: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

FEATURES

4-wire touch screen interface Qualified for automotive applications
 1.6 V to 3.6 V operation
 Median and averaging filter to reduce noise
 Automatic conversion sequencer and timer
 User-programmable conversion parameters
 Auxiliary analog input/battery monitor (0.5 V to 5 V)
 1 optional GPIO
 Interrupt outputs (INT, $\overline{\text { PENIRQ) }}$
 Touch-pressure measurement
 Wake-up on touch function
 Shutdown mode: $6 \mu \mathrm{~A}$ maximum
 16-lead, $4.4 \mathrm{~mm} \times 5 \mathrm{~mm}$ TSSOP
 16 -lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP

APPLICATIONS

Automotive applications

Personal digital assistants
Smart handheld devices
Touch screen monitors
Point-of-sale terminals
Medical devices
Cell phones

GENERAL DESCRIPTION

The AD7879W is a 12-bit successive approximation analog-todigital converters (SAR ADCs) with a synchronous serial interface and low on-resistance switches for driving 4-wire resistive touch screens. The AD7879W works with a very low power supply—a single 1.6 V to 3.6 V supply-and feature throughput rates of 105 kSPS . The devices include a shutdown mode that reduces current consumption to less than $6 \mu \mathrm{~A}$.

To reduce the effects of noise from LCDs and other sources, the AD7879W contains a preprocessing block. The preprocessing function consists of a median filter and an averaging filter. The combination of these two filters provides a more robust solution, discarding the spurious noise in the signal and keeping only the data of interest. The size of both filters is programmable. Other user-programmable conversion controls include variable acquisition time and first conversion delay; up to 16 averages can be taken per conversion. The AD7879W can run in slave

mode or standalone (master) mode, using an automatic conversion sequencer and timer.

The AD7879W has a programmable pin that can operate as an auxiliary input to the ADC, as a battery monitor, or as a GPIO. In addition, a programmable interrupt output can operate in three modes: as a general-purpose interrupt to signal when new data is available ($\overline{\mathrm{DAV}}$), as an interrupt to indicate when limits are exceeded ($\overline{\mathrm{INT}}$), or as a pen-down interrupt when the screen is touched (PENIRQ). The AD7879W offers temperature measurement and touch-pressure measurement.

The AD7879W is available in a 16-lead, $4.4 \mathrm{~mm} \times 5.0 \mathrm{~mm}$ TSSOP and 16-lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP. Both packages support an SPI interface (AD7879W) or an $\mathrm{I}^{2} \mathrm{C}^{\star}$ interface (AD7879-1W).

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
SPI Timing Specifications (AD7879W) 4
$\mathrm{I}^{2} \mathrm{C}$ Timing Specifications (AD7879-1W) 5
Absolute Maximum Ratings 6
Thermal Resistance 6
ESD Caution 6
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 9
Terminology 12
Theory of Operation 13
Touch Screen Principles 13
Measuring Touch Screen Inputs. 14
Touch-Pressure Measurement 15
Temperature Measurement 15
Median and Averaging Filters 17
AUX/VBAT/GPIO Pin. 18
Auxiliary Input. 18
Battery Input 18
Limit Comparison 18
GPIO 18
Conversion Timing 20
Register Map 21
Detailed Register Descriptions 22
Control Registers 26
Control Register 1 26
Control Register 2 28
Control Register 3 29
Interrupts 30
Synchronizing the AD7879W to the Host CPU 31
Serial Interface 32
SPI Interface 32
$I^{2} \mathrm{C}$-Compatible Interface 34
Grounding and Layout 37
Lead Frame Chip Scale Packages 37
Outline Dimensions 38
Ordering Guide 39
Automotive Products 39

REVISION HISTORY

12/11—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=1.6 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DC ACCURACY					
Resolution	12			Bits	
No Missing Codes	11	12		Bits	
Integral Nonlinearity (INL) ${ }^{1}$			± 3	LSB	LSB size $=390 \mu \mathrm{~V}$.
Differential Nonlinearity (DNL) ${ }^{1}$					LSB size $=390 \mu \mathrm{~V}$.
Negative DNL			-0.99	LSB	
Positive DNL			2	LSB	
Offset Error ${ }^{1,2}$		± 2	± 6	LSB	
Gain Error ${ }^{1,2}$			± 4	LSB	
Noise ${ }^{3}$		70		$\mu \mathrm{V}$ rms	
Power Supply Rejection ${ }^{3}$		60		dB	
Internal Clock Frequency		2		MHz	
Internal Clock Accuracy	1.8		2.2	MHz	
SWITCH DRIVERS					
On Resistance ${ }^{1}$					
$\mathrm{Y}+\mathrm{X}+$		6		Ω	
$\mathrm{Y}-\mathrm{X}-$		5		Ω	
ANALOG INPUTS					
Input Voltage Range	0		$\mathrm{V}_{\text {cc }}$	V	
DC Leakage Current		± 0.1		$\mu \mathrm{A}$	
Input Capacitance		30		pF	
Accuracy		0.3		\%	
TEMPERATURE MEASUREMENT					
Temperature Range	-40		+85	${ }^{\circ} \mathrm{C}$	
Resolution		0.3		${ }^{\circ} \mathrm{C}$	
Accuracy ${ }^{2}$		± 2		${ }^{\circ} \mathrm{C}$	Calibrated at $25^{\circ} \mathrm{C}$.
BATTERY MONITOR					
Input Voltage Range	0.5		5	V	
Input Impedance ${ }^{3}$		16		k Ω	
Accuracy		2	5	\%	Uncalibrated accuracy.
LOGIC INPUTS (DIN, SCL, $\overline{C S}$, SDA, GPIO)					
Input High Voltage, $\mathrm{V}_{\text {INH }}$	$0.7 \times \mathrm{V}_{\text {cc }}$			V	
Input Low Voltage, VINL			$0.3 \times \mathrm{Vcc}$	V	
Input Current, In		0.01		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$.
Input Capacitance, ClN^{3}		10		pF	
LOGIC OUTPUTS (DOUT, GPIO, SCL, SDA, $\overline{\text { INT }}$)					
Output High Voltage, V_{OH}	$V_{\text {cc }}-0.2$			V	
Output Low Voltage, Vol			0.4	V	
Floating-State Leakage Current		± 0.1		$\mu \mathrm{A}$	
Floating-State Output Capacitance ${ }^{2}$		5		pF	
CONVERSION RATE ${ }^{3}$					
Conversion Time		9.5		$\mu \mathrm{s}$	Including $2 \mu \mathrm{~s}$ of acquisition time, MAV filter off. 2μ s of additional time is required if MAV filter is on.
Throughput Rate		105		kSPS	

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
POWER REQUIREMENTS					
$V_{\text {cc }}$	1.6	2.6	3.6	V	Specified performance.
Icc					Digital inputs $=0 \mathrm{~V}$ or V_{cc}.
Converting Mode		480	650	$\mu \mathrm{A}$	ADC on, $\mathrm{PM}=10$.
Static		406		$\mu \mathrm{A}$	ADC and temperature sensor are off; the reference and oscillator are on; $\mathrm{PM}=01$ or 11.
Shutdown Mode		0.5	6	$\mu \mathrm{A}$	$\mathrm{PM}=00$.

${ }^{1}$ See the Terminology section.
${ }^{2}$ Guaranteed by characterization; not production tested.
${ }^{3}$ Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance.

SPI TIMING SPECIFICATIONS (AD7879W)

$\mathrm{V}_{\mathrm{CC}}=1.6 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance. All input signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{CC}}\right)$ and timed from a voltage level of 1.4 V .

Table 2.

Parameter ${ }^{1}$	Limit	Unit	Description
$\mathrm{f}_{\text {cıl }}$	5	MHz max	
t_{1}	5	ns min	$\overline{\mathrm{CS}}$ falling edge to first SCL falling edge
t_{2}	20	ns min	SCL high pulse width
t_{3}	20	ns min	SCL low pulse width
t_{4}	15	ns min	DIN setup time
t_{5}	15	$n s$ min	DIN hold time
t_{6}	20	ns max	DOUT access time after SCL falling edge
t_{7}	16	ns max	$\overline{\mathrm{CS}}$ rising edge to DOUT high impedance
t_{8}	15	$n \mathrm{nmin}$	SCL rising edge to $\overline{C S}$ high

[^0]

Figure 2. Detailed SPI Timing Diagram

AD7879W

$\mathbf{I}^{2} \mathrm{C}$ TIMING SPECIFICATIONS (AD7879-1W)

$\mathrm{V}_{\mathrm{CC}}=1.6 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance. All input signals are timed from a voltage level of 1.4 V .

Table 3.

Parameter ${ }^{1}$	Limit	Unit	Description
$\mathrm{f}_{\text {scl }}$	400	kHz max	
t_{1}	0.6	$\mu \mathrm{s}$ min	Start condition hold time, thd; sTA
t_{2}	1.3	$\mu \mathrm{s}$ min	Clock low period, tıow
t_{3}	0.6	$\mu \mathrm{s}$ min	Clock high period, $\mathrm{t}_{\text {IIGH }}$
t_{4}	100	ns min	Data setup time, tsu; DAT
t_{5}	300	ns min	Data hold time, thd; dat
t_{6}	0.6	$\mu \mathrm{s}$ min	Stop condition setup time, $\mathrm{t}_{\text {su; STo }}$
t_{7}	0.6	$\mu \mathrm{s}$ min	Start condition setup time, tsu; STA
t_{8}	1.3	$\mu \mathrm{s}$ min	Bus-free time between stop and start conditions, tbuF
t_{R}	300	ns max	Clock/data rise time
t_{F}	300	ns max	Clock/data fall time

[^1]

Figure 3. Detailed $I^{2} C$ Timing Diagram

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.

Parameter	Rating
Vcc to GND $^{\text {Analog Input Voltage to GND }}$	-0.3 V to +3.6 V
AUX/VBAT to GND	-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$
Digital Input Voltage to GND	-0.3 V to +5 V
Digital Output Voltage to GND	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Input Current to Any Pin Except Supplies ${ }^{1}$	-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$
ESD Rating (X+, Y+, X-, Y-)	
$\quad \mathrm{mA}$	
\quad Air Discharge Human Body Model	15 kV
\quad Contact Human Body Model	10 kV
ESD Rating (All Other Pins)	
\quad Human Body Discharge	4 kV
\quad Field-Induced Charged Device Model	1 kV
\quad Machine Model	0.2 kV
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Power Dissipation	577.2 mW
\quad TSSOP (4-Layer Board)	2.138 W
\quad LFCSP (4-Layer Board)	$260^{\circ} \mathrm{C}\left(\pm 0.5^{\circ} \mathrm{C}\right)$
IR Reflow Peak Temperature	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec$)$	

${ }^{1}$ Transient currents of up to 100 mA do not cause SCR latch-up.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

$\theta_{\text {JA }}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 5. Thermal Resistance

Package Type 1	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
16-Lead TSSOP	112.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP	30.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
${ }^{1}$ 4-layer board.		

Figure 4. Circuit Used for Digital Timing

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 5. AD7879W TSSOP Pin Configuration

Figure 6. AD7879-1 W TSSOP Pin Configuration

Table 6. Pin Function Descriptions, TSSOP

Pin No.		Mnemonic	Description
AD7879W	AD7879-1W		
1	1	Vcc/REF	Power Supply Input and ADC Reference.
2, 7, 10, 15	2, 7, 10, 15	NC	No Connect.
3	3	X+	Touch Screen Input Channel.
4	4	Y+	Touch Screen Input Channel.
5	5	X-	Touch Screen Input Channel.
6	6	Y-	Touch Screen Input Channel.
8	N/A	DIN	SPI Serial Data Input to the AD7879W.
N/A	8	ADD1	$1^{2} \mathrm{C}$ Address Bit 1 for the AD7879-1W. This pin can be tied high or low to determine an address for the AD7879-1W (see Table 25).
9	9	GND	Ground. Ground reference point for all circuitry on the AD7879W. All analog input signals and any external reference signal should be referred to this voltage.
11	11	SCL	Serial Interface Clock Input.
12	N/A	DOUT	SPI Serial Data Output for the AD7879W.
N/A	12	SDA	$1^{2} \mathrm{C}$ Serial Data Input and Output for the AD7879-1W.
13	13	$\frac{\overline{\mathrm{PENIRQ}} / \overline{\mathrm{INT}} /}{}$	Interrupt Output. This pin is asserted when the screen is touched ($\overline{\text { PENIRQ }}$), when a measurement exceeds the preprogrammed limits (INT), or when new data is available in the registers ($\overline{\mathrm{DAV}}$). Active low, internal $50 \mathrm{k} \Omega$ pull-up resistor.
14	14	AUX/VBAT/GPIO	This pin can be programmed as an auxiliary input to the ADC (AUX), as a battery measurement input to the ADC (VBAT), or as a general-purpose digital input/output (GPIO).
16	N/A	$\overline{\mathrm{CS}}$	Chip Select for the SPI Serial Interface on the AD7879W. Active low.
N/A	16	ADD0	$I^{2} \mathrm{C}$ Address Bit 0 for the AD7879-1W. This pin can be tied high or low to determine an address for the AD7879-1W (see Table 25).

Figure 7. AD7879W LFCSP Pin Configuration

Figure 8. AD7879-1 W LFCSP Pin Configuration

Table 7. Pin Function Descriptions, LFCSP

Pin No.		Mnemonic	Description
AD7879W	AD7879-1W		
1	1	Y+	Touch Screen Input Channel.
2, 3, 10, 11	2, 3, 10, 11	NC	No Connect.
4	4	X-	Touch Screen Input Channel.
5	5	Y-	Touch Screen Input Channel.
6	N/A	DIN	SPI Serial Data Input to the AD7879W.
N/A	6	ADD1	1^{2} C Address Bit 1 for the AD7879-1W. This pin can be tied high or low to determine an address for the AD7879-1W (see Table 25).
7	7	GND	Ground. Ground reference point for all circuitry on the AD7879W. All analog input signals and any external reference signal should be referred to this voltage.
8	8	SCL	Serial Interface Clock Input.
9	N/A	DOUT	SPI Serial Data Output for the AD7879W.
N/A	9	SDA	$1^{2} \mathrm{C}$ Serial Data Input and Output for the AD7879-1W.
12	12	$\overline{\text { PENIRQ } / 1 / \mathrm{NT}} / \overline{\mathrm{DAV}}$	Interrupt Output. This pin is asserted when the screen is touched ($\overline{\text { PENIRQ }}$), when a measurement exceeds the preprogrammed limits (INT), or when new data is available in the registers $(\overline{\mathrm{DAV}})$. Active low, internal $50 \mathrm{k} \Omega$ pull-up resistor.
13	13	AUX/VBAT/GPIO	This pin can be programmed as an auxiliary input to the ADC (AUX), as a battery measurement input to the ADC (VBAT), or as a general-purpose digital input/output (GPIO).
14	N/A	$\overline{\mathrm{CS}}$	Chip Select for the SPI Serial Interface on the AD7879W. Active low.
N/A	14	ADD0	1^{2} C Address Bit 0 for the AD7879-1W. This pin can be tied high or low to determine an address for the AD7879-1W (see Table 25).
15	15	Vcc/REF	Power Supply Input and ADC Reference.
16	16	X+	Touch Screen Input Channel.
		EP	Exposed Pad. The exposed pad is not connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the ground plane.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}$, $\mathrm{fscl}^{2}=2 \mathrm{MHz}$, unless otherwise noted.

Figure 9. Supply Current vs. Temperature

Figure 10. Supply Current vs. Vcc

Figure 11. Full Power-Down IDD vs. Temperature

Figure 12. Change in ADC Gain vs. Temperature

Figure 13. Change in ADC Offset vs. Temperature

Figure 14. ADC INL

Figure 15. ADC DNL

Figure 16. Switch On Resistance vs. Vcc ($X+, Y+$: Pin to $V_{c c} ; X_{-}, Y-$: Pin to $G N D$)

Figure 17. Switch On Resistance vs. Temperature ($X+, Y+$: Pin to $V_{c c} ; X_{-}, Y-$: Pin to $G N D$)

Figure 18. ADC Code vs. Temperature (Fixed Analog Input)

Figure 19. Temperature Code vs. $V_{C C}$ for $25^{\circ} \mathrm{C}$

Figure 20. Typical FFT Plot for the Auxiliary Channels at 25 kHz Sampling Rate and 1 kHz Input Frequency

Figure 21. Typical Uncalibrated Accuracy for the Battery Channel $\left(25^{\circ} \mathrm{C}\right)$

AD7879W

TERMINOLOGY

Differential Nonlinearity (DNL)
DNL is the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.

Integral Nonlinearity (INL)

INL is the maximum deviation from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are zero scale at 1 LSB below the first code transition and full scale at 1 LSB above the last code transition.

Gain Error

Gain error is the deviation of the last code transition ($111 \ldots 110$ to $111 \ldots 111$) from the ideal ($\mathrm{V}_{\mathrm{REF}}-1 \mathrm{LSB}$) after the offset error has been calibrated out.

Offset Error

Offset error is the deviation of the first code transition ($00 \ldots 000$ to $00 \ldots 001$) from the ideal (AGND + 1 LSB).

On Resistance

On resistance is a measure of the ohmic resistance between the drain and the source of the switch drivers.

THEORY OF OPERATION

The AD7879W is a complete 12 -bit data acquisition system for digitizing positional inputs from a 4 -wire resistive touch screen. To support this function, data acquisition on the AD7879W is highly programmable to ensure accurate and noise-free results from the touch screen.

The core of the AD7879W is a high speed, low power, 12-bit analog-to-digital converter (ADC) with an input multiplexer, on-chip track-and-hold, and on-chip clock. Conversion results are stored in on-chip result registers. The results from the auxiliary input or the battery input can be compared with high and low limits stored in limit registers to generate an out-oflimit interrupt ($\overline{\mathrm{INT}}$).
The AD7879W also contains low resistance analog switches to switch the X and Y excitation voltages to the touch screen and to the on-chip temperature sensor. The high speed SPI serial bus provides control of the devices, as well as communication with the devices. The AD7879-1W is available with an $\mathrm{I}^{2} \mathrm{C}$ interface.

Operating from a single supply from 1.6 V to 3.6 V , the AD7879W offers a throughput rate of 105 kHz . The device is available in a $4.4 \mathrm{~mm} \times 5.0 \mathrm{~mm}, 16$-lead thin shrink small outline package (TSSOP) and in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, 16 -lead lead frame chip scale package (LFCSP).
The AD7879W has an on-chip sequencer that schedules a sequence of preprogrammed conversions. The conversion sequence starts automatically when the screen is touched or at preset intervals, using the on-board timer.
To ensure that the AD7879W works well with different touch screens, the user can select the acquisition time. A programmable delay ensures that the voltage on the touch screen settles before a measurement is taken.

To help reduce noise in the system, the ADC takes up to 16 conversion results from each channel and writes the average of the results to the register. To further improve the performance of the AD7879W, the median filter can also be used if there is noise present in the system.

TOUCH SCREEN PRINCIPLES

A 4-wire touch screen consists of two flexible, transparent, resistive-coated layers that are normally separated by a small air gap (see Figure 22). The X layer has conductive electrodes running down the left and right edges, allowing the application of an excitation voltage across the X layer from left to right.

Figure 22. Basic Construction of a Touch Screen
The Y layer has conductive electrodes running along the top and bottom edges, allowing the application of an excitation voltage down the Y layer from top to bottom.

Provided that the layers are of uniform resistivity, the voltage at any point between the two electrodes is proportional to the horizontal position for the X layer and the vertical position for the Y layer.
When the screen is touched, the two layers make contact. If only the X layer is excited, the voltage at the point of contact and, therefore, the horizontal position, can be sensed at one of the Y layer electrodes. Similarly, if only the Y layer is excited, the voltage and, therefore, the vertical position, can be sensed at one of the X layer electrodes. By switching alternately between X and Y excitation and measuring the voltages, the X and Y coordinates of the contact point can be determined.
In addition to measuring the X and Y coordinates, it is also possible to estimate the touch pressure by measuring the contact resistance between the X and Y layers. The AD7879W is designed to facilitate this measurement.

Figure 23 shows an equivalent circuit of the analog input structure of the AD7879W, showing the touch screen switches, the main analog multiplexer, the ADC, and the dual 3-to-1 multiplexer that selects the reference source for the ADC.

Figure 23. Analog Input Structure
The AD7879W can be set up to automatically convert either specific input channels or a sequence of channels. The results of the ADC conversions are stored in the result registers.

When measuring the ancillary analog inputs (AUX, TEMP, or VBAT), the ADC uses a VCC reference and the measurement is referred to GND.

MEASURING TOUCH SCREEN INPUTS

When measuring the touch screen inputs, it is possible to use V_{CC} as a reference or instead to use the touch screen excitation voltage as the reference and to perform a ratiometric, differential measurement. The differential method is the default method and is selected by clearing the SER/DFR bit (Bit 9 in Control Register 2) to 0 . The single-ended method is selected by setting this bit to 1 .

Single-Ended Method

Figure 24 illustrates the single-ended method for the Y position. For the X position, the excitation voltage is applied to $\mathrm{X}+$ and X - and the voltage is measured at $\mathrm{Y}+$.

Figure 24. Single-Ended Conversion of Touch Screen Inputs

The voltage seen at the input to the ADC in Figure 24 is

$$
\begin{equation*}
V_{I N}=V_{C C} \times \frac{R_{Y-}}{R_{\text {YTOTAL }}} \tag{1}
\end{equation*}
$$

The advantage of the single-ended method is that the touch screen excitation voltage is switched off when the signal is acquired. Because a screen can draw over 1 mA , this is a significant consideration for a battery-powered system.
The disadvantage of the single-ended method is that voltage drops across the switches can introduce errors. Touch screens can have a total end-to-end resistance ranging from 200Ω to 900Ω. By taking the lowest screen resistance of 200Ω and a typical switch resistance of 14Ω, the user can reduce the apparent excitation voltage to $200 / 228 \times 100=87 \%$ of its actual value. In addition, the voltage drop across the low-side switch adds to the ADC input voltage. This introduces an offset into the input voltage; thus, it can never reach 0 .

Ratiometric Method

The ratiometric method illustrated in Figure 25 shows the negative input of the ADC reference connected to Y - and the positive input connected to $\mathrm{Y}+$. Thus, the screen excitation voltage provides the reference for the ADC. The input of the ADC is connected to $\mathrm{X}+$ to determine the Y position.

Figure 25. Ratiometric Conversion of Touch Screen Inputs
For greater accuracy, the ratiometric method has two significant advantages. One is that the reference to the ADC is provided from the actual voltage across the screen; therefore, any voltage dropped across the switches has no effect. The other advantage is that because the measurement is ratiometric, it does not matter if the voltage across the screen varies in the long term. However, it must not change after the signal has been acquired.

The disadvantage of the ratiometric method is that the screen must be powered up at all times because it provides the reference voltage for the ADC.

TOUCH-PRESSURE MEASUREMENT

The pressure applied to the touch screen by a pen or finger can also be measured with the AD7879W using some simple calculations. The contact resistance between the X and Y plates is measured, providing a good indication of the size of the depressed area and, therefore, the applied pressure. The area of the spot that is touched is proportional to the size of the object touching it. The size of this resistance ($\mathrm{R}_{\text {Tоисн }}$) can be calculated using two different methods.

First Method

The first method requires the user to know the total resistance of the X-plate tablet (R_{x}). Three touch screen conversions are required: measurement of the X position, $\mathrm{X}_{\text {position }}(\mathrm{Y}+$ input); measurement of the $\mathrm{X}+$ input with the excitation voltage applied to $\mathrm{Y}+$ and $\mathrm{X}-(\mathrm{Z1}$ measurement); and measurement of the $\mathrm{Y}-$ input with the excitation voltage applied to $\mathrm{Y}+$ and $\mathrm{X}-(\mathrm{Z} 2$ measurement). These three measurements are illustrated in Figure 26.
The AD7879W has two special ADC channel settings that configure the X and Y switches for the Z 1 and Z 2 measurements and store the results in the Z 1 and Z 2 result registers. The Z 1 measurement is selected by setting the CHNL ADD[2:0] bits to 101 in Control Register 1 (Address 0x01); the result is stored in the $\mathrm{X}+(\mathrm{Z} 1)$ result register (Address 0x0A). The Z 2 measurement is selected by setting the CHNL ADD[2:0] bits to 100 in Control Register 1 (Address 0x01); the result is stored in the $\mathrm{Y}-(\mathrm{Z} 2)$ result register (Address 0x0B).
The touch resistance ($\mathrm{R}_{\text {Tоисн }}$) can then be calculated using the following equation:

$$
\begin{equation*}
R_{\text {TOUCH }}=\left(R_{\text {XPLATE }}\right) \times\left(X_{\text {POSITION }} / 4096\right) \times[(Z 2 / Z 1)-1] \tag{2}
\end{equation*}
$$

Figure 26. Three Measurements Required for Touch Pressure

Second Method

The second method requires the user to know the resistance of the X-plate and Y-plate tablets. Three touch screen conversions are required: a measurement of the X position (Xposition), the Y position (Yposition), and the Z 1 position.

The following equation also calculates the touch resistance ($\mathrm{R}_{\text {touch }}$):

$$
\begin{align*}
& R_{\text {TOUCH }}=R_{\text {XPLATE }} \times\left(X_{\text {POSITIION }} / 4096\right) \times[(4096 / Z 1)-1]- \\
& R_{\text {YPLATE }} \times\left[1-\left(Y_{\text {POSITION }} / 4096\right)\right] \tag{3}
\end{align*}
$$

TEMPERATURE MEASUREMENT

A temperature measurement option called the single-conversion method is available on the AD7879W. The conversion method requires only a single measurement on ADC Channel 001. The results are stored in the temperature conversion result register (Address 0x0D). The AD7879W does not provide an explicit output of the temperature reading; the system must perform some external calculations. This method is based on an on-chip diode measurement.

The acquisition time is fixed at 16 ms for temperature measurement.

Conversion Method

The conversion method makes use of the fact that the temperature coefficient of a silicon diode is approximately $-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. However, this small change is superimposed on the diode forward voltage, which can have a wide tolerance. Therefore, it is necessary to calibrate by measuring the diode voltage at a known temperature to provide a baseline from which the change in forward voltage with temperature can be measured. This method provides a resolution of approximately $0.3^{\circ} \mathrm{C}$ and a predicted accuracy of $\pm 2^{\circ} \mathrm{C}$.

The temperature limit comparison is performed on the result in the temperature conversion result register (Address 0x0D), which is the measurement of the diode forward voltage. The values programmed into the high and low limits should be referenced to the calibrated diode forward voltage to make accurate limit comparisons.

AD7879W

Temperature Calculations

If an explicit temperature reading in degrees Celsius is required, calculate for the single-measurement method as follows:

1. Calculate the scale factor of the ADC in degrees per LSB.

Degrees per $L S B=A D C$ LSB size $/-2.1 \mathrm{mV}=$ ($V_{C C} / 4096$)/- 2.1 mV
2. Save the ADC output, $\mathrm{D}_{\mathrm{CAL}}$, at the calibration temperature, TCal.
3. Take the ADC reading, $\mathrm{D}_{\mathrm{AMB}}$, at the temperature to be measured, $\mathrm{T}_{\text {Амв. }}$.
4. Calculate the difference in degrees between $\mathrm{T}_{\mathrm{CAL}}$ and $\mathrm{T}_{\mathrm{AMB}}$ by
$\Delta T=\left(D_{A M B}-D_{C A L}\right) \times$ degrees per $L S B$
5. Add $\Delta \mathrm{T}$ to $\mathrm{T}_{\text {cal }}$.

Example

Using $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ as reference,
Degrees per LSB $=(2.5 / 4096) /-2.1 \times 10^{-3}=-0.291$
The ADC output is 983 decimal at $25^{\circ} \mathrm{C}$, equivalent to a diode forward voltage of 0.6 V .
The ADC output at $\mathrm{T}_{\text {AMB }}$ is 880 .
$\Delta T=(880-983) \times-0.291=30^{\circ} \mathrm{C}$
$T_{A M B}=25+30=55^{\circ} \mathrm{C}$

MEDIAN AND AVERAGING FILTERS

As explained in the Touch Screen Principles section, touch screens are composed of two resistive layers, normally placed over an LCD screen. Because these layers are in close proximity to the LCD screen, noise can be coupled from the screen onto these resistive layers, causing errors in the touch screen positional measurements.

The AD7879W contains a filtering block to process the data and discard the spurious noise before sending the information to the host. The purpose of this block is not only the suppression of noise; the on-chip filtering also greatly reduces the host processing loading.
The processing function consists of two filters that are applied to the converted results: the median filter and the averaging filter.

The median filter suppresses the isolated out-of-range noise and sets the number of measurements to be taken. These measurements are arranged in a temporary array, where the first value is the smallest measurement and the last value is the largest measurement. Bit 6 and Bit 5 in Control Register 2 (MED1, MED0) set the window of the median filter and, therefore, the number of measurements taken.

Table 8. Median Filter Size

MED1	MED0	Number of Measurements
0	0	Median filter disabled
0	1	4
1	0	8
1	1	16

The averaging filter size determines the number of values to average. Bit 8 and Bit 7 in Control Register 2 (AVG1, AVG0) set the average to $2,4,8$, or 16 samples. Only the final averaged result is written into the result register.

Table 9. Averaging Filter Size

AVG1	AVG0	Filter Size
0	0	Average of 2 middle samples
0	1	Average of 4 middle samples
1	0	Average of 8 middle samples
1	1	Average of 16 samples

When both filter values are 00 , only one measurement is transferred to the register map.

The number specified with the MED1 and MED0 settings must be greater than or equal to the number specified with the AVG1 and AVG0 settings. If both settings specify the same number, the median filter is switched off.

Table 10. Median Averaging Filters (MAVF) Settings

Setting	Function
$M=A$	Median filter is disabled; output is the average of A converted results
$M>A$	Output is the average of the middle A values from the array of M measurements
$M<A$	Not possible because the median filter size is always larger than the averaging window size

Example

In this example, MED1, MED0 $=11$ and AVG1, AVG0 $=10$; the median filter has a window size of 16 . This means that 16 measurements are taken and arranged in descending order in a temporary array.

The averaging window size in this example is 8 . The output is the average of the middle eight values of the 16 measurements taken with the median filter.

Figure 27. Median and Averaging Filter Example
It takes approximately 2μ s to sort the data in the rank filter ($\mathrm{t}_{\text {sort }}$ in Figure 34); $\mathrm{t}_{\text {sort }}$ adds to the update rate of the AD7879W.

AUX/VBAT/GPIO PIN

The AUX/VBAT/GPIO pin on the AD7879W can be programmed as an auxiliary input to the ADC, as a battery monitoring input, or as a general-purpose digital input/output. To select the auxiliary measurement, set the ADC channel address to 011 (Bits[14:12] in Control Register 1, Address 0x01). To select a battery measurement, set the ADC channel address to 010. To select the GPIO function, set Bit 13 in Control Register 2 (Address 0x02) to 1.

AUXILIARY INPUT

The AD7879W has an auxiliary analog input, AUX. When the auxiliary input function is selected, the signal on the AUX pin (AUX/VBAT/GPIO) is connected directly to the ADC input. This channel has a full-scale input range from 0 V to V_{cc}. The ADC channel address for AUX is 011 (Bits[14:12] in Control Register 1, Address 0x01), and the result is stored in the AUX/VBAT result register (Address 0x0C).

BATTERY INPUT

The AD7879W can monitor battery voltages from 0.5 V to 5 V when the BAT measurement is selected. Figure 28 shows a block diagram of a battery voltage monitored through the VBAT pin. The voltage to the $\mathrm{V}_{\mathrm{CC}} \mathrm{pin}\left(\mathrm{V}_{\mathrm{CC}} / \mathrm{REF}\right.$) of the AD7879W is maintained at the desired supply voltage via the dc-to-dc converter, and the input to the converter is monitored. This voltage on VBAT is divided by 4 internally, so that a 5 V battery voltage is presented to the ADC as 1.25 V . To conserve power, the divider circuit is on only during the sampling of a voltage on VBAT. Note that the possible maximum input is 5 V .
The ADC channel address for VBAT is 010 (Bits[14:12] in Control Register 1, Address 0x01), and the result is stored in the AUX/VBAT result register (Address 0x0C).

Figure 28. Block Diagram of Battery Measurement Circuit
The maximum battery voltage that the AD7879W can measure changes when a different reference voltage is used. The maximum voltage that is measurable is $\mathrm{V}_{\mathrm{CC}} \times 4$ because this voltage gives a full-scale output from the ADC. The battery voltage can be calculated using the following formula:

$$
V B A T(\mathrm{~V})=\left[(\text { Register Value }) \times V_{C C} \times 4\right] / 4095
$$

LIMIT COMPARISON

The AUX measurement and the battery measurement can be compared with high and low limits stored on chip. An out-of-limit result generates an alarm output at the $\overline{\text { INT }}$ pin (PENIRQ $/ \overline{\mathrm{INT}} / \overline{\mathrm{DAV}}$) when the $\overline{\mathrm{INT}}$ function is enabled. The high limit for both channels is stored in the AUX/VBAT high limit register (Address 0x04), and the low limit is stored in the AUX/VBAT low limit register (Address 0x05).
After a measurement from either AUX or VBAT is taken, it is compared with the high and low limits. The out-of-limit comparison sets a status bit in Control Register 3. Separate status bits for the high limit and the low limit indicate which limit was exceeded. The interrupt sources can be masked by clearing the corresponding enable bit in Control Register 3.

GPIO

The AD7879W has one general-purpose logic input/ output pin, GPIO (AUX/VBAT/GPIO). To enable GPIO, set Bit 13 in Control Register 2 to 1 . If this bit is set to 0 , the AUX/VBAT function is active on the pin. If the GPIO is not enabled, the other GPIO configuration bits have no effect.
The GPIO data bit is Bit 12 in Control Register 2.
Direction (Bit 11, Control Register 2, Address 0x02)
Bit 11 sets the direction of the GPIO pin (AUX/VBAT/GPIO). When GPIO DIR $=0$, the pin is an output. Setting or clearing the GPIO data bit (Bit 12 in Control Register 2) outputs a value on the GPIO pin.
When GPIO DIR $=1$, the pin is an input. An input value on the GPIO pin sets or clears the GPIO data bit (Bit 12 in Control Register 2). GPIO data register bits are read-only when GPIO DIR $=1$.

Polarity (Bit 10, Control Register 2, Address 0x02)

When GPIO POL $=0$, the GPIO pin is active low. When GPIO POL $=1$, the GPIO pin is active high. How this bit affects the GPIO operation also depends on the GPIO DIR bit.
If GPIO POL $=1$ and GPIO DIR $=1$, a 1 at the input pin sets the corresponding GPIO data register bit to 1 . A 0 at the input pin clears the corresponding GPIO data bit to 0 .
If GPIO POL $=1$ and GPIO DIR $=0$, a 1 in the GPIO data register bit puts a 1 on the corresponding GPIO output pin. A 0 in the GPIO data register bit puts a 0 on the GPIO output pin.
If GPIO POL $=0$ and GPIO DIR $=1$, a 1 at the input pin sets the corresponding GPIO data bit to 0 . A 0 at the input pin clears the corresponding GPIO data bit to 1 .

If GPIO POL $=0$ and GPIO DIR $=0$, a 1 in the GPIO data register bit puts a 0 on the corresponding GPIO output pin. A 0 in the GPIO data register bit puts a 1 on the GPIO output pin.

GPIO Interrupt Enable (Bit 12, Control Register 3, Address 0x03)

The GPIO pin can operate as an interrupt source to trigger the $\overline{\text { INT }}$ output. This is controlled by Bit 12 in Control Register 3.
If the GPIO ALERT interrupt enable bit is set to 0 , the GPIO can trigger $\overline{\mathrm{INT}}$. If this bit is set to 1 , the GPIO cannot trigger $\overline{\mathrm{INT}}$.
$\overline{\mathrm{INT}}$ is asserted if the GPIO data register bit is set when the GPIO is configured as an input, provided that $\overline{\mathrm{INT}}$ is enabled. $\overline{\mathrm{INT}}$ is triggered only when the GPIO is configured as an input, that is, when GPIO DIR $=1$.
$\overline{\text { INT }}$ is cleared only when the GPIO signal or the GPIO enable bit changes.

CONVERSION TIMING

Conversion timing or update rate is the rate at which the AD7879W provides converted values from the ADC so that the XY positions in the touch screen can be updated. In other words, the update rate is the timing required to give valid measurements in the sequencer.

Figure 29 shows conversion timing for a conversion sequence.

FCD is required before each touch screen measurement ($\mathrm{X}+$, $\mathrm{Y}+, \mathrm{Z} 1$, and Z 2). This time is required to allow the screen inputs to settle before converting. If the sequence does not contain any screen channel (VBAT, AUX, or TEMP), only one FCD is added at start of the sequence. At the end of the sequence, there is always another FCD.
$\mathrm{T}_{\text {MEASURE }}$ is the time required to perform one measurement in the conversion sequence.
$T_{\text {MEASURE }}=\left[A C Q(2 \mu \mathrm{~s}, 4 \mu \mathrm{~s}, 8 \mu \mathrm{~s}, 16 \mu \mathrm{~s})+T_{\mathrm{CONV}}(7.5 \mu \mathrm{~s})+t_{\text {SORT }}\right.$ $(2 \mu s)]$
where:
$A C Q$ is the acquisition time which is programmable in Control Register 1. For temperature measurements, ACQ is fixed at $16 \mu \mathrm{~s}$. $T_{\text {CONV }}$ (typical ADC conversion time) is specified at $7.5 \mu \mathrm{~s}$. $t_{\text {SORT }}$ is the time needed to sort the new sample within the median filter array. The $\mathrm{t}_{\text {sort }}$ value is approximately $2 \mu \mathrm{~s}$. If a median filter is not used (MED $=0$), the tsort value is 0 .
$T_{\text {MEASURE_MIN }}=9.5 \mu \mathrm{~s}(\mathrm{ACQ}=2 \mu \mathrm{~s}$, no median filter $)$

Conversion time per channel depends on the number of samples to be converted. The number of samples is programmed using the following median filter settings:
$T_{\text {ChANNEL }}=T_{\text {MEASURE }} \times M E D$
$T_{\text {CHANNEL_MIN }}=9.5 \mu \mathrm{~s}(\mathrm{ACQ}=2 \mu \mathrm{~s}, \mathrm{MED}=0)$
$T_{\text {ChANNEL_MAX }}=376 \mu \mathrm{~s}(\mathrm{ACQ}=16 \mu \mathrm{~s}, \mathrm{MED}=16)$
Update Rate $=\left[F C D+\left(T_{\text {MEASURE }} \times M E D\right)\right] \times N+F C D+T M R$ where:
$N=$ number of channels to be measured (1 to 6).
$M E D=$ median filter setting $(1,4,8,16)$.
$T M R=$ timer setting ($0 \mu \mathrm{~s}$ to 9.4 ms).
The total update rate depends on the median filter settings and the number of channels in the conversion sequence. The timer setting (TMR) allows the user more flexibility to program the update rate.
For example, if
$\mathrm{ACQ}=4$ us
MED $=8$
$\mathrm{N}=2$
$\mathrm{FCD}=1.024 \mathrm{~ms}$
TMR $=620 \mu \mathrm{~s}$
$\mathrm{T}_{\text {MEASURE }}=4+7.5+2=13.5 \mu \mathrm{~s}$
$\mathrm{T}_{\text {ChanNel }}=(13.5 \times 8)=108 \mu \mathrm{~s}$
Then
Update rate $=[1024+108] \times 2+1024+620=3.9 \mathrm{~ms}$

REGISTER MAP

Table 11. Register Table

Address ${ }^{1}$	Register Name	Description	Default Value	Type
0x00	Unused	Unused	0x0000	R/W
0x01	Control Register 1	Pen interrupt enable, channel selection for manual conversion, ADC mode, acquisition time, and conversion timer	0x0000	$\mathrm{R} / \overline{\mathrm{W}}$
0×02	Control Register 2	ADC power management, GPIO control, pen interrupt mode, averaging, median filter, software reset, and FCD	0x4040	R / \bar{W}
0×03	Control Register 3	Status of high/low limit comparisons for TEMP and AUX/VBAT, and enable bits to allow them to become interrupts; channel selection for slave/master mode	0x0000	R / \bar{W}
0x04	AUX/VBAT high limit	AUX/VBAT high limit for comparison	0x0000	R / W
0x05	AUX/VBAT low limit	AUX/VBAT low limit for comparison	0x0000	R/W
0x06	TEMP high limit	TEMP high limit for comparison	0x0000	R / W
0×07	TEMP low limit	TEMP low limit for comparison	0x0000	R / \bar{W}
0x08	X+	$\mathrm{X}+$ measurement for Y position	0x0000	R
0x09	Y+	$\mathrm{Y}+$ measurement for X position	0x0000	R
$0 \times 0 \mathrm{~A}$	X + (Z1)	X+ measurement for touch-pressure calculation (Z1)	0x0000	R
$0 \times 0 \mathrm{~B}$	$Y-(Z 2)$	Y-measurement for touch-pressure calculation (Z2)	0x0000	R
0xOC	AUX/VBAT	AUX/VBAT voltage measurement	0x0000	R
0x0D	TEMP	Temperature conversion measurement	0x0000	R
0x0E	Revision and device ID	Revision and device ID	$\begin{aligned} & \text { 0x0379 } \\ & \text { (AD7879-1W) } \end{aligned}$	R
			$\begin{aligned} & 0 \times 037 \mathrm{~A} \\ & \text { (AD7879W) } \end{aligned}$	R

[^2]
DETAILED REGISTER DESCRIPTIONS

All addresses and default values are expressed in hexadecimal.
Table 12. Control Register 1

Address	Bit Name	Data Bit	Description	Default Value
0x01	Disable $\overline{\text { PENIRQ }}$	15	Pen interrupt enable. $0=\overline{\text { PENIRQ }} \text { is enabled. }$ $1=\overline{\mathrm{PENIRQ}}$ is disabled and $\overline{\mathrm{NT}}$ is enabled.	0x0000
	CHNL ADD[2:0]	[14:12]	```ADC channel address for manual conversion (ADC mode = 01). 111 = X+ input (Y position). 110 = Y+ input (X position). 101 = X+ (Z1) input for touch-pressure calculation. 100 = Y- (Z2) input (used for touch-pressure measurement). 011 = AUX input. }\mp@subsup{}{}{1 010 = VBAT input. }\mp@subsup{}{}{1 001 = temperature measurement. 000 = not applicable.```	
	ADC MODE[1:0]	[11:10]	ADC mode. $00=$ no conversion. $01=$ single conversion. ${ }^{2}$ $10=$ conversion sequence (slave mode). ${ }^{2}$ 11 = conversion sequence (master mode).	
	ACQ[1:0]	[9:8]	ADC acquisition time. $00=4$ clock periods $(2 \mu \mathrm{~s})$. $01=8$ clock periods ($4 \mu \mathrm{~s}$). $10=16$ clock periods ($8 \mu \mathrm{~s}$). $11=32$ clock periods ($16 \mu \mathrm{~s}$). Note that the acquisition time does not apply to the temperature sensor channels; the temperature channel has a constant settling time of $16 \mu \mathrm{~s}$.	
	TMR[7:0]	[7:0]	Conversion interval timer. Starts at $550 \mu \mathrm{~s}$ (00000001) and continues to 9.440 ms (11111111) in steps of $35 \mu \mathrm{~s}$ (see Table 18). Note that, in slave mode, the conversion interval timer starts to count as soon as the conversion sequence is finished; in master mode, it starts to count again only if the screen remains touched. If the screen is released, the timer stops counting and, on the next screen touch, a conversion starts immediately.	

[^3]Table 13. Control Register 2

Address	Bit Name	Data Bit	Description	Default Value
0x02	PM[1:0]	[15:14]	ADC power management. $00=$ full shutdown; the ADC, oscillator, bias, and temperature sensor are all powered down. 01 = analog blocks to be powered down depend on the ADC mode. If ADC mode is master mode, the ADC, oscillator, bias, and temperature sensor are powered down and must wake up when the user touches the screen. If ADC mode is slave mode, the ADC and temperature sensor are powered down when not being used. They wake up automatically when required. The oscillator and bias are powered up because they are needed to measure time. This also applies to the single-conversion mode. 10 = ADC, bias, and oscillator are powered up continuously, irrespective of ADC mode. 11 = same as 01 .	0x4040
	GPIO EN	13	GPIO enable. $0=$ AUX/VBAT channel active. 1 = GPIO enabled on AUX/VBAT/GPIO pin.	
	GPIO DAT	12	GPIO data bit.	
	GPIO DIR	11	GPIO direction. $\begin{aligned} & 0=\text { output. } \\ & 1=\text { input. } \end{aligned}$	
	GPIO POL	10	GPIO polarity. $0=$ GPIO pin is active low. 1 = GPIO pin is active high.	
	SER/ $\overline{\text { DFR }}$	9	Selects normal (single-ended) or ratiometric (differential) conversion. $0=$ ratiometric (differential). 1 = normal (single-ended).	
	AVG[1:0]	[8:7]	ADC averaging. $00=2$ middle values averaged (one measurement when median filter is disabled). $01=4$ middle values averaged. $10=8$ middle values averaged. $11=16$ values averaged.	
	MED[1:0]	[6:5]	Median filter size. $00=$ median filter disabled. $01=4$ measurements. $10=8$ measurements. $11=16$ measurements.	
	SW/RST	4	Software reset; digital logic is reset when this bit is set.	
	FCD[3:0]	[3:0]	ADC first conversion delay. ${ }^{1}$ Starts at $128 \mu \mathrm{~s}$ (default) and continues to 4.096 ms in steps of $128 \mu \mathrm{~s}$ (see Table 22).	

[^4]Table 14. Control Register 3

Address	Bit Name	Data Bit	Description	Default Value
0x03	TEMP MASK	15	TEMP mask bit. $0=$ temperature measurement is allowed to cause interrupt. 1 = temperature measurement is not allowed to cause interrupt.	0x0000
	AUX/VBAT MASK	14	AUX/VBAT mask bit. $0=$ AUX/VBAT measurement is allowed to cause interrupt. 1 = AUX/VBAT measurement is not allowed to cause interrupt.	
	INT MODE	13	$\overline{\mathrm{DAV}} / \overline{\mathrm{INT}}$ mode select. $0=$ enable $\overline{\mathrm{DAV}}$ mode. 1 = enable $\overline{\mathrm{INT}}$ mode. Note that this bit overrides any mask bits associated with individual channels.	
	GPIO ALERT	12	GPIO interrupt enable. $0=$ GPIO can cause an alert on the $\overline{\mathrm{INT}}$ output. 1 = mask GPIO from causing an alert on the $\overline{\mathrm{NT}}$ output.	
	AUX/VBAT LOW	11	1 = AUX/VBAT below low limit.	
	AUX/VBAT HIGH	10	1 = AUX/VBAT above high limit.	
	TEMP LOW	9	1 = TEMP below low limit.	
	TEMP HIGH	8	1 = TEMP above high limit.	
	X+	7	1 = include measurement of Y position ($\mathrm{X}+$ input).	
	Y+	6	1 = include measurement of X position ($\mathrm{Y}+\mathrm{input}$).	
	Z1	5	1 = include Z 1 touch-pressure measurement ($\mathrm{X}+$ input).	
	Z2	4	1 = include measurement of Z2 touch-pressure measurement (Y - input).	
	AUX	3	1 = include measurement of AUX channel. ${ }^{1}$	
	VBAT	2	1 = include measurement of battery monitor (VBAT). ${ }^{1}$	
	TEMP	1	1 = include temperature measurement.	
	Not used	0	Unused.	

${ }^{1}$ If GPIO is enabled in Control Register 2 (Bit 13), AUX and VBAT are both ignored. If AUX and VBAT are both selected and GPIO is disabled, AUX is ignored and VBAT is measured.

Table 15. Limit Registers

Address	Register Name	Data Bit	Description	Default Value
0×04	AUX/VBAT high limit	$[15: 0]$	User-programmable AUX/VBAT high limit register	0×0000
0×05	AUX/VBAT low limit	$[15: 0]$	User-programmable AUX/VBAT low limit register	0×0000
0×06	TEMP high limit	$[15: 0]$	User-programmable TEMP high limit register	0×0000
0×07	TEMP low limit	$[15: 0]$	User-programmable TEMP low limit register	0×0000

AD7879W

Table 16. Measurement Result Registers (Read Only)

Address	Register Name	Data Bits	Description	Default Value
0x08	X+	[15:0]	Measured $\mathrm{X}+$ input with Y excitation (Y position)	0x0000
0x09	Y+	[15:0]	Measured $Y+$ input with X excitation (X position)	0x0000
$0 \times 0 \mathrm{~A}$	X+ (Z1)	[15:0]	Measured $\mathrm{X}+$ input with X - and $\mathrm{Y}+$ excitation (touch-pressure calculation Z 1)	0x0000
$0 \times 0 \mathrm{~B}$	Y- (Z2)	[15:0]	Measured Y - input with X - and $\mathrm{Y}+$ excitation (touch-pressure calculation Z 2)	0x0000
$0 \times 0 \mathrm{C}$	AUX/VBAT	[15:0]	AUX/VBAT voltage measurement	0x0000
0x0D	TEMP	[15:0]	Temperature conversion measurement	0x0000

Table 17. Revision and Device ID Register (Read Only)

Address	Data Bits	Description	Default Value
$0 \times 0 \mathrm{E}$	$[15: 12]$	Unused	0×0379 (AD7879-1W)
	$[11: 8]$	Revision and device ID bits	Device ID
	$[7: 0]$		

[^0]: ${ }^{1}$ Guaranteed by design; not production tested.

[^1]: ${ }^{1}$ Guaranteed by design; not production tested.

[^2]: ${ }^{1}$ Do not write to addresses outside the register map.

[^3]: ${ }^{1}$ If GPIO is enabled in Control Register 2 (Bit 13), AUX and VBAT are both ignored. If AUX and VBAT are both selected in Control Register 3 and GPIO is disabled, AUX is ignored and VBAT is measured.
 ${ }^{2}$ Note that these bits are cleared to 00 at the end of the conversion sequence if the conversion interval timer bits in Control Register 1 (Address $0 x 01$) Bits[7:0] $=0 \times 00$ at the end of the conversion sequence.

[^4]: ${ }^{1}$ This delay occurs before conversion of the X and Y coordinate channels (including $Z 1$ and $Z 2$) to allow for screen settling and before the first conversion to allow the ADC to power up.

