When the GPOCON register is read, the P1DAT bit reflects the status of the P1 pin if GP10EN is set.	
GP0	P0DAT	Digital Output P0. When GP10EN is set, the PODAT bit sets the value of the P0 general-purpose output pin. When P0DAT is high, the P0 output pin is high. When PODAT is low, the P0 output pin is low. When the GPOCON register is read, the P0DAT bit reflects the status of the P0 pin if GP10EN is set.

OFFSET REGISTER

(RS2, RS1, RSO = 1, 1, 0; Power-On/Reset = 0x800000)

The offset register holds the offset calibration coefficient for the ADC. The power-on reset value of the offset register is $0 x 800000$. The AD7192 has four offset registers; therefore, each channel has a dedicated offset register (see Table 20). Each of these registers is a 24 -bit read/write register. This register is used in conjunction with its associated full-scale register to form a register pair. The power-on reset value is automatically overwritten if an internal or system zero-scale calibration is initiated by the user. The AD7192 must be placed in powerdown mode or idle mode when writing to the offset register.

FULL-SCALE REGISTER

(RS2, RS1, RSO = 1, 1, 1; Power-On/Reset = 0x5XXXX0)

The full-scale register is a 24 -bit register that holds the full-scale calibration coefficient for the ADC. The AD7192 has four fullscale registers; therefore, each channel has a dedicated full-scale register (see Table 20). The full-scale registers are read/write registers. However, when writing to the full-scale registers, the ADC must be placed in power-down mode or idle mode. These registers are configured at power-on with factory-calibrated full-scale calibration coefficients, the calibration being performed at gain $=1$. Therefore, every device has different default coefficients. The default value is automatically overwritten if an internal or system full-scale calibration is initiated by the user or if the full-scale register is written to.

[^0]: ${ }^{1}$ Temperature range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
 ${ }^{2}$ Specification is not production tested but is supported by characterization data at initial product release.
 ${ }^{3} \mathrm{FS}$ is the decimal equivalent of Bit FS9 to Bit FS0 in the mode register.
 ${ }^{4}$ Following a system or internal zero-scale calibration, the offset error is in the order of the noise for the programmed gain and output data rate selected. A system fullscale calibration reduces the gain error to the order of the noise for the programmed gain and output data rate.
 ${ }^{5}$ The analog inputs are configured for differential mode.
 ${ }^{6}$ REJ60 is a bit in the mode register. When the output data rate is set to 50 Hz , setting REJ60 to 1 places a notch at 60 Hz , allowing simultaneous $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection.
 ${ }^{7}$ Digital inputs equal to DVDD or DGND.

[^1]: ${ }^{1}$ The output peak-to-peak (p-p) resolution is listed in parentheses.

[^2]: ${ }^{1}$ The output peak-to-peak (p-p) resolution is listed in parentheses.

[^3]: ${ }^{1}$ The output peak-to-peak (p-p) resolution is listed in parentheses.

[^4]: ${ }^{1}$ The output peak-to-peak (p-p) resolution is listed in parentheses.

