: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

Up to 23 effective bits
RMS noise: $\mathbf{4 0}$ nV @ $4.17 \mathrm{~Hz}, \mathbf{8 5}$ nV @ 16.7 Hz
Current: $\mathbf{4 0 0} \mu \mathrm{A}$ typical
Power-down: $1 \mu \mathrm{~A}$ maximum
Low noise, programmable gain, instrumentation amp
Band gap reference with 4 ppm $/{ }^{\circ} \mathrm{C}$ drift typical
Update rate: 4.17 Hz to 470 Hz
Six differential analog inputs
Internal clock oscillator
Simultaneous $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection
Reference detect
Programmable current sources
On-chip bias voltage generator
Burnout currents
Low-side power switch
Power supply: 2.7 V to 5.25 V
Temperature range:
B grade: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
C grade: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Independent interface power supply
24-lead TSSOP
3-wire serial interface
SPI ${ }^{\oplus}$, QSPI ${ }^{\text {™ }}$, MICROWIRE ${ }^{\text {™ }}$, and DSP compatible
Schmitt trigger on SCLK

APPLICATIONS

Temperature measurement

Pressure measurement

Weigh scales

Strain gage transducers
Gas analysis

Industrial process control Instrumentation
 Blood analysis
 Smart transmitters
 Liquid/gas chromatography
 6-digit DVM
 GENERAL DESCRIPTION

The AD7794/AD7795 are low power, low noise, complete analog front ends for high precision measurement applications. They contain a low noise, 24-/16-bit \sum - Δ ADC with six differential inputs. The on-chip low noise instrumentation amplifier means that signals of small amplitude can be interfaced directly to the ADC.

Each device contains a precision, low noise, low drift internal band gap reference, and can also accept up to two external differential references. Other on-chip features include programmable excitation current sources, burnout currents, and a bias voltage generator that is used to set the commonmode voltage of a channel to $\mathrm{AV} V_{\mathrm{DD}} / 2$. The low-side power switch can be used to power down bridge sensors between conversions, minimizing the system's power consumption. The AD7794/AD7795 can operate with either an internal clock or an external clock. The output data rate from each part can vary from 4.17 Hz to 470 Hz .

Both parts operate with a power supply from 2.7 V to 5.25 V . The B-grade parts (AD7794 and AD7795) are specified for a temperature range of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ while the C-grade part (AD7794) is specified for a temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. They consume a current of $400 \mu \mathrm{~A}$ typical and are housed in a 24 -lead TSSOP.

Figure 1.
Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD7794/AD7795

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Timing Characteristics 8
Timing Diagrams 9
Absolute Maximum Ratings 10
ESD Caution 10
Pin Configuration and Function Descriptions 11
RMS Noise and Resolution Specifications 13
Chop Enabled 13
Chop Disabled 15
Typical Performance Characteristics 16
On-Chip Registers 17
Communications Register 17
Status Register 18
Mode Register 19
Configuration Register 22
Data Register 24
ID Register 24
IO Register 24
Offset Register 25
REVISION HISTORY
3/07—Rev. C to Rev. D
Changes to Specifications Endnote 1 7
Changes to Status Register Section 18
Changes to Ordering Guide 36
10/06-Rev. B to Rev. C
Updated Format Universal
Added AD7794 C-Grade Part Universal
Changes to Specifications 3
Changes to Ordering Guide 36
6/06-Rev. A to Rev. B
Added AD7795 Universal
Changes to Features 1
Changes to Table 1 3
Changes to RMS Noise and Resolution Specifications Section 12
Changes to Table 19 20
Changes to ADC Circuit Information Section 25
Changes to Ordering Guide 35

4/05—Rev. 0 to Rev. A

Changes to Figure 21.. 25

Changes to Ordering Guide ... 33

Changes to Absolute Maximum Ratings 9Changes to Figure 215

Changes to Data Output Coding Section.................................. 28

Changes to Calibration Section ... 30
Changes to Calibration Section33

10/04—Revision 0: Initial Version
10/04-Revision 0: Initial Version
Full-Scale Register 25
ADC Circuit Information 26
Overview 26
Digital Interface 28
Circuit Description 31
Analog Input Channel 31
Instrumentation Amplifier 31
Bipolar/Unipolar Configuration 31
Data Output Coding 32
Burnout Currents 32
Excitation Currents 32
Bias Voltage Generator 32
Reference 32
Reference Detect 33
Reset 33
AV ${ }_{\text {DD }}$ Monitor 33
Calibration 33
Grounding and Layout 34
Applications Information 35
Flowmeter 35
Outline Dimensions 36
Ordering Guide 36

SPECIFICATIONS

$\mathrm{AV}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{DV} \mathrm{DD}=2.7 \mathrm{~V}$ to 5.25 V , $\mathrm{GND}=0 \mathrm{~V}$, all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 1.

Parameter ${ }^{1}$	AD7794/AD7795	Unit	Test Conditions/Comments		
CHOP ENABLED					
Output Update Rate	4.17 to 470	Hz nom	Settling time $=2 /$ output update rate		
No Missing Codes ${ }^{2}$					
AD7794	24	Bits min	$\mathrm{f}_{\text {ADC }} \leq 242 \mathrm{~Hz}$		
AD7795	16	Bits min			
Resolution			See the RMS Noise and Resolution Specifications section		
RMS Noise and Update Rates			See the RMS Noise and Resolution Specifications section		
Integral Nonlinearity	± 15	ppm of FSR max			
Offset Error ${ }^{3}$	± 1	$\mu \mathrm{V}$ typ			
Offset Error Drift vs. Temperature ${ }^{4}$	± 10	nV/ ${ }^{\circ} \mathrm{C}$ typ			
Full-Scale Error ${ }^{3,5}$	± 10	$\mu \mathrm{V}$ typ			
Gain Drift vs. Temperature ${ }^{4}$	± 1	ppm $/{ }^{\circ} \mathrm{C}$ typ	Gain $=1$ to 16 , external reference Gain $=32$ to 128 , external reference		
	± 3	ppm $/{ }^{\circ} \mathrm{C}$ typ			
Power Supply Rejection	100	dB min	AIN $=1 \mathrm{~V} /$ gain, gain ≥ 4, external reference		
ANALOG INPUTS					
Differential Input Voltage Ranges	\pm VREF/gain	V nom	$\mathrm{V}_{\text {REF }}=\operatorname{REFIN}(+)-\operatorname{REFIN}(-)$, or internal reference, gain $=1$ to 128		
Absolute AlN Voltage Limits ${ }^{2}$					
Unbuffered Mode	GND - 30 mV	V min	Gain $=1$ or 2		
	$\mathrm{AV}_{\mathrm{DD}}+30 \mathrm{mV}$	\checkmark max			
Buffered Mode	GND + 100 mV	\checkmark min	Gain $=1$ or 2		
	$A V_{D D}-100 \mathrm{mV}$	\checkmark max			
In-Amp Active	GND + 300 mV	V min	Gain $=4$ to 128		
	$\mathrm{AV}_{\mathrm{DD}}-1.1$	\checkmark max			
Common-Mode Voltage, $\mathrm{V}_{\text {CM }}$	0.5	V min	$\mathrm{VCM}=(\operatorname{AIN}(+)+\operatorname{AIN}(-)) / 2$, gain $=4$ to 128		
Analog Input Current Buffered Mode or In-Amp Active Average Input Current ${ }^{2}$					
AD7794B/AD7795B	± 1	$n A$ max	Gain $=1$ or 2, update rate $<100 \mathrm{~Hz}$		
	± 250	pA max	Gain $=4$ to 128 , update rate $<100 \mathrm{~Hz}$		
	± 1	$n A$ max	AIN6(+)/AIN6(-)		
AD7794C	± 3	$n A \max$	Gain $=1$ or 2 , update rate $<100 \mathrm{~Hz}$		
	± 2	$n A \max$	Gain $=4$ to 128 , update rate $<100 \mathrm{~Hz}$		
	± 3	$n A \max$	AIN6(+)/AIN6(-)		
Average Input Current Drift	± 2	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ typ			
Unbuffered Mode			Gain = 1 or 2		
Average Input Current	± 400	nA/V typ	Input current varies with input voltage		
Average Input Current Drift	± 50	pA/V/ ${ }^{\circ} \mathrm{C}$ typ			
Normal Mode Rejection ${ }^{2,6}$Internal Clock					
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	65	$d B$ min	80 dB typ, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1010$		
@ 50 Hz	80	$d B$ min	90 dB typ, $50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1001$		
@ 60 Hz	90	$d B$ min	100 dB typ, $60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1000$		
External Clock					
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	80	$d B$ min	90 dB typ, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1010$		
@ 50 Hz	94	$d B$ min	100 dB typ, $50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1001$		
@ 60 Hz	90	dB min	100 dB typ, $60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1000$		

AD7794/AD7795

Parameter ${ }^{1}$	AD7794/AD7795	Unit	Test Conditions/Comments
Normal Mode Rejection ${ }^{2,6}$			
Internal Clock			
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	60	$d B$ min	70 dB typ, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1010$
@ 50 Hz	78	dB min	90 dB typ, $50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1001$
@ 60 Hz	86	dB min	100 dB typ, $60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1000$
External Clock			
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	60	$d B$ min	70 dB typ, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1010$
@ 50 Hz	94	dB min	100 dB typ, $50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1001$
@ 60 Hz	90	$d B$ min	100 dB typ, $60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1000$
Common-Mode Rejection			
AD7794B/AD7795B			
@ DC	100	$d B$ min	AIN $=1 \mathrm{~V} /$ gain, with gain $=4, \mathrm{AMP}-\mathrm{CM}$ Bit $=1$
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	100	$d B$ min	$50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1010$
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	100	$d B$ min	$50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1001 ; 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1000$
AD7794C			
@ DC	97	$d B$ min	AIN $=1 \mathrm{~V} /$ gain, with gain $=4, \mathrm{AMP}-\mathrm{CM}$ Bit $=1$
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	97	$d B$ min	$50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1010$
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	97	$d B$ min	$50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1001 ; 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1000$
CHOP ENABLED or DISABLED			
REFERENCE INPUT			
Internal Reference			
Internal Reference Initial Accuracy	$1.17 \pm 0.01 \%$	V min/max	$A V_{D D}=4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Internal Reference Drift ${ }^{2}$	4	ppm $/{ }^{\circ} \mathrm{C}$ typ	
	15	ppm/ ${ }^{\circ} \mathrm{C}$ max	
Power Supply Rejection	85	dB typ	
External Reference			
External REFIN Voltage	2.5	\checkmark nom	REFIN $=$ REFIN (+) - REFIN(-)
Reference Voltage Range ${ }^{2}$	0.1	\checkmark min	
	AV ${ }_{\text {DD }}$	V max	When $\mathrm{V}_{\text {REF }}=A V_{\text {DD }}$, the differential input must be limited to $0.9 \times \mathrm{V}_{\text {REF }} /$ gain if the in-amp is active
Absolute REFIN Voltage Limits ${ }^{2}$	GND - 30 mV	V min	
	$\mathrm{AV}_{\mathrm{DD}}+30 \mathrm{mV}$	\checkmark max	
	Current		
Average Reference Input Current Drift	± 0.03	nA/V/ ${ }^{\circ} \mathrm{C}$ typ	
Normal Mode Rejection ${ }^{2}$			Same as for analog inputs
Common-Mode Rejection	100	dB typ	
Reference Detect Levels	0.3	V min	
	0.65	\checkmark max	NOXREF bit active if $\mathrm{V}_{\text {REF }}<0.3 \mathrm{~V}$
EXCITATION CURRENT SOURCES			
(IEXC1 and IEXC2)			
Output Current	10/210/1000	$\mu \mathrm{A}$ nom	
Initial Tolerance at $25^{\circ} \mathrm{C}$	± 5	\% typ	
Drift	200	ppm/ $/{ }^{\circ} \mathrm{C}$ typ	
Current Matching	± 0.5	\% typ	Matching between IEXC1 and IEXC2, $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$
Drift Matching	50	ppm/ ${ }^{\circ} \mathrm{C}$ typ	
Line Regulation ($\mathrm{AV}_{\mathrm{DD}}$)	2	\%/V typ	$A V_{D D}=5 \mathrm{~V} \pm 5 \%$
Load Regulation Output Compliance	0.2	\%/V typ	
	AV $\mathrm{DD}^{\text {- }} 0.65$	\checkmark max	Current sources programmed to $10 \mu \mathrm{~A}$ or $210 \mu \mathrm{~A}$
	$A V_{\text {DD }}-1.1$	V max	Current sources programmed to 1 mA
	GND - 30 mV	V min	

AD7794/AD7795

Parameter ${ }^{1}$	AD7794/AD7795	Unit	Test Conditions/Comments
BIAS VOLTAGE GENERATOR $V_{\text {bias }}$ $V_{\text {BIAS }}$ Generator Start-Up Time	$\mathrm{AV}_{\mathrm{DD}} / 2$	V nom $\mathrm{ms} / \mathrm{nF}$ typ	Dependent on the capacitance connected to AIN; See Figure 11
TEMPERATURE SENSOR Accuracy Sensitivity	$\begin{aligned} & \pm 2 \\ & 0.81 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \text { typ } \\ & \mathrm{mV} /{ }^{\circ} \mathrm{C} \text { typ } \end{aligned}$	Applies if user calibrates the temperature sensor
LOW-SIDE POWER SWITCH Ron Allowable Current ${ }^{2}$	$\begin{aligned} & 7 \\ & 9 \\ & 30 \end{aligned}$	Ω max Ω max mA max	$\begin{aligned} & A V_{D D}=5 \mathrm{~V} \\ & A V_{D D}=3 \mathrm{~V} \\ & \text { Continuous current } \end{aligned}$
DIGITAL OUTPUTS (P1 and P2) Vон, Output High Voltage ${ }^{2}$ Vol, Output Low Voltage ${ }^{2}$ Vон, Output High Voltage ${ }^{2}$ Vol, Output Low Voltage ${ }^{2}$	$\begin{aligned} & \mathrm{AV} \mathrm{~V}_{\mathrm{DD}}-0.6 \\ & 0.4 \\ & 4 \\ & 0.4 \end{aligned}$	V min \checkmark max V min V max	
INTERNAL/EXTERNAL CLOCK Internal Clock Frequency ${ }^{2}$ Duty Cycle External Clock Frequency Duty Cycle	$\begin{aligned} & 64 \pm 3 \% \\ & 50: 50 \\ & 64 \\ & 45: 55 \text { to } 55: 45 \end{aligned}$	kHz min/max \% typ kHz nom \% typ	A 128 kHz external clock can be used if the divide-by-2 function is used (Bit CLK1 = CLKO = 1) Applies for external 64 kHz clock, a 128 kHz clock can have a less stringent duty cycle
$\begin{aligned} & \text { LOGIC INPUTS } \\ & \overline{\mathrm{CS}^{2}} \end{aligned}$			
VINL, Input Low Voltage $\mathrm{V}_{\mathbf{I n}}$, Input High Voltage SCLK (Schmitt-Triggered Input), CLK, and DIN ${ }^{2}$ AD7794B/AD7795B	$\begin{aligned} & 0.8 \\ & 0.4 \\ & 2.0 \end{aligned}$	V max \checkmark max V min	$\begin{aligned} & D V_{D D}=5 \mathrm{~V} \\ & D V_{D D}=3 \mathrm{~V} \\ & D V_{D D}=3 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{T}}(+)$	1.4/2	\checkmark min/max	DV $\mathrm{DD}_{\text {d }}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(-)$	0.8/1.7	\checkmark min/max	$D V_{D D}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$ to $\mathrm{V}_{\mathrm{T}}(-)$	0.1/0.17	\checkmark min/max	$D V_{D D}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$	0.9/2	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(-)$	0.4/1.35	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$ to $\mathrm{V}_{\mathrm{T}}(-)$	0.06/0.13	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
AD7794C			
$\mathrm{V}_{\mathrm{T}}(+)$	1.35/2.05	\checkmark min/max	DV $\mathrm{DD}_{\text {d }}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(-)$	0.8/1.9	\checkmark min/max	$D V_{D D}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$ to $\mathrm{V}_{\mathrm{T}}(-)$	0.1/0.19	\checkmark min/max	$D V_{D D}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$	0.9/2	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(-)$	0.4/1.35	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}}(+)$ to $\mathrm{V}_{\mathrm{T}}(-)$	0.06/0.15	\checkmark min/max	$D V_{D D}=3 \mathrm{~V}$
Input Currents	± 10	$\mu \mathrm{A}$ max	$\mathrm{V}_{1 \times}=$ DV $\mathrm{VD}_{\text {or }}$ or GND
Input Capacitance	10	pF typ	All digital inputs

Parameter ${ }^{1}$	AD7794/AD7795	Unit	Test Conditions/Comments
LOGIC OUTPUT (INCLUDING CLK) $V_{\text {он, }}$ Output High Voltage ${ }^{2}$ VoL, Output Low Voltage ${ }^{2}$ V $_{\text {он, Output High Voltage }}{ }^{2}$ Vol, Output Low Voltage ${ }^{2}$ Floating-State Leakage Current Floating-State Output Capacitance Data Output Coding	$\begin{aligned} & \mathrm{DV} V_{D D}-0.6 \\ & 0.4 \\ & 4 \\ & 0.4 \\ & \pm 10 \\ & 10 \\ & \text { Offset binary } \\ & \hline \end{aligned}$	\vee min V max V min V max $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{DV}_{\text {DD }}=3 \mathrm{~V}, \mathrm{I}_{\text {SOURCE }}=100 \mu \mathrm{~A} \\ & \mathrm{DV}_{D D}=3 \mathrm{~V}, \mathrm{I}_{\text {IINK }}=100 \mu \mathrm{~A} \\ & D V_{D D}=5 \mathrm{~V} \text { I IOURCE }=200 \mu \mathrm{~A} \\ & D V_{D D}=5 \mathrm{~V}, \mathrm{I}_{\text {SIIKK }}=1.6 \mathrm{~mA}(\mathrm{DOUT} / \overline{\mathrm{RDY}}), 800 \mu \mathrm{~A}(\mathrm{CLK}) \end{aligned}$
SYSTEM CALIBRATION ${ }^{2}$ Full-Scale Calibration Limit Zero-Scale Calibration Limit Input Span	$\begin{aligned} & 1.05 \times \text { FS } \\ & -1.05 \times F S \\ & 0.8 \times \mathrm{FS} \\ & 2.1 \times \mathrm{FS} \end{aligned}$	\checkmark max V min V min V max	
POWER REQUIREMENTS ${ }^{7}$ Power Supply Voltage AV ${ }_{\text {DD }}$ to GND DV ${ }_{D D}$ to GND Power Supply Currents Ido Current IDD (Power-Down Mode)	$\begin{aligned} & 2.7 / 5.25 \\ & 2.7 / 5.25 \\ & 140 \\ & 185 \\ & 400 \\ & 500 \\ & 1 \\ & 2 \end{aligned}$	\checkmark min/max V min/max $\mu \mathrm{A}$ max	$110 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 125 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, unbuffered mode, external reference $130 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{DD}_{\mathrm{D}}=3 \mathrm{~V}, 165 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, buffered mode, gain $=1$ or 2 , external reference $300 \mu \mathrm{~A}$ typ @ AV DD $=3 \mathrm{~V}, 350 \mu \mathrm{~A}$ typ $@ A V_{D D}=5 \mathrm{~V}$, gain $=4$ to 128 , external reference $400 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{VD}_{\mathrm{DD}}=3 \mathrm{~V}, 450 \mu \mathrm{~A}$ typ @ $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, gain $=4$ to 128 , internal reference AD7794B, AD7795B AD7794C

[^0]
AD7794/AD7795

TIMING CHARACTERISTICS

$\mathrm{AV}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{DV} \mathrm{DD}=2.7 \mathrm{~V}$ to 5.25 V, $\mathrm{GND}=0 \mathrm{~V}$, Input Logic $0=0 \mathrm{~V}$, Input Logic $1=\mathrm{DV} \mathrm{VD}_{\mathrm{D}}$, unless otherwise noted.
Table 2.

Parameter ${ }^{1,2}$	Limit at $\mathrm{T}_{\text {min }} \mathrm{T}_{\text {max }}$ (B Version)	Unit	Conditions/Comments
t_{3}	100	ns min	SCLK high pulse width
t_{4}	100	$n s$ min	SCLK low pulse width
Read Operation			
t_{1}	0	ns min	CS falling edge to DOUT/RDY active time
	60	ns max	DV $\mathrm{DD}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	$\mathrm{DV}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V
$\mathrm{t}_{2}{ }^{3}$	0	$n \mathrm{~ns}$ min	SCLK active edge to data valid delay ${ }^{4}$
	60	ns max	$\mathrm{DV}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	$D V_{D D}=2.7 \mathrm{~V}$ to 3.6 V
$t_{5}{ }^{5,6}$	10	$n \mathrm{n}$ min	Bus relinquish time after $\overline{C S}$ inactive edge
	80	ns max	
t_{6}	0	ns min	SCLK inactive edge to $\overline{C S}$ inactive edge
t_{7}	10	$n \mathrm{~ns}$ min	SCLK inactive edge to DOUT//RDY high
Write Operation			
t_{8}	0	$n \mathrm{~ns}$ min	$\overline{C S}$ falling edge to SCLK active edge setup time ${ }^{4}$
t_{9}	30	ns min	Data valid to SCLK edge setup time
t_{10}	25	ns min	Data valid to SCLK edge hold time
t_{11}	0	ns min	$\overline{\mathrm{CS}}$ rising edge to SCLK edge hold time

${ }^{1}$ Sample tested during initial release to ensure compliance. All input signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=5 \mathrm{~ns}(10 \%$ to 90% of DV DD) and timed from a voltage level of 1.6 V .
${ }^{2}$ See Figure 3 and Figure 4.
${ }^{3}$ These numbers are measured with the load circuit shown in Figure 2 and defined as the time required for the output to cross the $V_{\text {ol }}$ or $V_{\text {OH }}$ limits.
${ }^{4}$ SCLK active edge is falling edge of SCLK.
${ }^{5}$ These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit shown in Figure 2 . The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus relinquish times of the part and, therefore, are independent of external bus loading capacitances.
${ }^{6} \overline{\mathrm{RDY}}$ returns high after a read of the ADC. In single conversion mode and continuous conversion mode, the same data can be read again, if required, while $\overline{\mathrm{RDY}}$ is high, although care should be taken to ensure that subsequent reads do not occur close to the next output update. In continuous read mode, the digital word can be read only once.

Figure 2. Load Circuit for Timing Characterization

TIMING DIAGRAMS

Figure 3. Read Cycle Timing Diagram

Figure 4. Write Cycle Timing Diagram

AD7194/AD7795

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{AV}_{\mathrm{DD}}$ to GND	-0.3 V to +7 V
DV V_{DD} to GND	-0.3 V to +7 V
Analog Input Voltage to GND	-0.3 V to $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Reference Input Voltage to GND	-0.3 V to $\mathrm{AV}+0.3 \mathrm{~V}$
Digital Input Voltage to GND	-0.3 V to $\mathrm{DV} \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Output Voltage to GND	-0.3 V to $\mathrm{DV}+0.3 \mathrm{~V}$
AIN/Digital Input Current	10 mA
Operating Temperature Range	
\quad B Grade	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
C Grade	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP	
$\quad \theta_{\mathrm{JA}}$ Thermal Impedance	$97.9^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} Thermal Impedance	$14^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
\quad Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	SCLK	Serial Clock Input. This serial clock input is for data transfers to and from the ADC. The SCLK has a Schmitttriggered input, making the interface suitable for opto-isolated applications. The serial clock can be continuous with all data transmitted in a continuous train of pulses. Alternatively, it can be a noncontinuous clock with the information being transmitted to or from the ADC in smaller batches of data.
2	CLK	Clock In/Clock Out. The internal clock can be made available at this pin. Alternatively, the internal clock can be disabled, and the ADC can be driven by an external clock. This allows several ADCs to be driven from a common clock, allowing simultaneous conversions to be performed.
3	$\overline{C S}$	Chip Select Input. This is an active low logic input used to select the ADC. $\overline{C S}$ can be used to select the ADC in systems with more than one device on the serial bus or as a frame synchronization signal in communicating with the device. $\overline{C S}$ can be hardwired low, allowing the ADC to operate in 3-wire mode with SCLK, DIN, and DOUT used to interface with the device.
4	NC	No Connect.
5	AIN6(+)/P1	Analog Input/Digital Output Pin. AIN6(+) is the positive terminal of the differential analog input pair, AIN6(+)/AIN6(-). This pin can also function as a general-purpose output bit referenced between $A V_{D D}$ and GND.
6	AIN6(-)/P2	Analog Input/Digital Output Pin. AIN6(-) is the negative terminal of the differential analog input pair, AIN6(+)/AIN6(-). This pin can also function as a general-purpose output bit referenced between $A V_{D D}$ and $G N D$.
7	AIN1 (+)	Analog Input. AIN1 (+) is the positive terminal of the differential analog input pair, $\operatorname{AIN1} 1+$ //AIN1(-).
8	AIN1(-)	Analog Input. AIN1 (-) is the negative terminal of the differential analog input pair, $\operatorname{AIN1}(+) /$ AIN1(-).
9	AIN2(+)	Analog Input. AIN2(+) is the positive terminal of the differential analog input pair, AIN2(+)/AIN2(-).
10	AIN2(-)	Analog Input. AIN2(-) is the negative terminal of the differential analog input pair, $\operatorname{AIN2}(+) / \operatorname{AIN2}(-)$.
11	AIN3(+)	Analog Input. AIN3(+) is the positive terminal of the differential analog input pair, AIN3(+)/AIN3(-).
12	AIN3(-)	Analog Input. AIN3(-) is the negative terminal of the differential analog input pair, AIN3(+)/AIN3(-).
13	REFIN1(+)	Positive Reference Input. An external reference can be applied between REFIN1(+) and REFIN1(-). REFIN1 (+) can lie anywhere between $\mathrm{AV} \mathrm{V}_{\mathrm{D}}$ and $\mathrm{GND}+0.1 \mathrm{~V}$. The nominal reference voltage, (REFIN1(+) - REFIN1(-)), is 2.5 V , but the part functions with a reference from 0.1 V to $\mathrm{AV}_{\mathrm{DD}}$.
14	REFIN1(-)	Negative Reference Input. This reference input can lie anywhere between GND and $\mathrm{AV}_{\mathrm{DD}}-0.1 \mathrm{~V}$.
15	AIN5(+)/IOUT2	Analog Input/Output of Internal Excitation Current Source. AIN5(+) is the positive terminal of the differential analog input pair AIN5(+)/AIN5(-). Alternatively, the internal excitation current source can be made available at this pin and is programmable so that the current can be $10 \mu \mathrm{~A}, 210 \mu \mathrm{~A}$, or 1 mA . Either IEXC1 or IEXC2 can be switched to this output.
16	AIN5(-)/IOUT1	Analog Input/Output of Internal Excitation Current Source. AIN5(-) is the negative terminal of the differential analog input pair, $\operatorname{AIN5}(+) / \operatorname{AIN5}(-)$. Alternatively, the internal excitation current source can be made available at this pin and is programmable so that the current can be $10 \mu \mathrm{~A}, 210 \mu \mathrm{~A}$, or 1 mA . Either IEXC1 or IEXC2 can be switched to this output.
17	AIN4(+)/REFIN2(+)	Analog Input/Positive Reference Input. AIN4(+) is the positive terminal of the differential analog input pair AIN4(+)/AIN4(-). This pin also functions as a positive reference input for REFIN2. REFIN2(+) can lie anywhere between $\mathrm{AV}_{\mathrm{DD}}$ and GND + 0.1 V. The nominal reference voltage (REFIN2(+) to REFIN2(-)) is 2.5 V , but the part functions with a reference from 0.1 V to $\mathrm{AV}_{\mathrm{DD}}$.

Pin No.	Mnemonic	Description
18	AIN4(-)/REFIN2(-)	Analog Input/Negative Reference Input. AIN4(-) is the negative terminal of the differential analog input pair AIN4(+)/AIN4(-). This pin also functions as the negative reference input for REFIN2. This reference input can lie anywhere between GND and $A V_{D D}-0.1 \mathrm{~V}$.
19	PSW	Low-Side Power Switch to GND.
20	GND	Ground Reference Point.
21	$\mathrm{AV}_{\text {DD }}$	Supply Voltage, 2.7V to 5.25 V .
22	DV ${ }_{\text {D }}$	Serial Interface Supply Voltage, 2.7 V to 5.25 V . DV DD is independent of AV DD. Therefore, the serial interface operates at 3 V with AV DD at 5 V or vice versa.
23	DOUT/ $\overline{\text { RDY }}$	Serial Data Output/Data Ready Output. DOUT/ $\overline{\operatorname{RDY}}$ serves a dual purpose. It functions as a serial data output pin to access the output shift register of the ADC. The output shift register can contain data from any of the on-chip data or control registers. In addition, DOUT/ $\overline{\text { RDY }}$ operates as a data ready pin, going low to indicate the completion of a conversion. If the data is not read after the conversion, the pin goes high before the next update occurs. The DOUT/ $\overline{\mathrm{RDY}}$ falling edge can also be used as an interrupt to a processor, indicating that valid data is available. With an external serial clock, the data can be read using the DOUT/有DY pin. With valid on the SCLK rising edge.
24	DIN	Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the control registers within the ADC with the register selection bits of the communications register identifying the appropriate register.

RMS NOISE AND RESOLUTION SPECIFICATIONS

The AD7794/AD7795 can be operated with chop enabled or chop disabled, allowing the ADC to be optimized for switching time or drift performance. With chop enabled, the settling time is two times the conversion time. However, the offset is continuously removed by the ADC leading to low offset and low offset drift. With chop disabled, the allowable update rates are the same as in chop enable mode. However, the settling time now equals the conversion time. With chop disabled, the offset is not removed by the ADC, so periodic offset calibrations can be required to remove offset due to drift.

CHOP ENABLED

 External ReferenceTable 5 shows the AD7794/AD7795 rms noise for some update rates and gain settings. The numbers given are for the bipolar input range with an external 2.5 V reference. These numbers are typical and are generated with a differential input voltage of 0 V .

Table 6 and Table 7 show the effective resolution, while the output peak-to-peak ($\mathrm{p}-\mathrm{p}$) resolution is listed in brackets. It is important to note that the effective resolution is calculated using the rms noise, while the p-p resolution is calculated based on peak-to-peak noise. The p-p resolution represents the resolution for which there is no code flicker. These numbers are typical and are rounded to the nearest LSB.

Table 5. RMS Noise ($\mu \mathrm{V}$) vs. Gain and Output Update Rate Using an External 2.5 V Reference with Chop Enabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	0.64	0.6	0.29	0.22	0.1	0.065	0.039	0.041
8.33	1.04	0.96	0.38	0.26	0.13	0.078	0.057	0.055
16.7	1.55	1.45	0.54	0.36	0.18	0.11	0.087	0.086
33.2	2.3	2.13	0.74	0.5	0.23	0.17	0.124	0.118
62	2.95	2.85	0.92	0.58	0.29	0.2	0.153	0.144
123	4.89	4.74	1.49	1	0.48	0.32	0.265	0.283
242	11.76	9.5	4.02	1.96	0.88	0.45	0.379	0.397
470	11.33	9.44	3.07	1.79	0.99	0.63	0.568	0.593

Table 6.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7794 Using an External 2.5 V Reference with Chop Enabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	$23(20.5)$	$22(19.5)$	$22(19.5)$	$21.5(19)$	$21.5(19)$	$21(18.5)$	$21(18.5)$	$20(17.5)$
8.33	$22(19.5)$	$21.5(19)$	$21.5(19)$	$21(18.5)$	$21(18.5)$	$21(18.5)$	$20.5(18)$	$19.5(17)$
16.7	$21.5(19)$	$20.5(18)$	$21(18.5)$	$20.5(18)$	$20.5(18)$	$20.5(18)$	$20(17.5)$	$19(16.5)$
33.2	$21(18.5)$	$20(17.5)$	$20.5(18)$	$20(17.5)$	$20.5(18)$	$20(17.5)$	$19(16.5)$	$18.5(16)$
62	$20.5(18)$	$19.5(17)$	$20.5(18)$	$20(17.5)$	$20(17.5)$	$19.5(17)$	$19(16.5)$	$18(15.5)$
123	$20(17.5)$	$19(16.5)$	$19.5(17)$	$19(16.5)$	$19.5(17)$	$19(16.5)$	$18(15.5)$	$17(14.5)$
242	$18.5(16)$	$18(15.5)$	$18(15.5)$	$18(15.5)$	$18.5(16)$	$18.5(16)$	$17.5(15)$	$16.5(14)$
470	$18.5(16)$	$18(15.5)$	$18.5(16)$	$18.5(16)$	$18(15.5)$	$18(15.5)$	$17(14.5)$	$16(13.5)$

Table 7.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7795 Using an External 2.5 V Reference with Chop Enabled

Update Rate (Hz)	Gain of $\mathbf{1}$	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
8.33	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
16.7	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
33.2	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
62	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$
123	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$	$16(14.5)$
242	$16(16)$	$16(15.5)$	$16(15.5)$	$16(15.5)$	$16(16)$	$16(16)$	$16(15)$	$16(14)$
470	$16(16)$	$16(15.5)$	$16(16)$	$16(16)$	$16(15.5)$	$16(15.5)$	$16(14.5)$	$16(13.5)$

AD7794/AD7795

Internal Reference

Table 8 shows the AD7794/AD7795 rms noise for some of the update rates and gain settings. The numbers given are for the bipolar input range with the internal 1.17 V reference. These numbers are typical and are generated with a differential input voltage of 0 V . Table 9 and Table 10 show the effective resolution while the output peak-to-peak (p-p) resolution is listed in brackets.

It is important to note that the effective resolution is calculated using the rms noise while the p-p resolution is calculated based on peak-to-peak noise. The p-p resolution represents the resolution for which there is no code flicker. These numbers are typical and rounded to the nearest LSB.

Table 8. RMS Noise ($\mu \mathrm{V}$) vs. Gain and Output Update Rate Using an Internal 1.17 V Reference with Chop Enabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	0.81	0.67	0.32	0.2	0.13	0.065	0.04	0.039
8.33	1.18	1.11	0.41	0.25	0.16	0.078	0.058	0.059
16.7	1.96	1.72	0.55	0.36	0.25	0.11	0.088	0.088
33.2	2.99	2.48	0.83	0.48	0.33	0.17	0.13	0.12
62	3.6	3.25	1.03	0.65	0.46	0.2	0.15	0.15
123	5.83	5.01	1.69	0.96	0.67	0.32	0.25	0.26
242	11.22	8.64	2.69	1.9	1.04	0.45	0.35	0.34
470	12.46	10.58	4.58	2	1.27	0.63	0.50	0.49

Table 9.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7794 Using an Internal 1.17 V Reference with Chop Enabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	$21.5(19)$	$20.5(18)$	$21(18.5)$	$20.5(18)$	$20(17.5)$	$20(17.5)$	$20(17.5)$	$19(16.5)$
8.33	$21(18.5)$	$20(17.5)$	$20.5(18)$	$20(17.5)$	$20(17.5)$	$20(17.5)$	$19(16.5)$	$18(15.5)$
16.7	$20(17.5)$	$19.5(17)$	$20(17.5)$	$19.5(17)$	$19(16.5)$	$19.5(17)$	$18.5(16)$	$17.5(15)$
33.2	$19.5(17)$	$19(16.5)$	$19.5(17)$	$19(16.5)$	$19(16.5)$	$18.5(16)$	$18(15.5)$	$17(14.5)$
62	$19.5(17)$	$18.5(16)$	$19(16.5)$	$19(16.5)$	$18.5(16)$	$18.5(16)$	$18(15.5)$	$17(14.5)$
123	$18.5(16)$	$18(15.5)$	$18.5(16)$	$18(15.5)$	$17.5(15)$	$18(15.5)$	$17(14.5)$	$16(13.5)$
242	$17.5(15)$	$17(14.5)$	$17.5(15)$	$17(14.5)$	$17(14.5)$	$17.5(15)$	$16.5(14)$	$15.5(13)$
470	$17.5(15)$	$17(14.5)$	$17(14.5)$	$17(14.5)$	$17(14.5)$	$17(14.5)$	$16(13.5)$	$15(12.5)$

Table 10.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7795 Using an Internal 1.17 V Reference with Chop Enabled

Update Rate (Hz)	Gain of $\mathbf{1}$	Gain of 2	Gain of 4	Gain of 8	Gain of $\mathbf{1 6}$	Gain of 32	Gain of $\mathbf{6 4}$	Gain of 128
4.17	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
8.33	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$
16.7	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15)$
33.2	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$	$16(14.5)$
62	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$	$16(14.5)$
123	$16(16)$	$16(15.5)$	$16(16)$	$16(15.5)$	$16(15)$	$16(15.5)$	$16(14.5)$	$16(13.5)$
242	$16(15)$	$16(14.5)$	$16(15)$	$16(14.5)$	$16(14.5)$	$16(15)$	$16(14)$	$15.5(13)$
470	$16(15)$	$16(14.5)$	$16(14.5)$	$16(14.5)$	$16(14.5)$	$16(14.5)$	$16(13.5)$	$15(12.5)$

CHOP DISABLED

With chop disabled, the switching time or settling time is reduced by a factor of two. However, periodic offset calibrations may now be required to remove offset and offset drift. When chop is disabled, the AMP-CM bit in the mode register should be set to 1 . This limits the allowable common-mode voltage that can be used. However, the common-mode rejection degrades if the bit is not set.

Table 11 shows the rms noise of the AD7794/AD7795 for some of the update rates and gain settings with chop disabled.

The numbers given are for the bipolar input range with the internal 1.17 V reference. These numbers are typical and are generated with a differential input voltage of 0 V .
Table 12 and Table 13 show the effective resolution while the output peak-to-peak ($\mathrm{p}-\mathrm{p}$) resolution is listed in brackets. It is important to note that the effective resolution is calculated using the rms noise, while the p-p resolution is calculated based on peak-to-peak noise. The p-p resolution represents the resolution for which there is no code flicker. These numbers are typical and rounded to the nearest LSB.

Table 11. RMS Noise ($\mu \mathrm{V}$) vs. Gain and Output Update Rate Using an Internal 1.17 V Reference with Chop Disabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	1.22	0.98	0.33	0.18	0.13	0.062	0.053	0.051
8.33	1.74	1.53	0.49	0.29	0.21	0.1	0.079	0.07
16.7	2.64	2.44	0.79	0.48	0.33	0.16	0.13	0.12
33.2	4.55	3.52	1.11	0.66	0.46	0.21	0.17	0.16
62	5.03	4.45	1.47	0.81	0.58	0.27	0.2	0.22
123	8.13	7.24	2.27	1.33	0.96	0.48	0.36	0.37
242	15.12	13.18	3.77	2.09	1.45	0.64	0.5	0.47
470	17.18	14.63	8.86	2.96	1.92	0.89	0.69	0.7

Table 12.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7794 Using an Internal 1.17 V Reference with Chop Disabled

Update Rate (Hz)	Gain of 1	Gain of 2	Gain of 4	Gain of 8	Gain of 16	Gain of 32	Gain of 64	Gain of 128
4.17	$21(18.5)$	$20(17.5)$	$21(18.5)$	$20.5(18)$	$20(17.5)$	$20(17.5)$	$19.5(17)$	$18.5(16)$
8.33	$20.5(18)$	$19.5(17)$	$20(17.5)$	$20(17.5)$	$19.5(17)$	$19.5(17)$	$19(16.5)$	$18(15.5)$
16.7	$20(17.5)$	$19(16.5)$	$19.5(17)$	$19(16.5)$	$19(16.5)$	$19(16.5)$	$18(15.5)$	$17(14.5)$
33.2	$19(16.5)$	$18.5(16)$	$19(16.5)$	$19(16.5)$	$18.5(16)$	$18.5(16)$	$17.5(15)$	$17(14.5)$
62	$19(16.5)$	$18(15.5)$	$18.5(16)$	$18.5(16)$	$18(15.5)$	$18(15.5)$	$17.5(15)$	$16.5(14)$
123	$18(15.5)$	$17.5(15)$	$18(15.5)$	$17.5(15)$	$17(14.5)$	$17(14.5)$	$16.5(14)$	$15.5(13)$
242	$17(14.5)$	$16.5(14)$	$17(14.5)$	$17(14.5)$	$16.5(14)$	$17(14.5)$	$16(13.5)$	$15(12.5)$
470	$17(14.5)$	$16.5(14)$	$16(13.5)$	$16.5(14)$	$16(13.5)$	$16.5(14)$	$15.5(13)$	$14.5(12)$

Table 13.
Effective Resolution (Bits) vs. Gain and Output Update Rate for the AD7795 Using an Internal 1.17 V Reference with Chop Disabled

Update Rate (Hz)	Gain of $\mathbf{1}$	Gain of $\mathbf{2}$	Gain of 4	Gain of $\mathbf{8}$	Gain of $\mathbf{1 6}$	Gain of $\mathbf{3 2}$	Gain of $\mathbf{6 4}$	Gain of $\mathbf{1 2 8}$
4.17	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$
8.33	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$
16.7	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15.5)$	$16(14.5)$
33.2	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(16)$	$16(15)$	$16(14.5)$
62	$16(16)$	$16(15.5)$	$16(16)$	$16(16)$	$16(15.5)$	$16(15.5)$	$16(15)$	$16(14)$
123	$16(15.5)$	$16(15)$	$16(15.5)$	$16(15)$	$16(14.5)$	$16(14.5)$	$16(14)$	$15.5(13)$
242	$16(14.5)$	$16(14)$	$16(14.5)$	$16(14.5)$	$16(14)$	$16(14.5)$	$16(13.5)$	$15(12.5)$
470	$16(14.5)$	$16(14)$	$16(13.5)$	$16(14)$	$16(13.5)$	$16(14)$	$15.5(13)$	$14.5(12)$

AD7794/AD7795

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Typical Noise Plot for the AD7794 (Internal Reference, Gain $=64$, Update Rate $=16.7 \mathrm{~Hz}$, Chop Enabled)

Figure 7. Noise Distribution Histogram for the AD7794 (Internal Reference, Gain = 64, Update Rate $=16.7 \mathrm{~Hz}$, Chop Enabled)

Figure 8. Typical Noise Plot for the AD7794 (Internal Reference, Gain = 64, Update Rate $=16.7 \mathrm{~Hz}, A M P-C M=1$, Chop Disabled)

Figure 9. Noise Distribution Histogram for the AD7794 (Internal Reference, Gain = 64, Update Rate $=16.7 \mathrm{~Hz}$, Chop Disabled, $A M P-C M=1$)

Figure 10. Excitation Current Matching $(210 \mu A)$ at Ambient Temperature

Figure 11. Bias Voltage Generator Power-Up Time vs. Load Capacitance

ON-CHIP REGISTERS

The ADC is controlled and configured via a number of on-chip registers that are described in the following sections. In the following descriptions, set implies a Logic 1 state and cleared implies a Logic 0 state, unless otherwise noted.

COMMUNICATIONS REGISTER

RS2, RS1, RSO = 0, 0, 0

The communications register is an 8-bit write-only register. All communications to the part must start with a write operation to the communications register. The data written to the communications register determines whether the next operation is a read or write operation, and to which register this operation takes place. For read or write operations, once the subsequent read or write operation to the selected register is complete, the interface
returns to where it expects a write operation to the communications register. This is the default state of the interface and, on power-up or after a reset, the ADC is in this default state waiting for a write operation to the communications register. In situations where the interface sequence is lost, a write operation of at least 32 serial clock cycles with DIN high returns the ADC to this default state by resetting the entire part. Table 14 outlines the bit designations for the communications register. CR0 through CR7 indicate the bit location, with CR denoting the bits are in the communications register. CR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
$\overline{\mathrm{WEN}}(0)$	$\mathrm{R} / \overline{\mathrm{W}}(0)$	RS2 (0)	$\operatorname{RS1}(0)$	$\operatorname{RSO}(0)$	CREAD (0)	$0(0)$	$0(0)$

Table 14. Communications Register Bit Designations

Bit No.	Mnemonic	Description
CR7	$\overline{\text { WEN }}$	Write Enable Bit. A 0 must be written to this bit so that the write to the communications register actually occurs. If a 1 is the first bit written, the part does not clock on to subsequent bits in the register. It stays at this bit location until a 0 is written to this bit. Once a 0 is written to the $\overline{\text { WEN bit, the next seven bits are loaded to the }}$ communications register. A 0 in this bit location indicates that the next operation is a write to a specified register. A 1 in this position indicates that the next operation is a read from the designated register.
CR6	R/W	
CR5 to CR3 CR2	RS2 to RS0	
thister Address Bits. These address bits are used to select which registers of the ADC are being selected during		
Continuous Read of the Data Register. When this bit is set to 1 (and the data register is selected), the serial		
interface is configured so that the data register can be read continuously, that is, the contents of the data register		
are automatically placed on the DOUT pin when the SCLK pulses are applied after the $\overline{\text { RDY prin goes low to }}$		
indicate that a conversion is complete. The communications register does not have to be written to for data reads.		
To enable continuous read mode, the instruction 01011100 must be written to the communications register. To		
exit the continuous read mode, the instruction 01011000 must be written to the communications register while		
the RDY pin is low. While in continuous read mode, the ADC monitors activity on the DIN line so it can receive the		
instruction to exit continuous read mode. Additionally, a reset occurs if 32 consecutive 1s are seen on DIN.		
Therefore, DIN should be held low in continuous read mode until an instruction is written to the device.		
These bits must be programmed to Logic 0 for correct operation.		

Table 15. Register Selection

RS2	RS1	RS0	Register	Register Size
0	0	0	Communications Register During a Write Operation	8 -bit
0	0	0	Status Register During a Read Operation	8 -bit
0	0	1	Mode Register	16 -bit
0	1	0	Configuration Register	16 -bit
0	1	1	Data Register	24 -bit (AD7794)/16-Bit (AD7795)
1	0	0	ID Register	8 -bit
1	0	1	IO Register	8 -bit
1	1	0	Offset Register	24 -bit (AD7794)/16-Bit (AD7795)
1	1	1	Full-Scale Register	24 -bit (AD7794)/16-Bit (AD7795)

AD7794/AD7795

STATUS REGISTER

RS2, RS1, RS0 = 0, 0, 0; Power-On/Reset $=0 \times 80$ (AD7795)/0x88 (AD7794)

The status register is an 8 -bit read-only register. To access the ADC status register, the user must write to the communications register, select the next operation to be read, and load Bit RS2, Bit RS1, and Bit RS0 with 0.

Table 16 outlines the bit designations for the status register. SR0 through SR7 indicate the bit locations, with SR denoting that the bits are in the status register. SR7 denotes the first bit of the data stream. The number in brackets indicates the poweron/reset default status of that bit.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
$\overline{\operatorname{RDY}}(1)$	$\operatorname{ERR}(0)$	$\operatorname{NOXREF}(0)$	$0(0)$	$0 / 1$	$\mathrm{CH} 2(0)$	$\mathrm{CH} 1(0)$	$\mathrm{CH}(0)$

Table 16. Status Register Bit Designations

Bit No.	Mnemonic	Description
SR7	$\overline{\text { RDY }}$	Ready Bit for ADC. Cleared when data is written to the ADC data register. The $\overline{\text { RDY }}$ bit is set automatically after the ADC data register has been read or a period of time before the data register is updated with a new conversion result to indicate to the user not to read the conversion data. It is also set when the part is placed in power-down mode. The end of a conversion is also indicated by the DOUT/RDY pin. This pin can be used as an alternative to the status register for monitoring the ADC for conversion data. ADC Error Bit. This bit is written to at the same time as the $\overline{\text { RDY }}$ bit. Set to indicate that the result written to the ADC data register has been clamped to all Os or all 1s. Error sources include overrange, underrange, or the absence of a reference voltage. Cleared by a write operation to start a conversion. SR6
ERR External Reference Bit. Set to indicate that the selected reference (REFIN1 or REFIN2) is at a voltage that is		
below a specified threshold. When set, conversion results are clamped to all 1s. Cleared to indicate that a valid		
reference is applied to the selected reference pins. The NOXREF bit is enabled by setting the REF_DET bit in the		
configuration register to 1. The ERR bit is also set if the voltage applied to the selected reference input is invalid.		
This bit is automatically cleared.		
This bit is automatically cleared on the AD7795 and is automatically set on the AD7794.		
These bits indicate which channel is being converted by the ADC.		

AD7794/AD7795

MODE REGISTER

RS2, RS1, RSO $=0,0,1 ;$ Power-On/Reset $=0 \times 000 \mathrm{~A}$
The mode register is a 16 -bit read/write register that is used to select the operating mode, the update rate, and the clock source.
Table 17 outlines the bit designations for the mode register. MR0 through MR15 indicate the bit locations with MR
denoting that the bits are in the mode register. MR15 is the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit. Any write to the setup register resets the modulator and filter, and sets the $\overline{\mathrm{RDY}}$ bit.

MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8
MD2(0)	MD1 (0)	MD0(0)	PSW(0)	$0(0)$	$0(0)$	AMP-CM(0)	$0(0)$
MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
CLK1(0)	CLK0(0)	$0(0)$	CHOP-DIS(0)	FS3(1)	FS2(0)	FS1 11$)$	FS0(0)

Table 17. Mode Register Bit Designations

Bit No.	Mnemonic	Description		
MR15 to MR13	MD2 to MD0	Mode Select Bits. These bits select the operating mode of the AD7794/AD7795 (see Table 18).		
MR12	PSW	Power Switch Control Bit. Set by user to close the power switch PSW to GND. The power switch can sink up to 30 mA . Cleared by user to open the power switch. When the ADC is placed in power-down mode, the power switch is opened.		
MR11 to MR10	0	These bits must be programmed with a Logic 0 for correct operation.		
MR9	AMP-CM	Instrumentation Amplifier Common-Mode Bit. This bit is used in conjunction with the CHOP-DIS bit. With chop disabled, the user can operate with a wider range of common-mode voltages when AMP-CM is cleared. However, the dc common-mode rejection degrades. With AMP-CM set, the span for the commonmode voltage is reduced (see the Specifications section). However, the dc common-mode rejection is significantly better.		
MR8	0	This bit must be programmed with a Logic 0 for correct operation.		
MR7 to MR6	CLK1 to CLK0	These bits are used to select the clock source for the AD7794/AD7795. Either the on-chip 64 kHz clock can be used or an external clock can be used. The ability to use an external clock allows several AD7794/AD7795 devices to be synchronized. Also, $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection is improved when an accurate external clock drives the AD7794/AD7795.		
		CLK1	CLKO	ADC Clock Source
		0	0	Internal 64 kHz clock. Internal clock is not available at the CLK pin.
		0	1	Internal 64 kHz clock. This clock is made available at the CLK pin.
		1	0	External 64 kHz . The external clock can have a $45: 55$ duty cycle (see the Specifications section for the external clock).
		1	1	External clock. The external clock is divided by 2 within the AD7794/AD7795.
MR5	0	This bit must be programmed with a Logic 0 for correct operation. This bit is used to enable or disable chop. On power-up or following a reset, CHOP-DIS is cleared so chop is enabled. When CHOP-DIS is set, chop is disabled. This bit is used in conjunction with the AMP-CM bit. When chop is disabled, the AMP-CM bit should be set. This limits the common-mode voltage that can be used by the ADC, but the dc common-mode rejection does not degrade. Filter Update Rate Select Bits (see Table 19).		
MR4	CHOP-DIS			
MR3 to MR0	FS3 to FS0			

AD7794/AD7795

Table 18. Operating Modes

MD2	MD1	MDO	Mode
0	0	0	Continuous Conversion Mode (Default). In continuous conversion mode, the ADC continuously performs conversions and places the result in the data register. $\overline{\mathrm{RDY}}$ goes low when a conversion is complete. The user can read these conversions by placing the device in continuous read mode whereby the conversions are automatically placed on the DOUT line when SCLK pulses are applied. Alternatively, the user can instruct the ADC to output the conversion by writing to the communications register. After power-on, the first conversion is available after a period of $2 / f_{A D C}$ when chop is enabled or $1 / f_{A D C}$ when chop is disabled. Subsequent conversions are available at a frequency of $f_{A D C}$ with chop either enabled or disabled.
0	0	1	Single Conversion Mode. When single conversion mode is selected, the ADC powers up and performs a single conversion. The oscillator requires 1 ms to power up and settle. The ADC then performs the conversion, which takes a time of $2 / f_{A D C}$ when chop is enabled, or $1 / f_{A D C}$ when chop is disabled. The conversion result is placed in the data register, $\overline{\mathrm{RDY}}$ goes low, and the ADC returns to power-down mode. The conversion remains in the data register and $\overline{\mathrm{RDY}}$ remains active (low) until the data is read or another conversion is performed.
0	1	0	Idle Mode. In idle mode, the ADC filter and modulator are held in a reset state although the modulator clocks are still provided.
0	1	1	Power-Down Mode. In power-down mode, all the AD7794/AD7795 circuitry is powered down including the current sources, power switch, burnout currents, bias voltage generator, and clock circuitry.
1	0	0	Internal Zero-Scale Calibration. An internal short is automatically connected to the enabled channel. A calibration takes two conversion cycles to complete when chop is enabled and one conversion cycle when chop is disabled. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	0	1	Internal Full-Scale Calibration. A full-scale input voltage is automatically connected to the selected analog input for this calibration. When the gain equals 1 , a calibration takes two conversion cycles to complete when chop is enabled and one conversion cycle when chop is disabled. For higher gains, four conversion cycles are required to perform the full-scale calibration when chop is enabled and 2 conversion cycles when chop is disabled. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale coefficient is placed in the full-scale register of the selected channel. Internal full-scale calibrations cannot be performed when the gain equals 128 . With this gain setting, a system full-scale calibration can be performed. A full-scale calibration is required each time the gain of a channel is changed to minimize the full-scale error.
1	1	0	System Zero-Scale Calibration. User should connect the system zero-scale input to the channel input pins as selected by the CH 2 bit, CH 1 bit, and CHO bit. A system offset calibration takes two conversion cycles to complete when chop is enabled and one conversion cycle when chop is disabled. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	1	1	System Full-Scale Calibration. User should connect the system full-scale input to the channel input pins as selected by the $\mathrm{CH} 2 \mathrm{bit}, \mathrm{CH} 1$ bit, and CHO bit. A calibration takes two conversion cycles to complete when chop is enabled and one conversion cycle when chop is disabled. $\overline{\text { RDY }}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale coefficient is placed in the full-scale register of the selected channel. A full-scale calibration is required each time the gain of a channel is changed.

AD7794/AD7795

Table 19. Update Rates Available (Chop Enabled) ${ }^{1}$

FS3	FS2	FS1	FSO	$\mathrm{f}_{\text {ADC }}(\mathrm{Hz}$)	Tsettle (ms)	Rejection @ $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ (Internal Clock)
0	0	0	0	x	x	
0	0	0	1	470	4	
0	0	1	0	242	8	
0	0	1	1	123	16	
0	1	0	0	62	32	
0	1	0	1	50	40	
0	1	1	0	39	48	
0	1	1	1	33.2	60	
1	0	0	0	19.6	101	90 dB (60 Hz only)
1	0	0	1	16.7	120	80 dB (50 Hz only)
1	0	1	0	16.7	120	$65 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	0	1	1	12.5	160	$66 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	0	0	10	200	$69 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	0	1	8.33	240	$70 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	1	0	6.25	320	$72 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	1	1	4.17	480	$74 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz)

[^1]
AD7794/AD7795

CONFIGURATION REGISTER

RS2, RS1, RSO = 0, 1, 0; Power-On/Reset $=0 \times 0710$

The configuration register is a 16 -bit read/write register that is used to configure the ADC for unipolar or bipolar mode, enable or disable the buffer, enable or disable the burnout currents, select the gain, and select the analog input channel.

Table 20 outlines the bit designations for the filter register. CON0 through CON15 indicate the bit locations. CON denotes that the bits are in the configuration register. CON15 is the first bit of the data stream. The number in parentheses indicates the power-on/reset default status of that bit.

CON15	CON14	CON13	CON12	CON11	CON10	CON9	CON8
VBIAS1 (0)	VBIAS0(0)	BO(0)	U/ $\overline{\mathrm{B}}(0)$	BOOST(0)	G2(1)	G1(1)	G0(1)
CON7	CON6	CON5	CON4	CON3	CON2	CON1	CON0
REFSEL1 (0)	REFSELO(0)	REF_DET(0)	BUF(1)	CH3(0)	CH2(0)	CH1(0)	CH0(0)

Table 20. Configuration Register Bit Designations

AD7794/AD7795

Bit No.	Mnemonic	Description					
CON5	REF_DET	Enables the reference detect function. When set, the NOXREF bit in the status register indicates when the external reference being used by the ADC is open circuit or less than 0.5 V . When cleared, the reference detect function is disabled.					
CON4	BUF	Configures the ADC for buffered or unbuffered mode of operation. If cleared, the ADC operates in unbuffered mode, lowering the power consumption of the device. If set, the ADC operates in buffered mode, allowing the user to place source impedances on the front end without contributing gain errors to the system. For gains of 1 and 2, the buffer can be enabled or disabled. For higher gains, the buffer is automatically enabled. With the buffer disabled, the voltage on the analog input pins can be from 30 mV below $G N D$ to 30 mV above $A V_{D D}$. When the buffer is enabled, it requires some headroom so the voltage on any input pin must be limited to 100 mV within the power supply rails.					
CON3 to CONO	CH 3 to CH 0	Channel Select Bits. Written by the user to select the active analog input channel to the ADC.					
		CH3	CH2	CH1	CH0	Channel	Calibration Pair
		0	0	0	0	AIN1(+)/AIN1(-)	0
		0	0	0	1	AIN2(+)/AIN2(-)	1
		0	0	1	0	AIN3(+)/AIN3(-)	2
		0	0	1	1	AIN4(+)/AIN4(-)	3
		0	1	0	0	AIN5(+)/AIN5(-)	3
		0	1	0	1	AIN6(+)/AIN6(-)	3
		0	1	1	0	Temp Sensor	Automatically selects the internal 1.17 V reference and sets the gain to 1
		0	1	1	1	$A V_{D D}$ Monitor	Automatically selects the internal 1.17 V reference and sets the gain to $1 / 6$
		1	0	0	0	$\operatorname{AIN1}(-) / \operatorname{AIN} 1(-)$	0
		1	0	0	1	Reserved	
		1	0	1	1	Reserved	
		1	1	0	0	Reserved	
		1	1	0	1	Reserved	
		1	1	1	0	Reserved	
		1	1	1	1	Reserved	

AD7794/AD7795

DATA REGISTER

RS2, RS1, RSO = 0, 1, 1; Power-On/Reset = 0x0000(AD7795), 0x000000 (AD7794)

The conversion result from the ADC is stored in this data register. This is a read-only register. On completion of a read operation from this register, the $\overline{\mathrm{RDY}} \mathrm{bit} / \mathrm{pin}$ is set.

ID REGISTER

RS2, RS1, RS0 = 1, 0, 0; Power-On/Reset = 0xXF
The identification number for the AD7794/AD7795 is stored in the ID register. This is a read-only register.

10 REGISTER

RS2, RS1, RSO = 1, 0, 1; Power-On/Reset = 0x00
The IO register is an 8 -bit read/write register that is used to enable the excitation currents and select the value of the excitation currents.

Table 21 outlines the bit designations for the IO register. IO0 through IO7 indicate the bit locations. IO denotes that the bits are in the IO register. IO7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

$\mathbf{I O 7}$	IO6	IO5	IO4	IO3	IO2	IO1	IO0
$0(0)$	$\operatorname{IOEN}(0)$	IO2DAT (0)	IO1DAT (0)	$\operatorname{IEXCDIR1}(0)$	IEXCDIRO(0)	IEXCEN1 (0)	IEXCEN0(0)

Table 21. IO Register Bit Designations

Bit No.	Mnemonic	Description		
107	0	This bit must be programmed with a Logic 0 for correct operation.		
106	IOEN	Configures Pin AIN6(+)/P1 and Pin AIN6(-)/P2 as analog input pins or digital output pins. When this bit is set, the pins are configured as Digital Output Pin P1 and Digital Output Pin P2. When this bit is cleared, these pins are configured as Analog Input Pin AIN6(+) and Analog Input Pin AIN6(-).		
IO5 to IO4	IO2DAT/IO1DAT	P2/P1 Data. When IOEN is set, the data for Digital Output Pin P1 and Digital Output Pin P2 is written to Bit IO2DAT and Bit IO1DAT.		
103 to IO2	IEXCDIR1 to IEXCDIR0	Direction of Current Sources Select Bits.		
		IEXCDIR1	IEXCDIRO	Current Source Direction
		0	0	Current Source IEXC1 connected to Pin IOUT1. Current Source IEXC2 connected to Pin IOUT2.
		0	1	Current Source IEXC1 connected to Pin IOUT2. Current Source IEXC2 connected to Pin IOUT1.
		1	0	Both current sources connected to Pin IOUT1. Permitted only when the current sources are set to $10 \mu \mathrm{~A}$ or $210 \mu \mathrm{~A}$.
		1	1	Both current sources connected to Pin IOUT2. Permitted only when the current sources are set to $10 \mu \mathrm{~A}$ or $210 \mu \mathrm{~A}$.
103 to IO2	IEXCEN1 to IEXCEN0	These bits are used to enable and disable the current sources. They also select the value of the excitation currents.		
		IEXCEN1	IEXCENO	Current Source Value
		0	0	Excitation currents disabled
		0	1	$10 \mu \mathrm{~A}$
		1	0	$210 \mu \mathrm{~A}$
		1	1	1 mA

AD7794/AD7795

OFFSET REGISTER

RS2, RS1, RS0 = 1, 1, 0; Power-On/Reset = 0x8000 (AD7795), 0x800000 (AD7794))

The offset register is a 16-bit register on the AD7795 and a 24 -bit register on the AD7794. The offset register holds the offset calibration coefficient for the ADC and its power-on reset value is $0 \times 8000 / 0 \times 800000$, for the AD7794/AD7795, respectively. The AD7794/AD7795 each have four offset registers. Channel AIN1 to Channel AIN3 have dedicated offset registers while the AIN4, AIN5, and AIN6 channels share an offset register. Each of these registers is a read/write register. The register is used in conjunction with its associated full-scale register to form a register pair. The power-on reset value is automatically overwritten if an internal or system zero-scale calibration is initiated by the user. The AD7794/AD7795 must be placed in power-down mode or idle mode when writing to the offset register.

FULL-SCALE REGISTER

RS2, RS1, RSO = 1, 1, 1; Power-On/Reset = 0x5XXX (AD7795), 0x5XXX00 (AD7794)

The full-scale register is a 16-bit register on the AD7795 and a 24-bit register on the AD7794. The full-scale register holds the full-scale calibration coefficient for the ADC. The AD7794/ AD7795 each have four full-scale registers. The AIN1, AIN2, and AIN3 channels have dedicated full-scale registers, while the AIN4, AIN5, and AIN6 channels share a register. The full-scale registers are read/write registers. However, when writing to the full-scale registers, the ADC must be placed in power-down mode or idle mode. These registers are configured on power-on with factory calibrated full-scale calibration coefficients, the calibration being performed at gain $=1$. Therefore, every device has different default coefficients. The coefficients are different, depending on whether the internal reference or an external reference is selected. The default value is automatically overwritten if an internal or system full-scale calibration is initiated by the user or the full-scale register is written to.

[^0]: ${ }^{1}$ Temperature range: B Grade: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, C Grade: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. At the 19.6 Hz and 39.2 Hz update rates, the INL, power supply rejection (PSR), commonmode rejection (CMR), and normal mode rejection (NMR) do not meet the data sheet specification if the voltage on the $\operatorname{AIN}(+)$ or $\operatorname{AIN}(-)$ pins exceeds $A V D D-1.6 \mathrm{~V}$ typically. In addition, the offset error and offset error drift degrade at these update rates when chopping is disabled. When this voltage is exceeded, the INL, for example, is reduced to 18 ppm of FS typically while the PSR is reduced to 69 dB typically. Therefore, for guaranteed performance at these update rates, the absolute voltage on the analog input pins needs to be below AVDD - 1.6 V .
 ${ }^{2}$ Specification is not production tested but is supported by characterization data at initial product release.
 ${ }^{3}$ Following a calibration, this error is in the order of the noise for the programmed gain and update rate selected.
 ${ }^{4}$ Recalibration at any temperature removes these errors.
 ${ }^{5}$ Full-scale error applies to both positive and negative full-scale, and applies at the factory calibration conditions (AV $\mathrm{DD}=4 \mathrm{~V}, \mathrm{gain}=1, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$).
 ${ }^{6} \mathrm{FS}[3: 0]$ are the four bits used in the mode register to select the output word rate.
 ${ }^{7}$ Digital inputs equal to DV ${ }^{D D}$ or GND with excitation currents and bias voltage generator disabled.

[^1]: ' With chop disabled, the update rates remain unchanged, but the settling time for each update rate is reduced by a factor of 2 . The rejection at $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ for a 16.6 Hz update rate degrades to 60 dB .

