: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

Two 12-Bit DACs in One Package
DAC Ladder Resistance Matching: 0.5\%
Space Saving Skinny DIP and Surface Mount Packages
4-Quadrant Multiplication
Low Gain Error (1 LSB max Over Temperature)
Byte Loading Structure
Fast Interface Timing

APPLICATIONS

Automatic Test Equipment
Programmable Filters
Audio Applications
Synchro Applications
Process Control

GENERAL DESCRIPTION

The AD7537 contains two 12-bit current output DACs on one monolithic chip. A separate reference input is provided for each DAC. The dual DAC saves valuable board space, and the monolithic construction ensures excellent thermal tracking. Both DACs are guaranteed 12-bit monotonic over the full temperature range.
The AD7537 has a 2-byte ($8 \mathrm{LSBs}, 4 \mathrm{MSBs}$) loading structure. It is designed for right-justified data format. The control signals for register loading are A0, A1, $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}$ and $\overline{\mathrm{UPD}}$. Data is loaded to the input registers when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are low. To transfer this data to the DAC registers, UPD must be taken low with $\overline{\mathrm{WR}}$.
Added features on the AD7537 include an asynchronous $\overline{\text { CLR }}$ line which is very useful in calibration routines. When this is taken low, all registers are cleared. The double buffering of the data inputs allows simultaneous update of both DACs. Also, each DAC has a separate AGND line. This increases the device versatility; for instance one DAC may be operated with AGND biased while the other is connected in the standard configuration.
The AD7537 is manufactured using the Linear Compatible CMOS (LC ${ }^{2} \mathrm{MOS}$) process. It is speed compatible with most microprocessors and accepts TTL, 74 HC and 5 V CMOS logic level inputs.

REV. A

[^0]FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. DAC to DAC Matching:

Since both DACs are fabricated on the same chip, precise matching and tracking is inherent. Many applications which are not practical using two discrete DACs are now possible. Typical matching: 0.5%.
2. Small Package Size:

The AD7537 is packaged in small 24-pin 0.3" DIPs and in 28-terminal surface mount packages.
3. Wide Power Supply Tolerance:

The device operates on $\mathrm{a}+12 \mathrm{~V}$ to $+15 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$, with $\pm 10 \%$ tolerance on this nominal figure. All specifications are guaranteed over this range.

One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A. Tel:781/329-4700

Fax:781/461-3113

COMPARABLE PARTS

View a parametric search of comparable parts.

DOCUMENTATION

Application Notes

- AN-206: CMOS Multiplying DAC Based Panning Circuit Provides Almost Constant Output Power
- AN-209: 8th Order Programmable Low-Pass Analog Filter Using Dual 12-Bit CMOS Multiplying DACs
- AN-225: 12-Bit Voltage-Output DACs for Single-Supply 5V and 12V Systems

Data Sheet

- AD7537: LC²MOS (8+4) Loading, Dual 12-Bit DAC Data Sheet
- AD7537: Military Data Sheet

REFERENCE MATERIALS

Solutions Bulletins \& Brochures

- Digital to Analog Converters ICs Solutions Bulletin

DESIGN RESOURCES

- AD7537 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD7537 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

```
AD7537-SPEC/EICADONS \(\left(V_{D D}=+12 \mathrm{~V}\right.\) to \(+15 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\text {REFA }}=\mathrm{V}_{\text {REFB }}=10 \mathrm{~V}\); \(\mathrm{I}_{\text {OUTA }}=A G N D=0 \mathrm{~V}\), \(\mathrm{I}_{\text {OUTB }}=\) AGNDB \(=0 \mathrm{~V}\). All specifications \(\mathrm{T}_{\text {MIN }}\) to \(\mathrm{T}_{\text {MAX }}\) unless otherwise noted.)
```

| Parameter | J, A
 Versions | K, B
 Versions | L, C
 Versions | S
 Version | T
 Version | U
 Version | Units |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Test Conditions/Comments

AC PERFORMANCE CHARACTERISTICS

These characteristics are included for Design Guidance only and are not subject to test.
$\left(\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}\right.$ to $+15 \mathrm{~V} ; \mathrm{V}_{\mathrm{REFA}}=\mathrm{V}_{\mathrm{REFB}}=+10 \mathrm{~V} ; \mathrm{I}_{\mathrm{OUTA}}=\mathrm{AGNDA}=0 \mathrm{~V}, \mathrm{I}_{\text {OUTB }}=$ AGNDB $=0 \mathrm{~V}$. Output Amplifiers are AD644 except where noted. $)$

Parameter	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}, \mathrm{T}_{\mathrm{MAX}}$	Units	Test Conditions/Comments
Output Current Settling Time	1.5		$\mu \mathrm{s}$ max	To 0.01% of full-scale range. $\mathrm{I}_{\mathrm{Out}}$ load $=100 \Omega, \mathrm{C}_{\mathrm{EXT}}=13 \mathrm{pF}$. D AC output measured from falling edge of $\overline{\mathrm{WR}}$. Typical Value of Settling Time is $0.8 \mu \mathrm{~s}$.
Digital-to-Analog Glitch lmpulse	7		nV-s typ	Measured with $\mathrm{V}_{\text {REFA }}=\mathrm{V}_{\text {Refb }}=0 \mathrm{~V}$. $\mathrm{I}_{\text {Outa }}, \mathrm{I}_{\text {Outb }}$ load $=100 \Omega$, $\mathrm{C}_{\mathrm{EXT}}=13 \mathrm{pF}$. DAC registers alternately loaded with all 0 s and all 1 s .
AC Feedthrough ${ }^{4}$ $\mathrm{V}_{\text {REFA }}$ to $\mathrm{I}_{\text {OUTA }}$ $\mathrm{V}_{\text {Refb }}$ to $\mathrm{I}_{\text {Outb }}$	$\begin{aligned} & -70 \\ & -70 \end{aligned}$	$\begin{array}{\|l} -65 \\ -65 \end{array}$	dB max dB max	$\mathrm{V}_{\text {REFA }}, \mathrm{V}_{\text {REFB }}=20 \mathrm{~V}$ p-p 10 kHz sine wave. D AC registers loaded with all 0 s .
Power Supply Rejection $\Delta \mathrm{G}$ ain $/ \Delta \mathrm{V}_{\mathrm{DD}}$	± 0.01	± 0.02	\% per \% max	$\Delta \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} \mathrm{max}-\mathrm{V}_{\mathrm{DD}} \mathrm{min}$
Output Capacitance Couta Coutb Couta Coutb	$\begin{aligned} & 70 \\ & 70 \\ & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 140 \\ & 140 \end{aligned}$	pF max pF max pF max pF max	D AC A, D AC B loaded with all 0s D AC A, DAC B loaded with all 1s
```Channel-to-Channel Isolation \(\mathrm{V}_{\text {REFA }}\) to \(\mathrm{I}_{\text {OUtb }}\) \(\mathrm{V}_{\text {REFB }}\) to \(\mathrm{I}_{\text {OUTA }}\)```	$\begin{aligned} & -84 \\ & -84 \end{aligned}$		dB typ   dB typ	$\mathrm{V}_{\text {REFA }}=20 \mathrm{~V}$ p-p 10 kHz sine wave, $\mathrm{V}_{\text {REFB }}=0 \mathrm{~V}$.   Both D ACs loaded with all 1s.   $\mathrm{V}_{\text {REFB }}=20 \mathrm{~V}$ p-p 10 kHz sine wave, $\mathrm{V}_{\text {REFA }}=0 \mathrm{~V}$.   Both D ACs loaded with all 1s.
Digital Crosstalk	7		nV-s typ	Measured for a Code Transition of all 0 s to all 1 s . $\mathrm{I}_{\text {OUtA }}, \mathrm{I}_{\text {OUtB }}$ load $=100 \Omega, \mathrm{C}_{\text {EXT }}=13 \mathrm{pF}$.
Output Noise Voltage Density   $(10 \mathrm{~Hz}-100 \mathrm{kHz})$	25		$\mathrm{n} \mathrm{V} / \sqrt{\overline{\mathrm{Hz}}}$ typ	Measured between $\mathrm{R}_{\text {FBA }}$ and $\mathrm{I}_{\text {OUTA }}$ or $\mathrm{R}_{\text {FbB }}$ and $\mathrm{I}_{\text {OUtb }}$. Frequency of measurement is $10 \mathrm{~Hz}-100 \mathrm{kHz}$.
Total Harmonic Distortion	-82		dB typ	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{rms}, 1 \mathrm{kHz}$. Both D ACs loaded with all 1 s .

NOTES
$\begin{aligned} & \\ & \\ & \\ &\end{aligned}$
A, B, C Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$;
S, T, U Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^1]T| MING CHARACTERIST|CS $\left(\mathrm{V}_{\mathrm{DD}}=+10.8 \mathrm{~V}\right.$ to $\left.+16.5 \mathrm{~V}, \mathrm{~V}_{\text {REFA }}=\mathrm{V}_{\text {REFB }}=+10 \mathrm{~V} ; \mathrm{I}_{\text {OUTA }}=A G N D A=0 \mathrm{~V}, \mathrm{I}_{\text {OUTB }}=A G N D B=0 \mathrm{~V}.\right)$

Parameter	Limit at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Limit at $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Limit at $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
$\mathrm{t}_{1}$	15	15	30	ns min	Address Valid to Write Setup Time
$\mathrm{t}_{2}$	15	15	25	ns min	Address Valid to Write Hold Time
$\mathrm{t}_{3}$	60	80	80	ns min	Data Setup Time
$\mathrm{t}_{4}$	25	25	25	ns min	Data Hold Time
$\mathrm{t}_{5}$	0	0	0	ns min	Chip Select or Update to Write Setup Time
$\mathrm{t}_{6}$	0	0	0	$n \mathrm{~ns}$ min	Chip Select or Update to Write Hold Time
$\mathrm{t}_{7}$	80	80	100	ns min	Write Pulse Width
$\mathrm{t}_{8}$	80	80	100	$n \mathrm{~ns}$ min	Clear Pulse Width

Specifications subject to change without notice.

## ABSOLUTE MAXIMUM RATINGS*

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise stated)
$\mathrm{V}_{\mathrm{DD}}$ to DGND . . . . . . . . . . . . . . . . . . . . . . . . $-0.3 \mathrm{~V},+17 \mathrm{~V}$
$V_{\text {REFA }}, V_{\text {REFB }}$ to AGND A, AGNDB $\ldots . . . . . . . . .$.
$V_{\text {RFBA }}, V_{\text {RFBB }}$ to AGNDA, AGNDB . . . . . . . . . . . . . . $\pm 25 \mathrm{~V}$
Digital Input Voltage to DGND . . . . . $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

AGND A, AGNDB to DGND $\ldots \ldots . . .-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation (Any Package)

$\mathrm{To}+75^{\circ} \mathrm{C}$	450 mW
Derates Above $+75^{\circ} \mathrm{C}$	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Operating Temperature Range
Commercial Plastic (J, K, L Versions) .... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Industrial Hermetic (A, B, C Versions) $\ldots-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Extended Hermetic (S, T, U Versions) . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec ) . . . . . . . . . . $+300^{\circ} \mathrm{C}$
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD7537 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


Figure 1. Timing Diagram

PIN FUNCTION DESCRIPTION (PDIP)

PIN	MNEMONIC	DESCRIPTION
1	AGNDA	Analog Ground for DAC A.
2	Iouta	Current output terminal of DAC A.
3	$\mathrm{R}_{\text {FBA }}$	Feedback resistor for D AC A.
4	$\mathrm{V}_{\text {REFA }}$	Reference input to DAC A.
5	$\overline{\mathrm{CS}}$	Chip Select Input Active low.
6-14	DB0-DB7	Eight data inputs, DB0-DB7.
12	DGND	Digital Ground.
15	A0	Address Line 0.
16	A1	Address Line 1.
17	$\overline{\text { CLR }}$	Clear Input. Active low. Clears all registers.
18	$\overline{\mathrm{WR}}$	Write Input. Active low.
19	$\overline{\text { UPD }}$	Updates DAC Registers from inputs registers.
20	$\mathrm{V}_{\mathrm{DD}}$	Power supply input. Nominally +12 V to +15 V , with $\pm 10 \%$ tolerance.
21	$\mathrm{V}_{\text {REFB }}$	Reference input to DAC B.
22	$\mathrm{R}_{\text {FBB }}$	Feedback resistor for DAC B.
23	$\mathrm{I}_{\text {OUTB }}$	Current output terminal of DAC B.
24	AGNDB	Analog Ground for DAC B.

PIN CONFIGURATIONS

## PDIP and SOIC



## CIRCUIT INFORMATION - D/A SECTION

The AD7537 contains two identical 12-bit multiplying D/A converters. Each D AC consists of a highly stable R-2R ladder and 12 N -channel current steering switches. Figure 2 shows a simplified D/A circuit for DAC A. In the R-2R ladder, binary weighted currents are steered between $I_{\text {OUTA }}$ and AGNDA. The
current flowing in each ladder leg is constant, irrespective of switch state. The feedback resistor $\mathrm{R}_{\text {FBA }}$ is used with an op amp (see Figures 4 and 5) to convert the current flowing in $\mathrm{I}_{\text {OUTA }}$ to a voltage output.


Figure 2. Simplified Circuit Diagram for DAC A

## EQUIVALENT CIRCUIT ANALYSIS

Figure 3 shows the equivalent circuit for one of the D/A converters (DAC A) in the AD7537. A similar equivalent circuit can be drawn for DAC B.
$\mathrm{C}_{\text {OUT }}$ is the output capacitance due to the N -channel switches and varies from about 50 pF to 150 pF with digital input code. The current source $I_{\text {LKG }}$ is composed of surface and junction leakages and approximately doubles every $10^{\circ} \mathrm{C} . \mathrm{R}_{0}$ is the equivalent output resistance of the device which varies with input code.

## DIGITAL CIRCUIT INFORMATION

The digital inputs are designed to be both TTL and 5 V CMOS compatible. All logic inputs are static protected MOS gates with typical input currents of less than 1 nA .

Table I. AD 7537 Truth Table

$\overline{\overline{C L R}}$	$\overline{\text { UPD }}$	$\overline{\mathrm{CS}}$	$\overline{\mathrm{WR}}$	A1	A0	FUNCTION
1	1	1	X	X	X	No Data Transfer
1	1	X	1	X	X	No Data Transfer
0	X	X	X	X	X	All Registers Cleared
1	1	0	0	0	0	D AC A LS Input Register   Loaded with DB7-DB0 (LSB)
1	1	0	0	0	1	DAC A MS Input Register Loaded with DB3 (MSB)-DB0
1	1	0	0	1	0	D AC B LS Input Register Loaded with DB7-DB0 (LSB)
1	1	0	0	1	1	D AC B MS Input Register   Loaded with DB3 (MSB)-DB0
1	0	1	0	X	X	DAC A, D AC B Registers Updated Simultaneously from Input Registers
1	0	0	0	X	X	DAC A, DAC B Registers are Transparent

NOTES: $\mathrm{X}=$ Don't care


Figure 3. Equivalent Analog Circuit for DAC A

## UNIPOLAR BINARY OPERATION

 (2-QUADRANT MULTIPLICATION)Figure 4 shows the circuit diagram for unipolar binary operation. With an ac input, the circuit performs 2-quadrant multiplication. The code table for Figure 4 is given in T able II.

Operational amplifiers A1 and A2 can be in a single package (AD644, AD712) or separate packages (AD544, AD711, AD OP27). Capacitors C 1 and C 2 provide phase compensation to help prevent overshoot and ringing when high-speed op amps are used.
For zero offset adjustment, the appropriate D AC register is loaded with all 0 s and amplifier offset adjusted so that $V_{\text {OUTA }}$ or $\mathrm{V}_{\text {Outb }}$ is 0 V . Full-scale trimming is accomplished by loading the DAC register with all 1 s and adjusting R1 (R3) so that $\mathrm{V}_{\text {OUTA }}\left(\mathrm{V}_{\text {OUTB }}\right)=-\mathrm{V}_{\text {IN }}(4095 / 4096)$. For high temperature operation, resistors and potentiometers should have a low Temperature Coefficient. In many applications, because of the excellent Gain T.C. and Gain Error specifications of the AD7537, Gain Error trimming is not necessary. In fixed reference applications, full scale can also be adjusted by omitting R1, R2, R3, R4 and trimming the reference voltage magnitude.


Figure 4. AD7537 Unipolar Binary Operation
Table II. Unipolar Binary Code Table for Circuit of Figure 4

Binary Number in   DAC Register   MSB LSB	Analog Output,   V OUTA or VoutB 2
111111111111	$-V_{I N}\left(\frac{4095}{4096}\right)$
100000000000	$-V_{I N}\left(\frac{2048}{4096}\right)=-1 / 2 V_{I N}$
000000000001	$-V_{I N}\left(\frac{1}{4096}\right)$
000000000000	$0 V$

## BIPOLAR OPERATION

(4-QUADRANT MULTIPLICATION)
The recommended circuit diagram for bipolar operation is shown in Figure 5. Offset binary coding is used.
With the appropriate D AC register loaded to 100000000000 , adjust R1 (R3) so that $\mathrm{V}_{\text {OUTA }}\left(\mathrm{V}_{\text {OUtB }}\right)=0 \mathrm{~V}$. Alternatively, R1, R2 (R3, R4) may be omitted and the ratios of R6, R7 (R9, 10) varied for $\mathrm{V}_{\text {OUTA }}\left(\mathrm{V}_{\text {OUTB }}\right)=0 \mathrm{~V}$. Full-scale trimming can be accomplished by adjusting the amplitude of $\mathrm{V}_{\text {IN }}$ or by varying the value of R5 (R8).
If R1, R2 (R3, R4) are not used, then resistors R5, R6, R7 (R8, $\mathrm{R} 9, \mathrm{R} 10$ ) should be ratio matched to $0.01 \%$ to ensure gain error performance to the data sheet specification. When operating over a wide temperature range, it is important that the resistors be of the same type so that their temperature coefficients match.

The code table for Figure 5 is given in Table III.


Figure 5. Bipolar Operation (Offset Binary Coding)
Table III. Bipolar Code Table for Offset Binary Circuit of Figure 5

Binary Number in   DAC Register   MSB	LSB
Analog Output,   $\mathbf{V O U T A}^{\prime}$ or $\mathbf{V}_{\text {OUTB }}$	
111111111111	$+V_{I N}\left(\frac{2047}{2048}\right)$
100000000001	$+V_{I N}\left(\frac{1}{2048}\right)$
100000000000	$0 V$
011111111111	$-V_{I N}\left(\frac{1}{2048}\right)$
000000000000	$-V_{I N}\left(\frac{2048}{2048}\right)=-V_{I N}$

## AD7537

## SEPARATE AGND PINS

The DACs in the AD7537 have separate AGND lines taken to pins AGNDA and AGNDB on the package. This increases the applications versatility of the part. Figure 6 is an example of this. DAC A is connected in standard fashion as a programmable attenuator. AGND A is at ground potential. DAC B is operating with AGND B biased to +5 V by the AD584. This gives an output range of +5 V to +10 V .


Figure 6. AD7537 DACs Used in Different Modes
PROGRAMMABLE OSCILLATOR
Figure 7 shows a conventional state variable oscillator in which
the AD7537 controls the programmable integrators. The frequency of oscillation is given by:

$$
f=\frac{1}{2 \pi} \sqrt{\frac{R 6}{R 5} \times \frac{1}{C 1 \times C 2 \times R_{E Q 1} \times R_{E Q 2}}}
$$

where $\mathrm{R}_{\mathrm{EQ} 1}$ and $\mathrm{R}_{\mathrm{EQ} 2}$ are the equivalent resistances of the DACs. The same digital code is loaded into both DACs. If C1 $=\mathrm{C} 2$ and $\mathrm{R} 5=\mathrm{R} 6$, the expression reduces to

$$
f=\frac{1}{2 \pi} \times \frac{1}{C} \sqrt{\frac{1}{R_{E Q 1} \times R_{E Q 2}}}
$$

Since $R_{E Q}=\frac{2^{n} \times R_{L A D}}{N},\left(\mathrm{R}_{\mathrm{LAD}}=\mathrm{D} A C\right.$ ladder resistance $)$.

$$
\begin{aligned}
& f=\frac{1}{2 \pi} \times \frac{1}{C} \sqrt{\frac{\left(N / 2^{n}\right)^{2}}{R_{L A D 1} \times R_{L A D 2}}} \\
& =\frac{1}{2 \pi} \times \frac{D}{C} \frac{1}{\sqrt{R_{L A D 1} \times R_{L A D 2}}} \quad D=\left(\frac{N}{2^{n}}\right) \\
& =\frac{1}{2 \pi} \times \frac{D}{C \times R_{L A D \sqrt{m}}}
\end{aligned}
$$

where $m$ is the DAC ladder resistance mismatch ratio, typically 1.005 .

With the values shown in Figure 7, the output frequency varies from 0 Hz to 1.38 kHz . The amplitude of the output signal at the A 3 output is 10 V peak-to-peak and is constant over the entire frequency span.


Figure 7. Programmable State Variable Oscillator

## APPLICATION HINTS

Output Offset: CMOS D/A converters in circuits such as Figures 4 and 5 exhibit a code dependent output resistance which in turn can cause a code dependent error voltage at the output of the amplifier. The maximum amplitude of this error, which adds to the $\mathrm{D} / \mathrm{A}$ converter nonlinearity, depends on $\mathrm{V}_{\text {OS }}$, where $\mathrm{V}_{\text {OS }}$ is the amplifier input offset voltage. To maintain specified operation, it is recommended that $\mathrm{V}_{\mathrm{OS}}$ be no greater than $\left(25 \times 10^{-6}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)$ over the temperature range of operation. Suitable op amps are the AD711C and its dual version, the AD712C. These op amps have a wide bandwidth and high slew rate and are recommended for wide bandwidth ac applications. AD711/AD712 settling time to $0.01 \%$ is typically $3 \mu \mathrm{~s}$.
Temperature Coefficients: The gain temperature coefficient of the AD7537 has a maximum value of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and typical value of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This corresponds to worst case gain shifts of 2 LSBs and 0.4 LSB respectively over a $100^{\circ} \mathrm{C}$ temperature range. When trim resistors R1 (R3) and R2 (R4) are used to adjust full scale range as in Figure 4, the temperature coefficient of R1 (R3) and R2 (R4) should also be taken into account. For further information see "Gain Error and Gain Temperature Coefficient of CMOS Multiplying DACs", Application Note, Publication Number E630c-5-3/86 available from Analog Devices.
High Frequency Considerations: AD7537 output capacitance works in conjunction with the amplifier feedback resistance to add a pole to the open loop response. This can cause ringing or oscillation. Stability can be restored by adding a phase compensation capacitor in parallel with the feedback resistor. This is shown as C1 and C2 in Figures 4 and 5.
Feedthrough: The dynamic performance of the AD7537 depends upon the gain and phase stability of the output amplifier, together with the optimum choice of PC board layout and decoupling components. A suggested printed circuit layout for Figure 4 is shown in Figure 8 which minimizes feedthrough from $\mathrm{V}_{\text {REFA }}, \mathrm{V}_{\text {REFB }}$ to the output in multiplying applications.


Figure 8. Suggested Layout for AD7537

## MICROPROCESSOR INTERFACING

The byte loading structure of the AD7537 makes it very easy to interface the device to any 8 -bit microprocessor system. Figures 9 and 10 show two interfaces: one for the MC6809 and the
other for the MC68008. Figure 11 shows how an AD7537 system can be easily expanded by tying all the UPD lines together and using a single decoder output to control these. This expanded system is shown using a Z 80 microprocessor but it is just as easily configured using any other 8-bit microprocessor system. Note how the system shown in Figure 11 produces 4 analog outputs with a minimum amount of hardware.


Figure 9. AD7537-MC6809 Interface


Figure 10. AD7537-MC68008 Interface

*LINEAR CIRCUITRY OMITTED FOR CLARITY
Figure 11. Expanded AD7537 System

## OUTLINE DIMENSIONS



Figure 12. 24-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
( N -24-1)
Dimensions shown in inches and (millimeters)


COMPLIANT TO JEDEC STANDARDS MO-047-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 16. 28-Lead Plastic Leaded Chip Carrier [PLCC] (P-28)
Dimensions shown in inches and (millimeters)


COMPLIANT TO JEDEC STANDARDS MS-013-AD
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 17. 24-Lead Standard Small Outline Package [SOIC-W]
Wide Body
(RW-24)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model ${ }^{1,2,3}$	Temperature Range	Relative Accuracy	Gain Error	Package Description	Package Option
AD7537JN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead PDIP	N-24-1
AD7537JNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead PDIP	N-24-1
AD7537KN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead PDIP	N-24-1
AD7537KNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead PDIP	N-24-1
AD7537LNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 1$ LSB	24-Lead PDIP	N-24-1
AD7537JP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	28-Lead PLCC	P-28
AD7537JP-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	28-Lead PLCC	P-28
AD7537JPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	28-Lead PLCC	P-28
AD7537JPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	28-Lead PLCC	P-28
AD7537KP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	28-Lead PLCC	P-28
AD7537KPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	28-Lead PLCC	P-28
AD7537KPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	28-Lead PLCC	P-28
AD7537LP-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 1$ LSB	28-Lead PLCC	P-28
AD7537LPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 1$ LSB	28-Lead PLCC	P-28
AD7537LPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 1$ LSB	28-Lead PLCC	P-28
AD7537JR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead SOIC_W	RW-24
AD7537JR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead SOIC_W	RW-24
AD7537JRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead SOIC_W	RW-24
AD7537JRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead SOIC_W	RW-24
AD7537KRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead SOIC_W	RW-24
AD7537KR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead SOIC_W	RW-24
AD7537BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead SOIC_W	RW-24
AD7537BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead SOIC_W	RW-24
AD7537BRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead SOIC_W	RW-24

[^2]
## AD7537

## REVISION HISTORY

6/12—Rev. 0 to Rev. A
Added SOIC Package ..................................................... Universal
Removed LCCC Pin Configuration................................................ 4
Updated Outline Dimensions...................................................... 8
Changes to Ordering Guide......................................................... 9
10/87—Revision 0: Initial Version


[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]:    ${ }^{2}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance.
    ${ }^{3}$ Functional at $V_{D D}=5 \mathrm{~V}$, with degraded specifications.
    ${ }^{4}$ Pin 12 (DGND) on ceramic DIPs is connected to lid.

[^2]:    ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
    ${ }^{2}$ Analog Devices reserves the right to ship side-brazed CERDIP packages (D-24-1) in lieu of CERDIP packages (Q-24-1).
    ${ }^{3}$ To order MIL-STD-883, Class B processed parts, add/883B to part number. Contact your local sales office for military data sheet.

