: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Panasonic ideas for life

UL File No.: E122222
C-UL File No.: E122222

- Screw terminal (M3.5) and Pin Types are Both Standard Options The two terminal types are standard options to support either front panel installation or embedded installation.
- Changeable Panel Cover

Also offers a black panel cover to meet your design considerations.

- Compliant with UL, c-UL and CE.

Pin type

Screw terminal type

Features

- Bright and Easy-to-Read Display A brand new bright 2-color back light LCD display. The easy-to-read screen in any location makes checking and setting procedures a cinch.
- Simple Operation

Seesaw buttons make operating the unit even easier than before.

- Short Body of only 64.5 mm 2.539 inch (screw terminal type) or $\mathbf{7 0 . 1}$ mm 2.760 inch (pin type) With a short body, it is easy to install in even narrow control panels.
- Conforms to IP66's Weather

Resistant Standards

The water-proof panel keeps out water and dirt for reliable operation even in poor environments.

Product types

* A rubber gasket (ATC18002) and a mounting frame (AT8-DA4) are included.

Part names

Specifications

Item			Relay output type		Transistor output type	
			AC type AC/DC type	DC type	AC type AC/DC type	DC type
Rating	Rated operating voltage		$\begin{gathered} 100 \text { to } 240 \mathrm{~V} \mathrm{AC,} 24 \mathrm{~V} \mathrm{AC}, \\ 24 \mathrm{~V} \mathrm{AC/DC} \end{gathered}$	12 to 24 V DC	$\begin{gathered} 100 \text { to } 240 \mathrm{~V} \mathrm{AC,} 24 \mathrm{~V} \mathrm{AC}, \\ 24 \mathrm{~V} \mathrm{AC/DC} \\ \hline \end{gathered}$	12 to 24 V DC
	Rated frequency		$50 / 60 \mathrm{~Hz}$ common	-	$50 / 60 \mathrm{~Hz}$ common	-
	Rated power consumption		Max. 10 V A	Max. 3 W	Max. 10 V A	Max. 3 W
	Rated control capacity		$5 \mathrm{~A}, 250 \mathrm{~V} \mathrm{AC} \mathrm{(resistive} \mathrm{load)}$		$100 \mathrm{~mA}, 30 \mathrm{~V}$ DC	
	Time range		$9.999 \mathrm{~s}, 99.99 \mathrm{~s}, 999.9 \mathrm{~s}, 9999 \mathrm{~s}, 99 \mathrm{~min} 59 \mathrm{~s}, 999.9 \mathrm{~min}, 99 \mathrm{~h} 59 \mathrm{~min}, 999.9 \mathrm{~h}$ (selected by DIP switch)			
	Time counting direction		Addition (UP)/Subtraction (DOWN) (2 directions selectable by DIP switch)			
	Operation mode		A (Power ON delay 1), A2 (Power ON delay 2), B (Signal ON delay), C (Signal OFF delay), D (Pulse one-shot), E (Pulse ON delay), F (Signal Flicker), G (Totalizing ON delay) (selectable by DIP switch)			
	Start/Reset/Stop input		Min. input signal width: $1 \mathrm{~ms}, 20 \mathrm{~ms}$ (2 directions by selected by DIP switch) (The 8-pin type does not have a stop input.)			
	Lock input		Min. input signal width: 20 ms (The 8-pin type does not have a lock input.)			
	Input signal		Open collector input Input impedance: Max. $1 \mathrm{k} \Omega$; Residual voltage: Max. 2 V Open impedance: $100 \mathrm{k} \Omega$ or less, Max. energized voltage: 40 V DC			
	Indication		7-segment LCD (LT4H, LT4H-L common), Elapsed value (backlight red LED), Setting value (backlight yellow LED)			
	Power failure memory method		EEP-ROM (Min. 10s overwriting)			
Time accuracy (max.)	Operating time fluctuation		$\pm(0.005 \%+50 \mathrm{~ms})$ in case of power on start $\pm(0.005 \%+20 \mathrm{~ms})$ in case of input signal start		$\left[\begin{array}{l} \text { Operating voltage: } 85 \text { to } 110 \% \\ \text { Temperature: }-10 \text { to }+55^{\circ} \mathrm{C}+14 \text { to }+131^{\circ} \mathrm{F} \\ \text { Min. input signal width: } 1 \mathrm{~ms} \end{array}\right]$	
	Temperature error					
	Voltage error					
	Setting error					
Contact	Contact arrangement		Timed-out 1 Form C		Timed-out 1 Form A (Open collector)	
	Contact resistance (Initial value)		$100 \mathrm{~m} \Omega$ (at 1 A 6 V DC)		-	
	Contact ma	rial	Ag alloy/Au flash		-	
Life	Mechanical (contact)		Min. 2×10 ope. (Except for switch operation parts)		-	
	Electrical (contact)		$1.0 \times 10^{\text {s }}$ ope. (At rated control voltage)		Min. 10 ope. (At rated control voltage)	
Electrical	Allowable operating voltage range		85 to 110% of rated operating voltage			
	Breakdown voltage (Initial value)		2,000 Vrms for 1 min : Between live and dead metal parts (11-pin) 2,000 Vrms for 1 min : Between input and output 1,000 Vrms for 1 min : Between contacts		2,000 Vrms for 1 min : Between live and dead metal parts (Pin type) 2,000 Vrms for 1 min: Between input and output	
	Insulation resistance (Initial value)		Between live and dead metal parts Min. 100 M : Between input and output (At 500V DC) Between contacts		Min. $100 \mathrm{M} \Omega$: Between live and dead metal parts Between input and output (At 500V DC)	
	Operating voltage reset time		Max. 0.5 s			
	Temperature rise		$\operatorname{Max} .65^{\circ} \mathrm{C}$(under the flow of nominal operating current at nominal voltage)			
Mechanical	Vibration resistance	Functional	10 to 55 Hz : 1 cycle/min single amplitude of 0.35 mm .014 inch (10 min on 3 axes)			
		Destructive	10 to 55 Hz : $1 \mathrm{cycle} / \mathrm{min}$ single amplitude of 0.75 mm .030 inch (1 h on 3 axes)			
	Shock resistance	Functional	Min. 98 m 321.522 ft ./s ${ }^{2}$ (4 times on 3 axes)			
		Destructive	Min. $294 \mathrm{~m} 964.567 \mathrm{ft} / \mathrm{s}^{2}$ (5 times on 3 axes)			
Operating conditions	Ambient temperature		$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}+14^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F}$			
	Ambient humidity		Max. 85 \% RH (non-condensing)			
	Air pressure		860 to $1,060 \mathrm{~h} \mathrm{~Pa}$			
	Ripple rate		-	20 \% or less	-	20 \% or less
Connection			8-pin/11-pin/screw terminal			
Protective construction			IP66 (front panel with rubber gasket)			

Applicable standard

Pin type (Flush mount/Surface mount)

- Dimensions for embedded installation (with adapter installed) Screw terminal type

Pin type

- Dimensions for front panel installations

- Installation panel cut-out dimensions

The standard panel cut-out dimensions are shown below. Use the mounting frame (AT8-DA4) and rubber gasket (ATC18002).

- For connected installations

Note) 1: The installation panel thickness should be between 1 and 5 mm .039 and .197 inch.
2: For connected installations, the waterproofing ability between the unit and installation panel is lost.

Terminal layouts and wiring diagrams

-8-pin type
Relay output type

- Screw terminal type

Relay output type

Transistor output type

Transistor output type

-11-pin type

Relay output type Transistor output type

ote) For connecting the output leads of the transistor output type, refer to 5) Transistor output on page 26.

Setting the operation mode, time range and time

Setting procedure 1) Setting the operation mode and time range

Set the operation mode and time range with the DIP switches on the side of the LT4H timer.

DIP switches

Table 1: Setting the operation mode

	Item	DIP switch		DIP switch No.			Operation mode
		OFF	ON	1	2	3	
1	Operation mode	Refer to table 1		ON	ON	ON	A: Power on delay 1
2				OFF	OFF	OFF	A2: Power on delay 2
3				ON	OFF	OFF	B: Signal on delay
*4	Minimum input reset, start, and	20 ms	1 ms	OFF	ON	OFF	C: Signal off delay
4	stop signal width	20 ms	1 ms	ON	ON	OFF	D: Pulse One shot
5	Time delay direction	Addition	Subtraction	OFF	OFF	ON	E: Pulse On delay
6	Time range	Refer to table 2		ON	OFF	ON	F: Signal Flicker
7				OFF	ON	ON	G: Totalizing On delay

Table 2: Setting the time range

* The 8-pin type does not have the stop input, so that the dip switch can be changed over between reset and start inputs. The signal range of the lock input is fixed (minimum 20 ms).

DIP switch No.			Time range	
6	7	8		
ON	ON	ON	0.001 s to 9.999 s	
OFF	OFF	OFF	0.01 s to 99.99 s	
ON	OFF	OFF	0.1 s to 999.9 s	
OFF	ON	OFF	1 s to 9999 s	
ON	ON	OFF	0 min 01 s to 99 min 59 s	
OFF	OFF	ON	0.1 min to 999.9 min	
ON	OFF	ON	0 h 01 min to 99 h 59 min	
OFF	ON	ON	0.1 h to 999.9 h	

Notes: 1) Set the DIP switches before installing the timer.
2) When the DIP SW setting is changed, turn off the power once.
3) The DIP switches are set as ON before shipping.

Setting procedure 2) Setting the time

Set the set time with the keys (UP and DOWN keys) on the front of the LT4H timer.

Front display section

(1) Elapsed time display
(2) Set time display
(3) Time delay indicator
(4) Controlled output indicator
(5) Reset indicator
(6) Lock indicator
(7) Time units display

- Changing the set time

1. It is possible to change the set time with the up and down keys even during time delay with the timer. However, be aware of the following points.
1) If the set time is changed to less than the elapsed time with the time delay set to the addition direction, time delay will continue until the elapsed time reaches full scale, returns to zero, and then reaches the new set time. If the set time

- Power failure memory

The EEPROM is used for power failure memory. It has a life of Min. 10^{5} over-writings. The EEPROM is overwriting with the following timing.

Output mode	Overwrite timing
Power ON delay (2) A2	When power is OFF
Addition G	Change of preset value or start, reset input When power is OFF after being ON
Other modes	When power is OFF after changing preset value

[^0]
Operation mode

T: Set time t1, t2, t3, ta<T

Operation type	Explanation	Time chart
Pulse One-shot (D)	- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the side of the timer as shown. - Clears elapsed time value at power ON. - Time delay starts and output control ON at start ON. - Turns output control OFF and clears elapsed time value at time-up. - Ignores start input during time delay. - Stops delay time operation at stop ON. Restarts delay time operation at stop OFF. - In order to have the time delay start at power ON or reset at power OFF, short out the start input beforehand.	
Pulse On delay (E)	- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the side of the timer as shown. - Clears elapsed time value at power ON. - Time delay starts at start ON. - Ignores start input during time delay. - Stops delay time operation at stop ON. Restarts delay time operation at stop OFF. - In order to have the time delay start at power ON or reset at power OFF, short out the start input beforehand.	
Signal Flicker (F)	- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the side of the timer as shown. - Clears elapsed time value at power ON. - Time delay starts at start ON. - Ignores start input during time delay. - Output control reverses, elapsed time value clears, and timer delay starts at timer completion. - Stops delay time operation at stop ON. Restarts delay time operation at stop OFF. - In order to have the time delay start at power ON or reset at power OFF, short out the start input beforehand.	
Totalizing On delay G	- Set the operation mode section of the DIP switches (no.'s 1, 2, and 3) on the side of the timer as shown. - Elapsed time value does not clear at power ON. (power outage countermeasure function) - The output remains ON even after the power is off and restarted. - Stops delay time operation at stop ON. Restarts delay time operation at stop OFF.	
Notes: 1) Each sign the 11-pin 2) The 8 -pin	put (start, reset, stop, and lock) is applied by shorting their e, and ter-6 minal 6 for the screw terminal type). does not have a stop input or lock input.	input terminal to the common terminal (terminal (1) for the 8-pin type, terminal (3) for

[^0]: * Be aware that the contents of EEPROM for all modes will be overwritten when power is turned OFF during input to external lock terminals (4) to (3) and 7 to 6 . Such an action does not exist by doing lock operation from the front.

