ghipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution
of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business
relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components
to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business
mainly focus on the distribution of electronic components. Line cards we deal with include
Microchip,ALPS,ROHM, Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise
IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,
and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service
and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email & Skype: info@chipsmall.com Web: www.chipsmall.com
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

iy [0



ANALOG
DEVICES

DC to 50 MHz, Dual I/Q Demodulator and

Phase Shifter

AD8333

FEATURES

Dual integrated 1/Q demodulator
16 phase select options on each output (22.5° per step)
Quadrature demodulation accuracy

Phase accuracy: +0.1°

Amplitude balance: £0.05 dB
Bandwidth

4 x LO: 10 kHz to 200 MHz

RF:dcto 50 MHz

Baseband: determined by external filtering
Output dynamic range: 159 dB/Hz
LO drive > 0dBm (50 Q); 4 x LO > 1 MHz
Supply: 5V
Power consumption: 190 mW/channel (380 mW total)
Power-down

APPLICATIONS

Medical imaging (CW ultrasound beamforming)
Phased array systems (radar and adaptive antennas)
Communication receivers

GENERAL DESCRIPTION

The AD8333" is a dual phase-shifter and I/Q demodulator that
enables coherent summing and phase alignment of multiple
analog data channels. It is the first solid-state device suitable for
beamformer circuits, such as those used in high performance
medical ultrasound equipment featuring CW Doppler. The RF
inputs interface directly with the outputs of the dual-channel,
low noise preamplifiers included in the AD8332.

A divide-by-4 circuit generates the internal 0° and 90° phases
of the local oscillator (LO) that drive the mixers of a pair of
matched I/Q demodulators.

The AD8333 can be applied as a major element in analog
beamformer circuits in medical ultrasound equipment.

The AD8333 features an asynchronous reset pin. When used

in arrays, the reset pin sets all the LO dividers in the same state.
Sixteen discrete phase rotations in 22.5° increments can be selected
independently for each channel. For example, if Channel 1 is used
as a reference and the RF signal applied to Channel 2 has an I/Q
phase lead of 45°, Channel 2 can be phase aligned with Channel 1
by choosing the correct code.

' Protected by US Patent 7,760,833.
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Phase shift is defined by the output of one channel relative to
another. For example, if the code of Channel 1 is adjusted to
0000 and that of Channel 2 is adjusted to 0001 and the same
signal is applied to both RF inputs, the output of Channel 2
leads that of Channel 1 by 22.5°.

The I and Q outputs are provided as currents to facilitate sum-
mation. The summed current outputs are converted to voltages
by a high dynamic range, current-to-voltage (I-V) converter, such
as the AD8021, configured as a transimpedance amplifier. The
resultant signal is then applied to a high resolution ADC, such as
the AD7665 (16 bit/570 kSPS).

The two I/Q demodulators can be used independently in other
nonbeamforming applications. In that case, a transimpedance
amplifier is needed for each of the I and Q outputs, four in total
for the dual I/Q demodulator.

The dynamic range is 159 dB/Hz at the I and Q outputs, but the
following transimpedance amplifier is an important element in
maintaining the overall dynamic range, and attention needs to
be paid to optimal component selection and design.

The AD8333 is available in a 32-lead LFCSP (5 mm x 5 mm)
package for the industrial temperature range of —40°C to +85°C.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2005-2016 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
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AD8333

SPECIFICATIONS

Vs =15V, Ta = 25°C, firo = 20 MHz, fre = 5.01 MHz, fzs = 10 kHz, Pro > 0 dBm, single-ended, sine wave; per channel performance, dBm
(50 Q0), unless otherwise noted (see Figure 41).

Table 1.
Parameter Test Conditions/Comments Min  Typ Max | Unit
OPERATING CONDITIONS
LO Frequency Range 4x internal LO at Pin 4LOP and Pin 4LON
Square wave 0.01 200 MHz
Sine wave, see Figure 22 2 200 MHz
RF Frequency Range Mixing DC 50 MHz
Baseband Bandwidth Limited by external filtering DC 50 MHz
LO Input Level See Figure 22 0 13 dBm
Vsupruy (Vs) +45 45 +6 Vv
Temperature Range —40 +85 °C
DEMODULATOR PERFORMANCE
RF Differential Input Impedance 6.7||6.5 kQ||pF
LO Differential Input Capacitance 0.6 pF
Transconductance Demodulated lour/Vin, €ach | or Q output after low-pass 217 mS
filtering measured from RF inputs, all phases
Dynamic Range IP1dB, input-referred noise (dBm) 159 dB/Hz
Maximum RF Input Swing Differential; inputs biased at 2.5 V; Pin RFxP and Pin RFxN 2.8 Vp-p
Peak Output Current (No Filtering) 0° phase shift +4.7 mA
45° phase shift +6.6 mA
Input P1dB Reference =50 Q 14.5 dBm
Reference =1V rms 1.5 dBV
Third-Order Intermodulation (IM3) frer = 5.010 MHz, fre2 = 5.015 MHz, fio = 5.023 MHz
Equal Input Levels Baseband tones: —7 dBm at 8 kHz and 13 kHz -75 dBc
Unequal Input Levels Baseband tones: —1 dBm at 8 kHz and —31 dBm at 13 kHz -77 dBc
Third-Order Input Intercept (IP3) frer = 5.010 MHz, fre2 = 5.015 MHz, fio = 5.023 MHz 30 dBm
LO Leakage Measured at RF inputs, worst phase, measured into 50 Q <-97 dBm
(limited by measurement)
Measured at baseband outputs, worst phase, AD8021 disabled, —60 dBm
measured into 50 Q
Conversion Gain All codes 4.7 dB
Input-Referred Noise Output noise/conversion gain 10 nV/\Hz
Output Current Noise Output noise + 787 Q 22 pA/Hz
Noise Figure With AD8332 LNA
Rs=50Q), Reg = o0 7.8 dB
Rs=50Q, Res = 1.1 kQ 9.0 dB
Rs=50Q), Rrs=2740Q) 11.0 dB
Bias Current Pin 4LOP and Pin 4LON -3 UA
Pin RFxP and Pin RFxN -70 UA
LO Common-Mode Voltage Range Pin 4LOP and Pin 4LON (each pin) 0.2 3.8 \
RF Common-Mode Voltage For maximum differential swing; Pin RFxP and Pin RFxN 25 \
(dc-coupled to AD8332 LNA output)
Output Compliance Range Pin IxPO and Pin QxPO -1.5 +0.7 |V
PHASE ROTATION PERFORMANCE One channel is reference; the other channel is stepped
Phase Increment 16 phase steps per channel 225 Degrees
Quadrature Phase Error 11x0 to Q1x0 and 12x0 to Q2x0, 10 -2 +0.1 +2 Degrees
I/Q Amplitude Imbalance 11x0 to Q1x0 and 12x0 to Q2x0, 1o +0.05 dB
Channel-to-Channel Matching Phase match [1x0/12x0 and Q1x0/Q2x0; —40°C < Ta < 85°C +1 Degrees
Amplitude match 11x0/12x0 and Q1x0/Q2x0; —40°C < Ta < 85°C +0.25 dB
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AD8333

Parameter Test Conditions/Comments Min  Typ Max | Unit
LOGIC INTERFACES
Logic Level High Pin PHxx, Pin RSET, and Pin ENBL 1.7 5 \Y
Logic Level Low Pin PHxx, Pin RSET, and Pin ENBL 0 1.3 \Y
Bias Current
Pin PHxx and Pin ENBL Logic high 10 40 920 pA
Logic low -30 -7 +10 | pA
Pin RSET Logic high 50 120 180 UA
Logic low -70 -20 0 uA
Input Resistance Pin PHxx and Pin ENBL 60 kQ
Pin RSET 20 kQ
Reset Hold Time Reset is asynchronous; clock disabled when RSET goes high | 300 ns
until 300 ns after RSET goes low; see Figure 58
Minimum Reset Pulse Width 300 ns
Reset Response Time See Figure 35 300 ns
Phase Shifting Response Time See Figure 38 5 us
Enable Response Time See Figure 34 300 ns
POWER SUPPLY Pin VPOS and Pin VNEG
Supply Voltage +45 5 +6 \Y
Quiescent Current, All Phase Bits=0 | At 25°C
Pin VPOS 38 44 51 mA
Pin VNEG —24 -20 -16 mA
Over Temperature —40°C < Ta< 85°C
Pin VPOS, all phase bits =0 40 54 mA
Pin VNEG -24 -19 | mA
Quiescent Power Per channel, all phase bits =0 160 mwW
Per channel, any 0 or 1T combination of phase bits 190 mwW
Disable Current All channels disabled
Pin VPOS 1.0 1.25 1.5 mA
Pin VNEG —-300 -200 —-100 | pA
PSRR
Pin VPOS to I/Q outputs (measured at AD8021 output) -81 dB
Pin VNEG to 1/Q outputs (measured at AD8021 output) -75 dB
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AD8333

ABSOLUTE MAXIMUM RATINGS

Stresses at or above those listed under Absolute Maximum

Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these

or any other conditions above those indicated in the operational

section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may

affect product reliability.

ESD (electrostatic discharge) sensitive device.
Charged devices and circuit boards can discharge
without detection. Although this product features
patented or proprietary protection circuitry, damage
may occur on devices subjected to high energy ESD.
Therefore, proper ESD precautions should be taken to
avoid performance degradation or loss of functionality.

Table 2.
Parameter Rating
Voltages
Supply Voltage, Vs 6V
RF Pins Input Vs, GND
LO Inputs Vs, GND
Code Select Inputs Voltage Vs, GND
Thermal Data' ESD CAUTION
Oia 41.0°C/W
O 23.6°C/W A
Oic 4.4°C/W
Wi 0.4°C/W ‘ % a\
Wi 22.4°C/W
Maximum Junction Temperature 150°C
Maximum Power Dissipation 1.5W
(Exposed Pad Soldered to PC Board)
Operating Temperature Range —40°C to +85°C
Storage Temperature Range —65°C to +150°C
Lead Temperature (Soldering, 60 sec) 300°C

" 4-layer JEDEC board no airflow (exposed pad soldered to PCB).
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PIN CONFIGURATION AND FUNCTION DES
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Figure 2. 32-Lead LFCSP Pin Configuration
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Table 3. Pin Function Descriptions

Pin No. | Mnemonic | Description

1,2, PH12,PH13, | Quadrant Select LSB, MSB. Binary code. These logic inputs select the quadrant: 0° to 90°, 90° to 180°, 180° to 270°,

7,8 PH23, PH22 | 270°to 360° (see Table 4). Logic threshold is at about 1.5V and therefore can be driven by 3V CMOS logic (see Figure 3).

3,20 COMM Ground. These two pins are internally tied together.

4,5 4LOP, 4LON LO Inputs. No internal bias; therefore, these pins need to be biased by external circuitry. For optimum performance,
these inputs must be driven differentially with a signal level that is not less than what is shown in Figure 22. Bias
current is only —3 pA. Single-ended drive is also possible if the inputs are biased correctly (see Figure 4).

6 LODC Decoupling Pin for LO. A 0.1 uF capacitor must be connected between this pin and ground (see Figure 5).

9,10, PH21, PH20, | Phase Select LSB, MSB. Binary code. These logic inputs select the phase for a given quadrant: 0°, 22.5°, 45°, 67.5°

31,32 PH10,PH11 | (see Table 4). Logic threshold is at about 1.5V and therefore can be driven by 3V CMOS logic (see Figure 3).

11,14, | VPOS Positive Supply. These pins must be decoupled with a ferrite bead in series with the supply, plus a 0.1 puF and

27,30 100 pF capacitor between the VPOS pins and ground. Because the VPOS pins are internally connected, one set
of supply decoupling components for all four pins must be sufficient.

12,13, RF2P, RF2N, RF Inputs. These pins are biased internally; however, it is recommended that they be biased by dc coupling to

28,29 RF1IN,RF1P | the output pins of the AD8332 LNA. The optimum common-mode voltage for maximum symmetrical input
differential swing is 2.5V if +5 V supplies are used (see Figure 6 and Figure 60).

15 RSET Reset for Divide-by-4 in LO Interface. Logic threshold is at about 1.5V and therefore can be driven by
3V CMOS logic (see Figure 3). Reset when high, enable when low.

16, 19, I2NO, Q2NO, | Negative I/Q Outputs. Not connected for typical applications.

22,25 QTNO, ITNO

17,18, I12PO, Q2PO, | Positive I/Q Outputs. These outputs provide a bidirectional current that can be converted back to a voltage via

23,24 Q1PO, I11PO | atransimpedance amplifier. Multiple outputs can be summed together by connecting them together. The bias
voltage must be set to 0V or less by the transimpedance amplifier (see Figure 7).

21 VNEG Negative Supply. This pin must be decoupled with a ferrite bead in series with the supply, plus a 0.1 pF and
100 pF capacitor between the pin and ground.

26 ENBL Chip Enable. Logic threshold is at about 1.5V and therefore can be driven by 3V CMOS logic (see Figure 3).

EPAD Exposed Pad. The exposed pad is not connected internally. For increased reliability of the solder joints and

maximum thermal capability, it is recommended that the paddle be soldered to the ground plane.
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EQUIVALENT INPUT CIRCUITS
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TYPICAL PERFORMANCE CHARACTERISTICS

Vs =5V, Ta = 25°C, fuo = 20 MHz, fio = 5 MHz, frr = 5.01 MHz, fzs = 10 kHz, P1o 2 0 dBm (50 Q); single-ended sine wave;
per channel performance, differential voltages, dBm (50 Q), phase select code = 0000, unless otherwise noted (see Figure 41).
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Figure 34. Enable Response—Top: Enable Signal, Figure 37. Phase Shifting Response—Channel 2 Leads Channel 1 by 90°,
Bottom: Output Signal (see Figure 44) Top: Input to PH21, Select Code = 0100;
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Shifted 90°, Channel 1 Reference Phase Code = 0000
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TEST CIRCUITS
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Figure 41. Default Test Circuit
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Figure 42. P1dB Test Circuit
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Figure 43. Phase and Amplitude vs. Baseband Frequency
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Figure 45. Reset Response
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THEORY OF OPERATION

The AD8333 is a dual I/Q demodulator with a programmable
phase shifter for each channel. The primary applications are
phased array beamforming in medical ultrasound, phased array
radar, and smart antennae for mobile communications. The
ADB8333 can also be used in applications that require two well-
matched I/Q demodulators.

Figure 52 shows the block diagram and pinout of the AD8333.
Three analog and nine quasilogic level inputs are required. Two
RF inputs accept signals from the RF sources and a local oscillator
(applied to the differential input pins marked 4LOx) common
to both channels constitute the analog inputs. Four logic inputs
per channel define one of 16 delay states/360° (or 22.5°/step),
selectable with PHx0 to PHx3. The reset input is used to
synchronize AD8333 devices used in arrays.
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Figure 52. Block Diagram and Pinout

Each of the current formatted I and Q outputs sum together for
beamforming applications. Multiple channels are summed and
converted to a voltage using a transimpedance amplifier. If desired,
channels can also be used individually.

QUADRATURE GENERATION

The internal 0° and 90° LO phases are digitally generated by a
divide-by-4 logic circuit. The divider is dc-coupled and inherently
broadband; the maximum LO frequency is limited only by its
switching speed. The duty cycle of the quadrature LO signals
is intrinsically 50% and is unaffected by the asymmetry of the
externally connected 4LOx inputs. Furthermore, the divider is
implemented such that the 4LOx signals reclock the final flip-
flops that generate the internal LO signals and thereby minimizes
noise introduced by the divide circuitry.

For optimum performance, the 4LOx inputs are driven differ-
entially but can also be driven in a single-ended fashion. A good
choice for a drive is an LVDS device. The common-mode range
on each pin is approximately 0.2 V to 3.8 V with nominal +5 V
supplies.

The minimum LO level is frequency dependent (see Figure 22).
For optimum noise performance, it is important to ensure that
the LO source has very low phase noise (jitter) and adequate input
level to ensure stable mixer-core switching. The gain through the
divider determines the LO signal level vs. RF frequency. The
AD8333 can be operated to very low frequencies at the LO inputs
if a square wave is used to drive the LO.

Beamforming applications require a precise channel-to-channel
phase relationship for coherence among multiple channels. A
reset pin (RSET) is provided to synchronize the 4LOx divider
circuits when AD8333 devices are used in arrays. The RSET pin
resets the counters to a known state after power is applied to
multiple AD8333 devices. A logic input must be provided to the
RSET pin when using more than one AD8333. See the Reset
Input section for more details.

1/Q DEMODULATOR AND PHASE SHIFTER

The I/Q demodulators consist of double-balanced Gilbert cell
mixers. The RF input signals are converted into currents by
transconductance stages that have a maximum differential input
signal capability of 2.8 V p-p. These currents are then presented
to the mixers, which convert them to baseband: RF — LO and
RF + LO. The signals are phase shifted according to the code
applied to Pin PHxO0 to Pin PHx3 (see Table 4). The phase shift
function is an integral part of the overall circuit (patent pending).
The phase shift listed in Column 1 of Table 4 is defined as being
between the baseband I or Q channel outputs. As an example, for a
common signal applied to the RF inputs of an AD8333, the
baseband outputs are in phase for matching phase codes. However,
if the phase code for Channel 1 is 0000 and that of Channel 2 is
0001, Channel 2 leads Channel 1 by 22.5°.

Following the phase shift circuitry, the differential current signal is
converted from differential to single ended via a current mirror.
An external transimpedance amplifier is needed to convert the I
and Q outputs to voltages.
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Table 4. Phase Nibble Select Codes

¢ Shift PHx3 PHx2 PHx1 PHx0
0° 0 0 0 0
22.5° 0 0 0 1
45° 0 0 1 0
67.5° 0 0 1 1
90° 0 1 0 0
112.5° 0 1 0 1
135° 0 1 1 0
157.5° 0 1 1 1
180° 1 0 0 0
202.5° 1 0 0 1
225° 1 0 1 0
247.5° 1 0 1 1
270° 1 1 0 0
292.5° 1 1 0 1
315° 1 1 1 0
337.5° 1 1 1 1
DYNAMIC RANGE AND NOISE

Figure 53 is an interconnection block diagram of the AD8333. For
optimum system noise performance, the RF input signal is pro-
vided by a very low noise amplifier, such as the LNA of an AD8332
or the preamplifier of an AD8335. In beamformer applications,
the I and Q outputs of a number of receiver channels are summed
(for example, the two channels illustrated in Figure 53). The
dynamic range of the system increases by the factor 10 logio(N),
where N is the number of channels (assuming random
uncorrelated noise). The noise in the two-channel example of
Figure 53 is increased by 3 dB while the signal doubles (6 dB),
yielding an aggregate SNR improvement of (6 dB — 3 dB) = 3 dB.

Rra

TRANSMITTER

AD8332 LNA OR
AD8335 PREAMP

TRANSDUCER

CHANNEL 1
PHASE
SELECT

Judicious selection of the RF amplifier ensures the least
degradation in dynamic range. The input-referred spectral voltage
noise density (ea) of the AD8333 is nominally 9 nV/VHz to

10 nV/\Hz. For the noise of the AD8333 to degrade the system
noise figure (NF) by 1 dB, the combined noise of the source and
the LNA must be about twice that of the AD8333, or 18 nV/NHz. If
the noise of the circuitry before the AD8333 is <18 nV/\Hz, the
system NF degrades more than 1 dB. For example, if the noise
contribution of the LNA and source is equal to the AD8333, or
9 nV/Hz, the degradation is 3 dB. If the circuit noise preceding
the AD8333 is 1.3x as large as that of the AD8333 (or about
11.7 nV/VHz), the degradation is 2 dB. For a circuit noise of 1.45x
that of the AD8333 (13.1 nV/VHz), the degradation is 1.5 dB.

To determine the input-referred noise, it is important to know
the active low-pass filter (LPF) values Renr and Cricr, shown in
Figure 53. Typical filter values (for example, those used on the
evaluation board) are 787 Q) and 2.2 nF and implement a 90 kHz
single-pole LPE If the RF and LO are offset by 10 kHz, the demod-
ulated signal is 10 kHz and is passed by the LPE. The single-channel
mixing gain from the RF input to the AD8021 output (for example,
21, 2Q) is approximately 1.7 x 4.7 dB. This together with the

9 nV/VHz AD8333 noise results in about 15.3 nV/VHz at the
ADB8021 output. Because the AD8021, including the 787 Q
feedback resistor, contributes another 4.4 nV/VHz, the total
output-referred noise is about 16 nV/\Hz. This value can be
adjusted by increasing the filter resistor while maintaining the
corner frequency, thereby increasing the gain. The factor limiting
the magnitude of the gain is the output swing and drive capability
of the operational amplifier selected for the I-to-V converter, in
this instance the AD8021.

CriLt
~~~~~~~ ReLr 5l
,,,,,,, * A ADC 16-BIT
ohapaT |1 DATA
AD8021
CLOCK . AD7665 OR
GENERATOR L | o+ AD7686
< CriLr
_|R —
FILT £Q_/ADC 16-BIT
S70kSpS | @ DATA
l: AD8021
O =
CHANNEL 2
PHASE *UP TO EIGHT CHANNELS
TRANSMITTER AD8332 LNA OR SELECT PER AD8021

AD8335 PREAMP

05543-038

Figure 53. Interconnection Block Diagram
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SUMMATION OF MULTIPLE CHANNELS
(ANALOG BEAMFORMING)

Beamforming, as applied to medical ultrasound, is defined as
the phase alignment and summation of signals generated from a
common source but received at different times by a multielement
ultrasound transducer. Beamforming has two functions: it imparts
directivity to the transducer, enhancing its gain, and it defines

a focal point within the body from which the location of the
returning echo is derived. The primary application for the
AD8333 is in analog beamforming circuits for ultrasound.

PHASE COMPENSATION AND ANALOG
BEAMFORMING

Modern ultrasound machines used for medical applications
employ a 2" binary array of receivers for beamforming, with
typical array sizes of 16 or 32 receiver channels phase-shifted
and summed together to extract coherent information. When
used in multiples, the desired signals from each of the channels
can be summed to yield a larger signal (increased by a factor N,
where N is the number of channels), while the noise is increased
by the square root of the number of channels. This technique
enhances the signal-to-noise performance of the machine. The
critical elements in a beamformer design are the means to align
the incoming signals in the time domain and the means to sum
the individual signals into a composite whole.

In traditional analog beamformers incorporating Doppler, a
V-to-I converter per channel and a crosspoint switch precede
passive delay lines used as a combined phase shifter and summing
circuit. The system operates at the receive frequency (RF) through
the delay line, and then the signal is down-converted by a very
large dynamic range I/Q demodulator.

The resultant I and Q signals are filtered and sampled by two
high resolution ADCs. The sampled signals are processed to
extract the relevant Doppler information.

Alternatively, the RF signal can be processed by downconversion
on each channel individually, phase shifting the downconverted
signal and then combining all channels. The AD8333 provides
the means to implement this architecture. The downconversion
is done by an I/Q demodulator on each channel, and the summed
current output is the same as in the delay line approach. The
subsequent filters after the I-to-V conversion and the ADCs

are similar.

The AD8333 integrates the phase shifter, frequency conversion,
and I/Q demodulation into a single package and directly yields
the baseband signal. To illustrate this, Figure 54 is a simplified
diagram showing two channels. The ultrasound wave (USW)

is received by two transducer elements, TE1 and TE2, in an
ultrasound probe and generates the E1 and E2 signals. In this
example, the phase at TE1 leads the phase at TE2 by 45°.

TRANSDUCER
NI O S
USWATTE1 =g gy i AD8332  SETTINGS g1 aND S2

LEADS USW
ES1LEADS ARENOWIN  symmeD
AT TE°2 BY ES2 BY 45° CH 1 REF PHASE OUTPUT
45 o 19dB (NO PHASE
| |45 S1+82
V=Y
E1 S1

Ay AV,
19dB PHASE
LNA
LEAD 45°

Figure 54. Simplified Example of the AD8333 Phase Shifter

05543-063

In a real application, the phase difference depends on the element
spacing, A (wavelength), speed of sound, angle of incidence, and
other factors. The ES1 and ES2 signals are amplified 19 dB by
the low noise amplifiers in the AD8332. For optimum signal-to-
noise performance, the output of the LNA is applied directly to
the input of the AD8333. To sum the ES1 and ES2 signals, ES2
is shifted 45° relative to ES1 by setting the phase code in Channel 2
to 0010. The phase-aligned current signals at the output of the
AD8333 are summed in an I-to-V converter to provide the
combined output signal with a theoretical improvement in
dynamic range of 3 dB for the sum of two channels.
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CHANNEL SUMMING

In a beamformer using the AD8333, the bipolar currents at

the I'and Q outputs are summed directly. Figure 55 illustrates
16 summed channels (for clarity, these channels are shown as
current sources) as an example of an active current summing
circuit using the AD8333. This figure also illustrates the AD8021
as first-order current summing circuits and AD797 devices as
low noise second-order summing circuits. Beginning with the
operational amplifiers, there are a few important considerations
in the circuit shown in Figure 55.

The operational amplifiers selected for the first-order summing
amplifiers must have good frequency response over the full
operating frequency range of the AD8333 devices and be able to
source the current required at the AD8333 I and Q outputs.

The total current of each AD8333 is 6.6 mA for the multiples of
the 45° phase settings (Code 0010, Code 0110, Code 1010, and
Code 1110) and is divided nearly equally between the baseband
frequencies (including a dc component) and the second harmonic
of the local oscillator frequency. The desired CW signal tends to be
much less (<40 dB) than the unwanted interfering signals.

EIGHT AD8333 | OR Q OUTPUTS,

6.6mA PEAK EACH
(IF THE PHASE SETTING IS 45°)
3.3mAAT DC +3.3mAAT 2x LO

(SAME AS ABOVE)

+5V
Lo

When determining the large signal requirements of the first-
order summing amplifiers and low-pass filters, the very small CW
signal can be ignored. The number of channels that can be
summed is limited by the output drive current capacity of the
operational amplifier selected: 60 mA to 70 mA for a linear
output current for 5 V and £12 'V, respectively, for the AD8021.
Because the AD8021 implements an active LPF together with
R1x and Clx, it must absorb the worst-case current provided by
the AD8333, for example, 6.6 mA. Therefore, the maximum
number of channels that the AD8021 can sum is 10 for £12 V or
eight for +5 V supplies. In practical applications, CW channels
are used in powers of two, thus the maximum number per
ADB8021 is eight.

Another consideration for the operational amplifier selected as
an I-to-V converter is the compliance voltage of the AD8333 1
and Q outputs. The maximum compliance voltage is 0.5 V, and
a dc bias must be provided at these pins. The AD8021 active
LPF satisfies these requirements; it keeps the outputs at 0 V via
the virtual ground at the operational amplifier inverting input
while providing any needed dc bias current.

FIRST-ORDER
SUMMING AMPLIFIERS

LPF1A
88kHz

+2.8V BASEBAND
SIGNAL

HPF1A LPF2A

[ &% fo0Hz  81KkHz

C2 Roa  R3A
M 6980  698Q

C3A SECOND-ORDER
5.6nF
iy l SUMMING AMPLIFIER
R4
+10V
o

c2B
R2B  R3B
1WF 6980 6980
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Figure 55. A 16-Channel Beamformer
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As previously noted, a typical CW signal has a large dc and
very low frequency component compared with its desired low
CW Doppler baseband frequency, and another unwanted
component at the 2 x LO. The dc component flows through the
gain resistors R1x, and the 2 x LO flows through the capacitors
C1x. The smaller desired CW Doppler baseband signal is in the
frequency range of 1 kHz to 50 kHz.

Because the output current of the AD8333 contains the baseband

frequency, a dc component, and the 2 x LO frequency voltages,
the desired small amplitude baseband signal must be extracted
after a series of filters. These are shown in Figure 55 as LPFnA,
HPFnA, and gain stages.

Before establishing the value of Cieri, the resistor Rier is selected
based on the peak operating current and the linear range of the
operational amplifier. Because the peak current for each AD8333 is
6.6 mA and there are eight channels to be summed, the total peak
current required is 52.8 mA. Approximately half of this current is
dc, and the other half is at a frequency of 2 x LO. Therefore, about
26.4 mA flows through the resistor, and the remaining 26.4 mA
flows through the capacitor. R1 was selected as 100 Q) and, after
filtering, generates a peak dc and very low frequency voltage of
2.64 V at the AD8021 output. For power supplies of +5 V, 100
is a good choice for R1.

However, because the CW signal needs to be amplified as much
as possible and the noise degradation of the signal path minimized,
the value of R1 must be as large as possible. A larger supply helps in
this regard, and the only factor limiting the largest supply
voltage is the required power.

For a £10 V supply on the AD8021, R1 can be increased to

301 Q to realize the same headroom as with a +5 V supply. If a
higher value of R1 is used, C1 must be adjusted accordingly (in
this example, 1/3 the value of the original value) to maintain the
desired LPF roll-off. The principal advantage of a higher supply
is greater dynamic range, and the trade-oft is power consumption.
The user must weigh the trade-offs associated with the supply
voltage, R1, C1, and the following circuitry. A suggested design
sequence is as follows:

Select a low noise, high speed operational amplifier. The
spectral density noise (e,) must be <2 nV/VHz, and the 3 dB
bandwidth must be >3x the expected maximum 2 x LO
frequency.

Divide the maximum linear output current by 6.6 mA to
determine the maximum number of AD8333 channels that can
be summed.

Select the largest value of R1 that permits the output voltage
swing within the power supply rails.

Calculate the value of C1 to implement the LPF corner that
allows the CW Doppler signal to pass with maximum
attenuation of the 2 x LO signal.

The filter LPF1A establishes the upper frequency limit of the
baseband frequency and is selected well below the 2 x LO
frequency, typically 100 kHz or less (for example, 88 kHz in
Figure 55).

A useful equation for calculating C1 is

1

I=——— (1)
2T':Iz]fLPFI

As previously mentioned, the AD8333 output current contains a
dc current component. This dc component is converted to a
large dc voltage by the AD8021 LPE. Capacitor C2 filters this dc
component and, with R2 + R3, establishes a high-pass filter with
a low frequency cutoff of about 100 Hz. Capacitor C3 is much
smaller than C2 and, consequently, can be neglected. C2 can be
calculated by

1

Q2=————— (2
21t(R2+ R3) f oo

To achieve maximum attenuation of the 2 x LO frequency, a
second low-pass filter, LPF2, is established using the parallel
combination of R2 and R3, and C3. Its —3 dB frequency is

1

Firea = 2n(R2 || R3)C3 )

In the example shown in Figure 55, fipr = 81 kHz.

Finally, the feedback resistor of the AD797 must be calculated.
This is a function of the input current (number of channels)
and the supply voltage.

The second-order summing amplifier requires a very low noise
operational amplifier, such as the AD797, with 0.9 nV/\Hz,
because the amplifier gain is determined by Feedback Resistor
R4 divided by the parallel combination of the LPF2A resistors
seen looking back toward the AD8021 devices. Referring to
Figure 55, the AD797 in-band (100 Hz to 88 kHz) gain is
expressed as

R4
[(R2A + R3A) || (R2B+ R2B)]

(4)

The AD797 noise gain can increase to unacceptable levels because
the denominator of the gain equation is the parallel resistance of
all the R2 + R3 resistors in the AD8021 outputs. For example, for a
64-channel beamformer, the resistance seen looking back toward
the AD8021 devices is about 1.4 kQ2/8 = 175 Q. For this reason,
the value of (R2x + R3x) must be as large as possible to minimize
the noise gain of the AD797. (Note that this is the case for the
ADB8021 stages because they look back into the high impedance
current sources of the AD8333 devices.)

Due to these considerations, it is advantageous to increase the
gain of the AD8021 devices as much as possible because the value
of (R2x + R3x) can be increased proportionally. Resistors (R2x +
R3x) convert the CW voltages to currents that are summed at
the inverting inputs of the AD797 operational amplifier, and
then amplified and converted to voltages by R4.
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The value of R4 needs to be chosen iteratively as follows:

1. Determine the number of AD8021 first-order summing
amplifiers. In Figure 55, there are two; for a 32-channel
beamformer, there must be four, and for a 64-channel
beamformer, there must be eight.

2. Determine the output noise from the AD8021 devices. A
first-order calculation can be based on a value of AD8333
output current noise of about 20 pA/NHz. For the values in
Figure 55, this results in about 6 nV/YHz for eight channels
after the AD8021 devices. Adding the noise of the AD8021
and the 100 ) feedback resistor results in about 6.5 nV/VHz
total noise after the AD8021 LPF in the CW Doppler band.

3. Determine the noise of the circuitry after the AD797 and
determine the desired signal level.

4. Determine the voltage and current noise of the second-
order summing amplifiers.

5. Choose a value for (R2x + R3x) and for R4. Determine the
resulting output noise after the AD797 for one channel, and
then multiply this value by the square root of the number
of summed AD8021 devices. Next, check AD797 output
noise (both current and voltage noise). Ideally, the sum of
the noise of the resistors and the AD797 must be less than a
factor of 3 than the noise due to the AD8021 outputs.

6.  Check the following stages output noise against the calculated
noise from the combiner circuit and AD8333 devices. Ideally,
the noise from the following stage must be less than 1/3 of
the calculated noise.

7. If the combined noise is too large, experiment with
increasing/decreasing values for (R2x + R3x) and R4.

To simplify, the user can also simulate or build a combiner circuit
for optimum performance. It must be noted that the ~20 pA/VHz

output from the AD8333 is for the AD8333 with shorted RF inputs.

In an actual system, the current noise output from the AD8333
is most likely dominated by the noise from the AD8332 LNA and
the noise from the source and other circuitry before the LNA.
This helps ease the design of the combiner. The preceding
procedures for determining the optimum values for the combiner
are based on the noise floor of the AD8333 only.

As an example, for a 32-channel beamformer using four low-
pass filters, as shown in Figure 55, (R2x + R3x) = 1.4 kQ and
R4 = 6.19 kQ. The theoretical noise increase of VN is degraded
by only about 1 dB.

DYNAMIC RANGE INFLATION

Although all 64 channels can theoretically be summed together
at a single amplifier, it is important to realize that the dynamic
range of the summed output increases by 10 logi(N) if all channels
have uncorrelated noise, where N is the number of channels to
be summed.

The summed signal level increases by a factor of N, whereas the
noise increases only as VN. In the case of 64 channels, this is an
increase in dynamic range of 18 dB. Note that the AD8333 dynamic
range is already about 160 dB/Hz; the summed dynamic range
is 178 dB/Hz (equivalent to about 29.5 bits/Hz). In a 50 kHz
noise bandwidth, this is 131 dB (21.7 bits).

DISABLING THE CURRENT MIRROR AND
DECREASING NOISE

The noise contribution of the AD8333 can potentially be reduced
if the current mirrors that convert the internal differential signals to
single-ended signals are bypassed (see Figure 56). Current mirrors
interface to the AD8021 I-V converters shown in Figure 53, and
output capacitors across the positive and negative outputs provide
low-pass filtering. The AD8021 devices force the AD8333 output
voltage to 0 V and then process the bipolar output current;
however, the internal current mirrors introduce a significant
amount of noise. This noise can be reduced if the mirrors are
disabled and the outputs are externally biased.

The mirrors are disabled by connecting VNEG to ground and
providing external bias networks, as shown in Figure 56. The
larger the drop across the resistors, the less noise they contribute to
the output; however, the voltage on the I and Q output nodes
cannot exceed 0.5 V. Voltages exceeding approximately 0.7 V
turn on the PNP devices and forward bias the ESD protection
diodes. Inductors provide an alternative to resistors, enabling
reduced static power by eliminating the power dissipation in the
bias resistors.
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Figure 56. Bypassing the Internal Current Mirrors

With inductors, the main limitation might be low frequency
operation, as is the case in CW Doppler in ultrasound where
the frequency range of interest goes from a few hundred hertz
to about 30 kHz. In addition, it is still important to provide
enough gain through the I-to-V circuitry to ensure that the bias
resistor and I-to-V converter noise do not contribute significantly
to the noise from the AD8333 outputs. Another approach is to
provide a single external current mirror that combines all
channels; it is also possible to implement a high-pass filter with
this circuit to help with offset and low frequency reduction.
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The main disadvantage of the external bias approach is that two
I-V amplifiers are needed because of the differential output (see
Figure 56). For beamforming applications, the outputs are still
summed, but there is twice the number of lines. Only two bias
resistors are needed for all outputs that are connected together.
The resistors are scaled by dividing the value of a single output
bias resistor through N, the number of channels connected in
parallel. The bias current depends on the phase selected: for
phase 0°, it is about 2.5 mA per side, whereas in the case of 45°,
it is about 3.5 mA per side. The bias resistors must be chosen
based on the larger bias current value of 3.5 mA and the chosen
VNEG. VNEG must be at least -5 V and can be larger for
additional noise reduction.

Excessive noise or distortion at high signal levels degrades the
dynamic range of the signal. Transmitter leakage and echoes
from slow moving tissue generate the largest signal amplitudes
in ultrasound CW Doppler mode and are largest near dc and at
low frequencies. A high-pass filter introduced immediately
following the AD8333 reduces the dynamic range. This is
shown by the two coupling capacitors after the external bias
resistors in Figure 56. Users have to determine what is acceptable
for a particular application. Care must be taken in designing the
external circuitry to avoid introducing noise via the external
bias and low frequency reduction circuitry.
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