: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

CMOS

FEATURES

Microprocessor Compatible (6800, 8085, Z80, Etc.)
TTL/ CM OS Compatible Inputs
On-Chip Data Latches
Endpoint Linearity
Low Power Consumption
Monotonicity Guaranteed (Full Temperature Range) Latch Free (No Protection Schottky Required)

APPLICATIONS

Microprocessor Controlled Gain Circuits Microprocessor Controlled Attenuator Circuits Microprocessor Controlled Function Generation Precision AGC Circuits
Bus Structured Instruments

GENERAL DESCRIPTION

The AD7524 is a low cost, 8-bit monolithic CMOS D AC designed for direct interface to most microprocessors.

Basically an 8-bit DAC with input latches, the AD7524's load cycle is similar to the "write" cycle of a random access memory. Using an advanced thin-film on CMOS fabrication process, the AD7524 provides accuracy to 1/8 LSB with a typical power dissipation of less than 10 milliwatts.
A newly improved design eliminates the protection Schottky previously required and guarantees TTL compatibility when using a +5 V supply. Loading speed has been increased for compatibility with most microprocessors.
Featuring operation from +5 V to +15 V , the AD7524 interfaces directly to most microprocessor buses or output ports.
Excellent multiplying characteristics (2- or 4-quadrant) make the AD7524 an ideal choice for many microprocessor controlled gain setting and signal control applications.

[^0]ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Nonlinearity $\left(\mathbf{V}_{\text {DD }}=+\mathbf{1 5} \mathbf{~ V}\right)$	Package Option
AD7524JN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{N}-16$
AD7524KN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{N}-16$
AD7524LN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{N}-16$
AD7524JP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD7524KP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD7524LP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{P}-20 \mathrm{~A}$
AD7524JR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{R}-16 \mathrm{~A}$
AD7524AQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{Q}-16$
AD7524BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{Q}-16$
AD7524CQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{Q}-16$
AD7524SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{Q}-16$
AD7524TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{Q}-16$
AD7524UQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{Q}-16$
AD7524SE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$
AD7524TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 4 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$
AD7524UE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 / 8 \mathrm{LSB}$	$\mathrm{E}-20 \mathrm{~A}$

NOTES

${ }^{1}$ To order MIL-STD-883, Class B processed parts, add/883B to part number. Contact your local sales office for military data sheet. For U.S. Standard Military Drawing (SMD) see DESC drawing \#5962-87700.
${ }^{2} \mathrm{E}=$ Leadless Ceramic Chip Carrier: $\mathrm{N}=$ Plastic DIP; P = Plastic Leaded Chip Carrier; $\mathrm{Q}=$ Cerdip; $\mathrm{R}=\mathrm{SOIC}$.

FUNCTIONAL BLOCK DIAGRAM

One Technology Way, P.O. Box 9106, Norw ood, M A 02062-9106, U.S.A. Tel: 617/ 329-4700

Fax: 617/326-8703

AD7524* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

DOCUMENTATION

Application Notes

- AN-137: A Digitally Programmable Gain and Attenuation Amplifier Design
- AN-320A: CMOS Multiplying DACs and Op Amps Combine to Build Programmable Gain Amplifier, Part 1
- AN-912: Driving a Center-Tapped Transformer with a Balanced Current-Output DAC

Data Sheet

- AD7524-DSCC: Military Data Sheet
- AD7524-EP: Enhanced Product Data Sheet
- AD7524: CMOS 8-Bit Buffered Multiplying DAC Data Sheet

REFERENCE MATERIALS

Solutions Bulletins \& Brochures

- Digital to Analog Converters ICs Solutions Bulletin

DESIGN RESOURCES

- AD7524 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD7524 EngineerZone Discussions.
SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

Parameter	$\begin{array}{r} \text { Limit, } \\ V_{D D}=+5 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V} \end{aligned}$	$\begin{gathered} \operatorname{Limit}, \\ \mathbf{V}_{\mathrm{DD}}=5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\text {MIN }}, \mathrm{T}_{\mathrm{MAx}}{ }^{1} \\ & \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V} \end{aligned}$	Units	Test Conditions/Comments
STATIC PERFORMANCE Resolution Relative Accuracy J, A, S Versions K, B, T Versions L, C, U Versions Monotonicity Gain Error ${ }^{2}$ Average Gain TC ${ }^{3}$ DC Supply Rejection, ${ }^{3} \Delta \mathrm{Gain} / \Delta \mathrm{V}_{\mathrm{DD}}$ Output Leakage Current $\mathrm{I}_{\text {OUT } 1}$ (Pin 1) $\mathrm{I}_{\text {OUT2 }}$ (Pin 2)	$\begin{aligned} & 8 \\ & \\ & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \text { Guaranteed } \\ & \pm 21 / 2 \\ & \pm 40 \\ & \\ & 0.08 \\ & 0.002 \\ & \\ & \pm 50 \\ & \pm 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \pm 1 / 2 \\ & \pm 1 / 4 \\ & \pm 1 / 8 \\ & \text { Guaranteed } \\ & \pm 11 / 4 \\ & \pm 10 \\ & \\ & 0.02 \\ & 0.001 \\ & \\ & \pm 50 \\ & \pm 50 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 8 \\ \pm 1 / 2 \\ \pm 1 / 2 \\ \pm 1 / 2 \\ \text { Guaranteed } \\ \pm 31 / 2 \\ \pm 40 \\ \\ 0.16 \\ 0.01 \\ \\ \pm 400 \\ \pm 400 \end{array}$	$\begin{aligned} & 8 \\ & \pm 1 / 2 \\ & \pm 1 / 4 \\ & \pm 1 / 8 \\ & \text { Guaranteed } \\ & \pm 11 / 2 \\ & \pm 10 \\ & \\ & 0.04 \\ & 0.005 \\ & \\ & \pm 200 \\ & \pm 200 \\ & \hline \end{aligned}$	Bits LSB max LSB max LSB max LSB max ppm $/{ }^{\circ} \mathrm{C}$ \% FSR/\% max \% FSR/\% typ nA max nA max	Gain TC Measured from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ or from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}$ $\Delta \mathrm{V}_{\mathrm{DD}}= \pm 10 \%$ DB0-DB7 $=\mathrm{V}_{\mathrm{DD}} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}= \pm 10 \mathrm{~V}$
DYNAMIC PERFORMANCE Output Current Settling Time ${ }^{3}$ (to $1 / 2 \mathrm{LSB}$) AC Feedthrough ${ }^{3}$ at OUT 1 at OUT2	$\begin{gathered} 400 \\ \\ 0.25 \\ 0.25 \\ \hline \end{gathered}$	$\begin{array}{\|l} 250 \\ \\ 0.25 \\ 0.25 \\ \hline \end{array}$	$\begin{array}{\|} 500 \\ 0.5 \\ 0.5 \end{array}$	$\begin{aligned} & 350 \\ & \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	ns max \% FSR max \% FSR max	OUT 1 Load $=100 \Omega, \mathrm{C}_{\mathrm{EXT}}=13 \mathrm{pF} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=$ 0 V ; DB0-DB7 $=0 \mathrm{~V}$ to V_{DD} to 0 V . $\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}, 100 \mathrm{kHz}$ Sine Wave; DB0-DB7 $=$ 0 V ; $\overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V}$
REFERENCE INPUT $\mathrm{R}_{\mathrm{IN}}(\text { Pin } 15 \text { to GND })^{4}$	$\begin{aligned} & 5 \\ & 20 \end{aligned}$	$\begin{array}{\|l} \hline 5 \\ 20 \end{array}$	$\left\lvert\, \begin{aligned} & 5 \\ & 20 \end{aligned}\right.$	$\begin{aligned} & 5 \\ & 20 \end{aligned}$	$k \Omega$ min $\mathrm{k} \Omega$ max	
	$\begin{array}{\|l} \hline 120 \\ 30 \\ 30 \\ 120 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 120 \\ 30 \\ 30 \\ 120 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 120 \\ 30 \\ 30 \\ 120 \\ \hline \end{array}$	$\begin{aligned} & 120 \\ & 30 \\ & 30 \\ & 120 \\ & \hline \end{aligned}$	pF max pF max pF max pF max	$\begin{aligned} & \text { DB0-DB7 }=\mathrm{V}_{\mathrm{DD}} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V} \\ & \text { DB0-DB7 }=0 \mathrm{~V} ; \overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V} \end{aligned}$
DIGIT AL INPUTS Input HIGH Voltage Requirement V_{IH} Input LOW Voltage Requirement $V_{\text {IL }}$ Input Current I_{IN} Input Capacitance ${ }^{3}$ DB0-DB7 $\overline{\mathrm{WR}}, \overline{\mathrm{CS}}$	$\begin{aligned} & +2.4 \\ & +0.8 \\ & \pm 1 \\ & 5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & +13.5 \\ & +1.5 \\ & \pm 1 \\ & 5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.4 \\ & +0.5 \\ & \pm 10 \\ & 5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & +13.5 \\ & +1.5 \\ & \pm 10 \\ & 5 \\ & 20 \\ & \hline \end{aligned}$	V min V max $\mu \mathrm{A} \max$ pF max pF max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$
```SWITCHING CHARACTERISTICS Chip Select to Write Setup Time \({ }^{5}\) \(t_{\text {CS }}\) AD7524J, K, L, A, B, C AD7524S, T, U Chip Select to Write Hold Time \(t_{\mathrm{CH}}\) All Grades Write Pulse Width \(\mathrm{t}_{\mathrm{WR}}\) AD7524J, K, L, A, B, C AD7524S, T, U Data Setup Time \(t_{\mathrm{DS}}\) AD7524J, K, L, A, B, C AD7524S, T, U Data Hold Time \(t_{\mathrm{DH}}\) All Grades```	170   170   0   170   170   135   135   10	100 100   0   100   100   60   60   10	$\begin{array}{\|l} 220 \\ 240 \\ 0 \\ 220 \\ 240 \\ \\ 170 \\ 170 \\ 10 \end{array}$	130 150   0   130   150   80   100   10	ns min ns min   ns min   $\mathrm{ns} \min$ ns min   ns min ns min   ns min	See Timing Diagram $\mathrm{t}_{\mathrm{WR}}=\mathrm{t}_{\mathrm{CS}}$ $\mathrm{t}_{\mathrm{CS}} \geq \mathrm{t}_{\mathrm{WR}}, \mathrm{t}_{\mathrm{CH}} \geq 0$
POWER SUPPLY $\mathrm{I}_{\mathrm{DD}}$	$\begin{array}{\|l} \hline 1 \\ 100 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ 100 \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 500 \end{aligned}$	mA max   $\mu \mathrm{A}$ max	All Digital Inputs $\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}$ All Digital Inputs 0 V or $\mathrm{V}_{\mathrm{DD}}$

NOTES
${ }^{1}$ Temperature ranges as follows: J, K, L versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
A, B, C versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
S, T, U versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
${ }^{2} \mathrm{G}$ ain error is measured using internal feedback resistor. Full-Scale Range $(\mathrm{FSR})=\mathrm{V}_{\text {REF }}$.
${ }^{3}$ Guaranteed not tested.
${ }^{4} \mathrm{D} A C$ thin-film resistor temperature coefficient is approximately $-300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
${ }^{5} \mathrm{AC}$ parameter, sample tested @ $+25^{\circ} \mathrm{C}$ to ensure conformance to specification.
Specifications subject to change without notice.

## ABSOLUTE MAXIMUM RATINGS*

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)
$\mathrm{V}_{\mathrm{DD}}$ to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . $-0.3 \mathrm{~V},+17 \mathrm{~V}$
V $_{\text {RFB }}$ to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 25 \mathrm{~V}$
VREF to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 25$ V
Digital Input Voltage to GND ........ . -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
OUT1, OUT2 to GND . . . . . . . . . . . . -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Power Dissipation (Any Package)	
To $+75{ }^{\circ} \mathrm{C}$	450 mW
Derates above $75^{\circ} \mathrm{C}$ by	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature	
Commercial (J, K, L)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial (A, B, C)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (S, T, U)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 secs)	$+300^{\circ} \mathrm{C}$

To $+75^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 mW
Derates above $75^{\circ} \mathrm{C}$ by ......................... . . $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature
Commercial (J, K, L) . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial (A, B, C) . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (S, T, U) . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10 secs) ............ $+300^{\circ} \mathrm{C}$

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD7524 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## TERMINOLOGY

RELATIVE ACCURACY: A measure of the deviation from a straight line through the end points of the DAC transfer function. Normally expressed as a percentage of full scale range. For the AD7524 D AC, this holds true over the entire $\mathrm{V}_{\text {REF }}$ range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with $n$ bits has a resolution of $\left(2^{-n}\right)\left(V_{\text {REF }}\right)$. A bipolar converter of $n$ bits has a resolution of $\left[2^{-(n-1)}\right]\left[V_{\text {REF }}\right]$. Resolution in no way implies linearity.
GAIN ERROR: Gain Error is a measure of the output error between an ideal DAC and the actual device output. It is measured
with all 1 s in the D AC after offset error has been adjusted out and is expressed in LSBs. Gain Error is adjustable to zero with an external potentiometer.
FEEDTHROUGH ERROR: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.
OUTPUT CAPACITANCE: Capacity from OUT 1 and OUT2 terminals to ground.
OUTPUT LEAKAGE CURRENT: Current which appears on OUT 1 terminal with all digital inputs LOW or on OUT2 terminal when all inputs are HIGH. This is an error current which contributes an offset voltage at the amplifier output.

## PIN CONFIGURATIONS



## AD7524

## CIRCUIT DESCRIPTION

## CIRCUIT INFORMATION

The AD7524, an 8-bit multiplying D/A converter, consists of a highly stable thin film R-2R ladder and eight N -channel current switches on a monolithic chip. Most applications require the addition of only an output operational amplifier and a voltage or current reference.

The simplified D/A circuit is shown in Figure 1. An inverted $R-2 R$ ladder structure is used-that is, the binarily weighted currents are switched between the OUT 1 and OUT 2 bus lines, thus maintaining a constant current in each ladder leg independent of the switch state.


Figure 1. Functional Diagram

## EQUIVALENT CIRCUIT ANALYSIS

The equivalent circuit for all digital inputs LOW is shown in Figures 2. In Figure 2 with all digital inputs LOW, the reference current is switched to OUT2. The current source $\mathrm{I}_{\text {LEAKAGE }}$ is composed of surface and junction leakages to the substrate while the $\frac{1}{256}$ current source represents a constant 1 -bit current drain through the termination resistor on the R-2R ladder. The "ON" capacitance of the output N -channel switches is 120 pF , as shown on the OUT2 terminal. The "OFF" switch capacitance is 30 pF , as shown on the OUT 1 terminal. Analysis of the circuit for all digital inputs high is similar to Figure 2 however, the "ON" switches are now on terminal OUT 1, hence the 120 pF appears at that terminal.


Figure 2. AD7524 DAC Equivalent Circuit-All Digital Inputs Low

## INTERFACE LOGIC INFORMATION

 MODE SELECTIONAD7524 mode selection is controlled by the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ inputs.

## WRITE MODE

When $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are both LOW, the AD7524 is in the WRITE mode, and the AD7524 analog output responds to data activity at the DB0-DB7 data bus inputs. In this mode, the AD7524 acts like a nonlatched input D/A converter.

## HOLD MODE

When either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WR}}$ is HIGH, the AD7524 is in the HOLD mode. The AD7524 analog output holds the value corresponding to the last digital input present at DB0-DB7 prior to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{CS}}$ assuming the HIGH state.

MODE SELECTION TABLE

$\overline{\overline{\mathbf{C S}}}$	$\overline{\mathbf{W R}}$	Mode	DAC Response
L	L	Write	DAC responds to data bus   (DB0-DB7) inputs.
H	X	Hold	Data bus (DB0-DB7) is   Locked Out:
X	H	Hold	DAC holds last data present   when $\overline{\mathrm{WR}}$ or $\overline{\mathrm{CS}}$ assumed   HIGH state.

L = Low State, $\mathrm{H}=$ High State, $\mathrm{X}=$ Don't Care.

## WRITE CYCLE TIMING DIAGRAM



Figure 3. Supply Current vs. Logic Level
Typical plots of supply current, $\mathrm{I}_{\mathrm{DD}}$, versus logic input voltage, $\mathrm{V}_{\mathrm{IN}}$, for $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$ are shown above.

## ANALOG CIRCUIT CONNECTIONS



Figure 4. Unipolar Binary Operation (2-Quadrant Multiplication)

Table I. Unipolar Binary Code Table

Digital Input   MSB $\quad$ LSB	Analog Output
11111111	$-\mathrm{V}_{\text {REF }}(255 / 256)$
10000001	$-\mathrm{V}_{\text {REF }}(129 / 256)$
10000000	$-\mathrm{V}_{\text {REF }}(128 / 256)=-\mathrm{V}_{\text {REF }} / 2$
01111111	$-\mathrm{V}_{\text {REF }}(127 / 256)$
00000001	$-\mathrm{V}_{\text {REF }}(1 / 256)$
00000000	$-\mathrm{V}_{\text {REF }}(0 / 256)=0$

Note: 1 LSB $=\left(2^{-8}\right)\left(\mathrm{V}_{\text {REF }}\right)=1 / 256\left(\mathrm{~V}_{\text {REF }}\right)$
MICROPROCESSOR INTERFACE


Figure 6. AD7524/8085A Interface


Figure 5. Bipolar (4-Quadrant) Operation

Table II. Bipolar (Offset Binary) Code Table

Digital Input   MSB LSB	
11111111	$+\mathrm{V}_{\text {REF }}(127 / 128)$
10000001	$+\mathrm{V}_{\text {REF }}(1 / 128)$
10000000	0
01111111	$-\mathrm{V}_{\text {REF }}(1 / 128)$
00000001	$-\mathrm{V}_{\text {REF }}(127 / 128)$
00000000	$-\mathrm{V}_{\text {REF }}(128 / 128)$

Note: $1 \mathrm{LSB}=\left(2^{-7}\right)\left(\mathrm{V}_{\text {REF }}\right)=1 / 128\left(\mathrm{~V}_{\text {REF }}\right)$


Figure 7. AD7524/MC6800 Interface

## POWER GENERATION



Figure 8.

## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Terminal Ceramic Leadless Chip Carrier (E-20A)


16-Lead Plastic D IP (Narrow)
( $\mathrm{N}-16$ )


20-Lead Plastic Leadless Chip Carrier (PLCC) (P-20A)


16-Lead Cerdip
(Q-16)


16-Lead Narrow-B ody (SOIC)
(R-16A)



[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

