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FEATURES 

Matched pair of differential, digitally controlled VGAs 

Gain range: 4.5 dB to 20.25 dB  

0.25 dB gain step size 

Operating frequency 

DC to 150 MHz (2 V p-p) 

3 dB bandwidth: 600 MHz  

Noise figure (NF) 

11.4 dB at 10 MHz at maximum gain 

18 dB at 10 MHz at minimum gain 

OIP3: 45 dBm at 10 MHz  

HD2/HD3 

Better than −90 dBc for 2 V p-p output at 10 MHz at  

maximum gain 

Differential input and output 

Adjustable output common-mode 

Optional dc output offset correction 

Serial/parallel mode gain control 

Power-down feature 

Single 5 V supply operation 

 

APPLICATIONS 

Baseband I/Q receivers 

Diversity receivers 

Wideband ADC drivers 

 

FUNCTIONAL BLOCK DIAGRAM 
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Figure 1.  

 

GENERAL DESCRIPTION 

The AD8366 is a matched pair of fully differential, low noise and 
low distortion, digitally programmable variable gain amplifiers 
(VGAs). The gain of each amplifier can be programmed separately 
or simultaneously over a range of 4.5 dB to 20.25 dB in steps of 
0.25 dB. The amplifier offers flat frequency performance from dc 
to 70 MHz, independent of gain code. 

The AD8366 offers excellent spurious-free dynamic range, suitable 
for driving high resolution analog-to-digital converters (ADCs). 
The NF at maximum gain is 11.4 dB at 10 MHz and increases 
~2 dB for every 4 dB decrease in gain. Over the entire gain range, 
the HD3/HD2 are better than −90 dBc for 2 V p-p at the output at 
10 MHz into 200 Ω. The two-tone intermodulation distortion of 
−90 dBc into 200 Ω translates to an OIP3 of 45 dBm (38 dBVrms). 
The differential input impedance of 200 Ω provides a well-defined 
termination. The differential output has a low impedance of ~25 Ω.  

The output common-mode voltage defaults to VPOS/2 but can  
be programmed via the VCMA and VCMB pins over a range  
of voltages. The input common-mode voltage also defaults  
to VPOS/2 but can be driven down to 1.5 V. A built-in, dc offset 
compensation loop can be used to eliminate dc offsets from prior 
stages in the signal chain. This loop can also be disabled if dc-
coupled operation is desired.  

The digital interface allows for parallel or serial mode gain 
programming. The AD8366 operates from a 4.75 V to 5.25 V 
supply and consumes typically 180 mA. When disabled, the  
part consumes roughly 3 mA. The AD8366 is fabricated using 
Analog Devices, Inc., advanced silicon-germanium bipolar 
process, and it is available in a 32-lead exposed paddle LFCSP 
package. Performance is specified over the −40°C to +85°C 
temperature range. 
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SPECIFICATIONS 
VS = 5 V, TA = 25°C, ZS = 200 Ω, ZL = 200 Ω, f = 10 MHz, unless otherwise noted. 

Table 1. 

Parameter  Test Conditions/Comments Min Typ  Max Unit  

DYNAMIC PERFORMANCE       

Bandwidth  3 dB; all gain codes  600  MHz 

 1 dB; all gain codes  200  MHz 

Slew Rate Maximum gain  1100  V/µs 

 Minimum gain  1500  V/µs 

INPUT STAGE IPPA, IPMA, IPPB, IPMB     

Linear Input Swing  At minimum gain AV = 4.5 dB, 1 dB gain compression  3.6  V p-p 

Differential Input Impedance   217  Ω 

Minimum Input Common-Mode Voltage   1.5  V 

Maximum Input Common-Mode Voltage   VPOS/2 + 0.075  V 

 Input pins left floating  VPOS/2  V 

GAIN      

Minimum Voltage Gain     4.5  dB 

Maximum Voltage Gain    20.25  dB 

Gain Step Size  All gain codes  0.25   dB 

Gain Step Accuracy All gain codes  ±0.25  dB 

Gain Flatness  Maximum gain, DC to 70 MHz  0.1  dB 

Gain Mismatch Channel A/Channel B at minimum/maximum gain code  0.1  dB 

Group Delay Flatness  All gain codes, 20% fractional bandwidth, fC < 100 MHz  <0.5  ns 

Mismatch Channel A and Channel B at same gain code  2  ps 

Gain Step Response Maximum gain to minimum gain  30  ns 

 Minimum gain to maximum gain  60  ns 

Common-Mode Rejection Ratio   −66.2  dB 

OUTPUT STAGE OPPA, OPMA, OPPB, OPMB, VCMA, VCMB     

Linear Output Swing  1 dB gain compression  6  V p-p 

Differential Output Impedance   28  Ω 

Output DC Offset Inputs shorted, offset loop disabled at 
minimum/maximum gain 

 −10/−30  mV 

 Inputs shorted, offset loop enabled (across all gain codes)  10  mV 

Minimum Output Common-Mode Voltage HD3, HD2 > −90 dBc, 2 V p-p output  1.6  V 

Maximum Output Common-Mode Voltage HD3, HD2 > −90 dBc, 2 V p-p output  3  V 

 VCMA and VCMB left floating  VPOS/2  V 

Common-Mode Setpoint Input Impedance   4  kΩ 

NOISE/DISTORTION      

3 MHz      

Noise Figure Maximum gain  11.3  dB  

 Minimum gain  18.2  dB 

Second Harmonic 2 V p-p output, maximum gain  −82  dBc 

 2 V p-p output, minimum gain  −82  dBc 

Third Harmonic 2 V p-p output, maximum gain  −87  dBc 

 2 V p-p output, minimum gain  −90  dBc 

OIP31 2 V p-p composite, maximum gain  34  dBVrms 

 2 V p-p composite, minimum gain  35  dBVrms 

OIP21 2 V p-p composite, maximum gain  76  dBVrms 

 2 V p-p composite, minimum gain  76  dBVrms 

Output 1 dB Compression Point1 Maximum gain  6.7  dBVrms 

 Minimum gain  6.9  dBVrms 
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Parameter  Test Conditions/Comments Min Typ  Max Unit  

10 MHz      

Noise Figure Maximum gain  11.4  dB  

 Minimum gain  18  dB 

Second Harmonic 2 V p-p output, maximum gain  −97  dBc 

 2 V p-p output, minimum gain  −96  dBc 

Third Harmonic 2 V p-p output, maximum gain  −97  dBc 

 2 V p-p output, minimum gain  −90  dBc 

OIP31 2 V p-p composite, maximum gain  38  dBVrms 

 2 V p-p composite, minimum gain  36  dBVrms 

OIP21 2 V p-p composite, maximum gain  72  dBVrms 

 2 V p-p composite, minimum gain  76  dBVrms 

Output 1 dB Compression Point1 Maximum gain  7  dBVrms 

 Minimum gain  6.7  dBVrms 

50 MHz      

Noise Figure Maximum gain  11.8  dB  

 Minimum gain  18.2  dB 

Second Harmonic 2 V p-p output, maximum gain  −82  dBc 

 2 V p-p output, minimum gain  −84  dBc 

Third Harmonic 2 V p-p output, maximum gain  −80  dBc 

 2 V p-p output, minimum gain  −71  dBc 

OIP31 2 V p-p composite, maximum gain  32  dBVrms 

 2 V p-p composite, minimum gain  26  dBVrms 

OIP21 2 V p-p composite, maximum gain  71  dBVrms 

 2 V p-p composite, minimum gain  78  dBVrms 

Output 1 dB Compression Point1 Maximum gain  6.7  dBVrms 

 Minimum gain  6.7  dBVrms 

DIGITAL LOGIC SENB, DENA, DENB, BIT0, BIT1, BIT2, BIT3, BIT4, BIT5     

Input High Voltage, VINH   2.2  V 

Input Low Voltage, VINL   1.2  V 

Input Capacitance, CIN   1  pF 

Input Resistance, RIN   50  kΩ 

SPI INTERFACE TIMING SENB = high     

fSCLK Serial clock frequency (maximum)  44.4  MHz 

t1 CS rising edge to first SCLK rising edge (minimum)  7.5  ns 

t2 SCLK high pulse width (minimum)  7.5  ns 

t3 SCLK low pulse width (minimum)  15  ns 

t4 SCLK falling edge to CS low (minimum)  7.5  ns 

t5 SDAT setup time (minimum)  7.5  ns 

t6 SDAT hold time (minimum)  15  ns 

PARALLEL PORT TIMING SENB = low     

t7 DENA/DENB high pulse width (minimum)  7.5  ns 

t8 DENA/DENB low pulse width (minimum)  15  ns 

t9 BITx setup time (minimum)  7.5  ns 

t10 BITx hold time (minimum)  7.5  ns 

POWER AND ENABLE  VPSIA, VPSIB, VPSOA, VPSOB, ICOM, OCOM, ENBL     

Supply Voltage Range  4.75  5.25 V 

Total Supply Current ENBL = 5 V  180  mA 

Disable Current ENBL = 0 V  3.2  mA 

Disable Threshold    1.65  V  

Enable Response Time  Delay following high-to-low transition until device  
meets full specifications  

 150  ns  

Disable Response Time  Delay following low-to-high transition until device 
produces full attenuation  

 3  µs  

 
1 To convert to dBm for a 200 Ω load impedance, add 7 dB to the dBVrms value. 
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PARALLEL AND SERIAL INTERFACE TIMING 
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Figure 2. SPI Port Timing Diagram 
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Figure 3. Parallel Port Timing Diagram 
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ABSOLUTE MAXIMUM RATINGS 

Table 2. 

Parameter Rating  

Supply Voltages, VPSIx and VPSOx  5.5 V  

ENBL, SENB, DENA, DENB, BIT0, BIT1, BIT2, 
BIT3, BIT4, BIT5 

5.5 V  

IPPA, IPMA, IPPB, IPMB 5.5 V  

OPPA, OPMA, OPPB, OPMB  5.5 V  

OFSA, OFSB  5.5 V  

DECA, DECB, VCMA, VCMB, CCMA, CCMB 5.5 V 

Internal Power Dissipation  1.4 W  

θJA (With Pad Soldered to Board)  45.4°C/W  

Maximum Junction Temperature  150°C  

Operating Temperature Range  −40°C to +85°C  

Storage Temperature Range  −65°C to +150°C  

Lead Temperature (Soldering, 60 sec)  300°C  

Stresses above those listed under Absolute Maximum Ratings 
may cause permanent damage to the device. This is a stress 
rating only; functional operation of the device at these or any 
other conditions above those indicated in the operational 
section of this specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

 

ESD CAUTION 
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PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 
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Figure 4. Pin Configuration  

 

Table 3. Pin Function Descriptions 

Pin No.  Mnemonic  Description 

1, 8, 13, 28 VPSIA, VPSIB, VPSOB, 
VPSOA  

Input and Output Stage Positive Supply Voltage (4.75 V to 5.25 V). 

2, 3, 6, 7  IPPA, IPMA, IPMB, 
IPPB 

Differential Inputs. 

4 ENBL  Chip Enable. Pull this pin high to enable. 

5, 20  ICOM, OCOM Input and Output Ground Pins. Connect these pins via the lowest possible impedance to 
ground. 

9, 32 DECB, DECA VPOS/2 Reference Decoupling Node. Connect a decoupling capacitor from these nodes to 
ground. 

10, 31 OFSB, OFSA Output Offset Correction Loop Compensation. Connect a capacitor from these nodes to 
ground to enable the correction loop. Tie this pin to ground to disable.  

11, 30  CCMB, CCMA Connect These Nodes to Ground. 

12, 29  VCMB, VCMA Output Common-Mode Setpoint. These pins default to VPOS/2 if left open. Drive these pins 
from a low impedance source to change the output common-mode voltage. 

14, 15, 26, 27 OPPB, OPMB, OPMA, 
OPPA 

Differential Outputs. 

16, 17 DENB, DENA Data Enable. Pull these pins high to address each or both channels for parallel gain 
programming. These pins are not used in serial mode. 

18, 19, 21, 22, 23, 24 BIT5, BIT4, BIT3, 
BIT2/SCLK, BIT1/SDAT, 
BIT0/CS 

Parallel Data Path (When SENB Is Low). When SENB is high, BIT0 becomes a chip select (CS), 
BIT1 becomes a serial data input (SDAT), and BIT2 becomes a serial clock (SCLK). BIT3 to BIT5 
are not used in serial mode. 

25  SENB Serial Interface Enable. Pull this pin high for serial gain programming mode and pull this pin low 
for parallel gain programming mode. 

 EPAD The exposed pad must be connected to ground. 
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TYPICAL PERFORMANCE CHARACTERISTICS 
VS = 5 V, TA = 25°C, ZS = 200 Ω, ZL = 200 Ω, f = 10 MHz, unless otherwise noted. 
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Figure 5. Gain vs. Gain Code at 500 kHz, 3 MHz, 10 MHz, and 50 MHz 
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Figure 6. Frequency Response vs. Gain Code 
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Figure 7. Channel A-to-Channel B Amplitude Mismatch vs. Gain Code,  
2 V p-p Output 
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Figure 8. Gain Error vs. Gain Code, Error Normalized to 10 MHz  
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Figure 11. OP1dB vs. Gain Code at 500 kHz, 3 MHz, 10 MHz, and 50 MHz 
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Figure 12. OIP3 vs. Gain Code at 10 MHz and 50 MHz Frequency, 2 V p-p 
Composite Output 
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Figure 13. Two-Tone Output IMD3 vs. Gain Code at 10 MHz and 50 MHz 
Frequency, 2 V p-p Composite Output 
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Figure 14. OP1dB vs. Frequency at Gain Code 0 and Gain Code 63 
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Figure 15. OIP3 vs. Frequency, Gain Code 0, Gain Code 32, and Gain Code 63, 
2 V p-p Composite Output 
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Figure 16. Two-Tone Output IMD3 vs. Frequency at Gain Code 0,  
Gain Code 32, and Gain Code 63, 2 V p-p Composite Output 
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Figure 17. OIP2 vs. Gain Code at 10 MHz and 50 MHz Frequency,  
2 V p-p Composite Output 
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Figure 18. Two-Tone Output IMD2 vs. Gain Code at 10 MHz and 50 MHz 
Frequency, 2 V p-p Composite Output 
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Figure 19. Harmonic Distortion vs. Frequency at Gain Code 0, Gain Code 32, 
and Gain Code 63, 2 V p-p Output  
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Figure 20. OIP2 vs. Frequency at Gain Code 0 and Gain Code 63, 2 V p-p 
Composite Output  
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Figure 21. Two-Tone Output IMD2 vs. Frequency,  
Gain Code 0 and Gain Code 63, 2 V p-p Composite Output  
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Figure 22. HD3/HD2 vs. VOCM at 10 MHz, Gain Code 0, 2 V p-p Output 
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Figure 23. OIP3 vs. Output Power (POUT) at Minimum and Maximum Gain 
Codes, 10 MHz Frequency 
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Figure 24. OIP2 vs. Output Power (POUT) at Minimum and Maximum Gain 
Codes, 10 MHz Frequency 
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Figure 25. HD2 vs. Output Power (POUT) at Gain Code 0 and Gain Code 63,  
10 MHz Frequency  
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Figure 26. IMD3 vs. Output Power (POUT) at Minimum-to-Maximum Gain 
Codes, 10 MHz Frequency  
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Figure 27. IMD2 vs. Output Power (POUT) at Minimum and Maximum Gain 
Codes, 10 MHz Frequency 
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Figure 28. HD3 vs. Output Power (POUT) for Gain Code 0 and Gain Code 63, 
10 MHz Frequency  
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Figure 29. Supply Current vs. Gain Code at 10 MHz 
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Figure 30. Noise Figure vs. Gain Code at 0.5 MHz, 3 MHz, 10 MHz, and 50 MHz
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Figure 31. Differential Parallel Input Resistance and Capacitance vs. 
Frequency 
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Figure 32. Noise Spectral Density vs. Frequency 
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Figure 33. Noise Figure vs. Frequency 
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Figure 34. Differential Series Output Resistance and Inductance vs. 
Frequency 
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Figure 35. Power Supply Rejection Ratio (PSRR) vs. Frequency 
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Figure 36. Group Delay vs. Frequency at Gain Code 0, Gain Code 32, and 
Gain Code 63 
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Figure 37. Channel-to-Channel Isolation vs. Frequency,  
Channel A Driven, Channel B Measured   
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Figure 38. SFDR vs. Gain Code at 10 MHz and 50 MHz, 
1 Hz Analysis Bandwidth 
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Figure 39. Common-Mode Rejection Ratio (CMRR) vs. Frequency 
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Figure 40. Forward Leakage vs. Frequency, Part Disabled  
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Figure 41. Large Signal Pulse Response, Gain Code 0, Input Signal 1.2 V p-p,  
0 pF and 10 pF Capacitive Loading Conditions 
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Figure 42. ENBL Time Domain Response 
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Figure 43. Reverse Isolation (S12) vs. Frequency 
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Figure 44. Large Signal Pulse Response, Gain Code 63, Input Signal 240 mV p-p, 
0 pF and 10 pF Capacitive Loading Conditions  
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Figure 45. Gain Step Time Domain Response, Minimum-to-Maximum Gain 
(Time Scale 200 ns/division), CH4 = Digital Control Inputs 

 

 

 

 



   AD8366
 

Rev. A | Page 15 of 28 

CIRCUIT DESCRIPTION 
The AD8366 is a dual, differential, digitally controlled VGA 
with 600 MHz of 3 dB bandwidth and a gain range of 4.5 dB to 
20.25 dB adjustable in 0.25 dB steps. Using a proprietary variable 
gain architecture, the AD8366 is able to achieve excellent linearity 
(45 dBm) and noise performance (11.7 nV/√Hz) at 10 MHz at 
minimum gain. Intended for use in direct conversion systems, the 
part also includes dc offset correction that can be disabled easily 
by grounding either OFSA or OFSB. In addition, the part offers 
an adjustable output common-mode range of 1.6 V to 3 V. 

The main signal path is shown in Figure 46. It consists of an 
input transconductance, a variable-gain cell, and an output 
transimpedance amplifier. 
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Figure 46. Main Signal Path  

The input transconductance provides a broadband 200 Ω 
differential termination and converts the input voltage to a 
current. This current is fed into the variable current-gain cell. 
The output of this cell goes into the transimpedance stage, which 
generates the output voltage. The transimpedance is fixed at 500 Ω, 
with a roughly 25 Ω differential output impedance. 

INPUTS 

The inputs to the digitally-controlled VGAs in the AD8366 are 
differential and can be either ac- or dc-coupled. The AD8366 
synthesizes a 200 Ω (differential) input impedance, with a return 
loss (re: 200 Ω) of better than 10 dB to 200 MHz. The nominal 
common-mode input voltage to the part is VPOS/2, but the AD8366 
can be dc-coupled to parts with lower common modes if these 
parts can sink current. The amount of current sinking required 
depends on the input common-mode level and is given by  

ISINK (per leg) = (VPOS/2 − VICM)/100 

The input common-mode range is 1.5 V to VPOS/2. 

OUTPUTS 

The outputs of the digitally-controlled VGAs are differential and 
can be either ac- or dc-coupled. The AD8366 synthesizes a 25 Ω 
differential output impedance, with a return loss (re: 25 Ω) of 
better than 10 dB to 120 MHz. The nominal common-mode 
output voltage is VPOS/2; however, it can be lowered or raised by 
driving the VCMA or VCMB pins. 

 

 

 

 

OUTPUT DIFFERENTIAL OFFSET CORRECTION 

To prevent significant levels of offset from appearing at the 
outputs of the AD8366, each digitally controlled VGA has a 
differential offset correction loop, as shown in Figure 47. This 
loop senses any differential offset at the output and corrects for 
it by injecting an opposing current at the input differential ground. 
The loop is able to correct for input dc offsets of up to ±20 mV. 
Because the loop automatically nulls out any dc or low frequency 
offset, the effect of the loop is to introduce a high-pass corner into 
the transfer function of the digitally controlled VGA. The 
location of this high-pass corner depends on both the gain 
setting and the value of the capacitor connected to the OFSx pin 
(OFSA for DVGA A and OFSB for DVGA B) and is given by  

( ) ( )
( )102π

40001.0374300
kHz,3 +

+
=

OFS

GC

HPdB
C

f  

where:  
GC is the gain code (a value from 0 to 63). 
COFS is the value of the capacitance connected to OFSA or OFSB, 
in picofarads (pF). 

The offset correction loop can be disabled by grounding either 
OFSA or OFSB. 
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Figure 47. Differential Offset Correction Loop  

OUTPUT COMMON-MODE CONTROL 

To interface to ADCs that require different input common-mode 
voltages, the AD8366 has an adjustable output common-mode 
level. The output common-mode level is normally set to VPOS/2; 
however, it can be changed between 1.6 V and 3 V by driving 
the VCMA pin or the VCMB pin. The input equivalent circuit 
for the VCMA pin is shown in Figure 48; the VCMB pin has the 
same input equivalent circuit. 
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Figure 48. Input Equivalent Circuit for VCMA  
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GAIN CONTROL INTERFACE 

The AD8366 provides two methods of digital gain control: 
serial or parallel. When the SENB pin is pulled low, the part  
is in parallel gain control mode. In this mode, the two digitally 
controlled VGAs can be programmed simultaneously, or one at 
a time, depending on the levels at DENA and DENB. If the SENB 
pin is pulled high, the part is in serial gain control mode, with 
Pin 24, Pin 23, and Pin 22 corresponding to the CS, SDAT, and 
SCLK signals, respectively. 

The voltage gain of the AD8366 is well approximated by 

Gain (dB) = GainCode × 0.253 + 4.5 

Note that at several major transitions (15 to 16, 31 to 32, and 47 to 
48), the gain changes significantly less (0 dB step) or significantly 
more (0.5 dB step) than the desired 0.25 dB step. This is inherent 
in the design of the part and is related to the partitioning of the 
variable gain block into a fine-gain and a coarse-gain section. 
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Figure 49. Gain and Gain Step Error vs. Gain Code at 10 MHz 
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APPLICATIONS INFORMATION 
BASIC CONNECTIONS 

Figure 50 shows the basic connections for operating the AD8366.  
A voltage from 4.75 V to 5.25 V should be applied to the supply 
pins. Each supply pin should be decoupled with at least one low 
inductance, surface-mount ceramic capacitor of 0.1 μF placed as 
close as possible to the device. 

The differential input impedance is 200 Ω and sits at a nominal 
common-mode voltage of VPOS/2. The inputs can be dc-coupled 
or ac-coupled. If using direct dc coupling, the common-mode 
voltage, VCM, can range from 1.5 V to VPOS/2.  

The output buffers of the AD8366 are low impedance around 
25 Ω designed to drive ADC inputs. The output common-mode 
voltage defaults to VPOS/2; however, it can be adjusted by applying a 
desired external voltage to VCMA/VCMB. The common-mode 
voltage can be adjusted from 1.6 V to 3.0 V without significant 
harmonic distortion degradation.  

To enable the AD8366, the ENBL pin must be pulled high. Taking 
ENBL low disables the device, reducing current consumption to 
approximately 3 mA at ambient temperature. 
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Figure 50. Basic Connections 
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Figure 51. Direct Conversion Receiver Block Diagram  

DIRECT CONVERSION RECEIVER DESIGN 

A direct conversion receiver directly demodulates an RF modulated 
carrier to baseband frequencies, where the signals can be detected 
and the conveyed information recovered. Eliminating the IF 
stages and directly converting the signal to effectively zero IF 
results in reduced component count. The image problems 
associated with the traditional superheterodyne architectures 
can be ignored as well. However, there are different challenges 
associated with direct conversion that include LO leakage, dc 
offsets, quadrature imperfections, and image rejection. LO 
leakage causes self mixing that results in squaring of the LO 
waveform which generates a dc offset that falls in band for the 
direct conversion receiver. Residual dc offsets create a similar 
interfering signal that falls in band. I/Q amplitude and phase 
mismatch lead to degraded SNR performance and poor image 
rejection in the direct conversion system. Figure 51 shows the 
block diagram for a direct conversion receiver system. 

QUADRATURE ERRORS AND IMAGE REJECTION 

An overall RF-to-baseband EVM performance was measured 
with the ADL5380 IQ demodulator preceding the AD8366, as 
shown in Figure 56. In this setup, no LC low-pass filters were used 
between the ADL5380 and AD8366. A 1900 MHz W-CDMA RF 
signal with a 3.84 MHz symbol rate was used. The local oscillator 
(LO) is set at 1900 MHz to obtain a zero IF baseband signal. 
The gain of the AD8366 is set to maximum gain (~20.25 dB). 
Figure 52 shows the SNR vs. the input power of the cascaded 
system for a 5 MHz analysis bandwidth. The broad input power 
range over which the system exhibits strong SNR performance 
reflects the superior dynamic range of the AD8366. 
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Figure 52. SNR vs. RF Input Power Level 

The image rejection ratio is the ratio of the intermediate frequency 
(IF) signal level produced by the desired input frequency to that 
produced by the image frequency. The image rejection ratio is 
expressed in decibels (dB). Appropriate image rejection is critical 
because the image power can be much higher than that of the 
desired signal, thereby plaguing the downconversion process. 
Amplitude and phase balance between the I/Q channels are 
critical for high levels of image rejection. Image rejection of 
greater than 47 dB was measured for the combined ADL5380 
and the AD8366 for a 5 MHz baseband frequency, as seen in 
Figure 53. This level of image rejection corresponds to a ±0.5° 
phase mismatch and a ±0.05 dB of amplitude mismatch for the 
combined ADL5380 and AD8366. Looking back to Figure 7 and 
Figure 10, the AD8366 exhibits only ±0.05 dB of amplitude mismatch 
and ±0.05o of phase mismatch, thus implying that the AD8366 
does not introduce additional amplitude and phase imbalance.  
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Figure 53. Image Rejection vs. RF Frequency 
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LOW FREQUENCY IMD3 PERFORMANCE 

To measure the IMD3 data at low frequencies, wideband 
transformer baluns from North Hills Signal Processing Corp. 
were used, specifically the 0301BB and the 0520BB. Figure 55 
shows the IMD3 performance vs. frequency for a 2 V p-p 
composite output. The IMD3 performance was also measured 
for the combined ADL5380 and AD8366 system, as shown in 
Figure 56, with an FFT spectrum analyzer. An FFT spectrum 
analyzer works very similar to a typical ADC, the input signal  
is digitized at a high sampling rate that is then passed through an 
antialiasing filter. The resulting signal is transformed to the 
frequency domain using fast Fourier transforms (FFT).  

The single-ended RF signal from the source generator is converted 
to a differential signal using a balun that gets demodulated and 
down converted to differential IF signals through the ADL5380. 
This differential IF signal drives the AD8366, thus eliminating 
the need for low frequency baluns. Figure 54 shows the IMD3 
performance vs. frequency over the 500 kHz to 5 MHz range  
for minimum and maximum gain code setting on the AD8366. 
During the measurements, the output was set to 2 V p-p composite. 
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Figure 54. System IMD3 vs. Frequency, 2 V p-p Composite at  
the Output of the AD8366 
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Figure 55. OIP3 on Low Frequency, 2 V p-p Composite 
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Figure 56. ADL5380 and AD8366 Interface Block Diagram 
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BASEBAND INTERFACE 

In most direct-conversion receiver designs, it is desirable to select a 
wanted carrier within a specified band. The desired channel can be 
demodulated by tuning the LO to the appropriate carrier frequency. 
If the desired RF band contains multiple carriers of interest, the 
adjacent carriers would also be down converted to a lower IF 
frequency. These adjacent carriers can be a problem if they are 
large relative to the desired carrier because they can overdrive 
the baseband signal detection circuitry. As a result, it is often 
necessary to insert a filter to provide sufficient rejection of the 
adjacent carriers. 

It is necessary to consider the overall source and load impedance 
presented by the AD8366 and the ADC input to design the  
filter network. The differential baseband output impedance of 
the AD8366 is 25 Ω and is designed to drive a high impedance 
ADC input. It may be desirable to terminate the ADC input down 
to the lower impedance by using a terminating resistor, such as 
500 Ω. The terminating resistor helps to better define the input 
impedance at the ADC input at the cost of a slightly reduced gain. 

The order and type of filter network depends on the desired high 
frequency rejection required, pass-band ripple, and group delay.  

Figure 57 shows the schematic for a typical fourth-order, Chebyshev, 
low-pass filter. Table 4 shows the typical values of the filter 
components for a fourth-order, Chebyshev, low-pass filter with 
a differential source impedance of 25 Ω and a differential load 
impedance of 200 Ω. 
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Figure 57. Schematic of a Fourth-Order, Chebyshev, Low-Pass Filter 

 

 

 

Table 4. Typical Values for Fourth-Order, Chebyshev, Low-Pass Filter 

3 dB Corner (MHz) ZSOURCE (Ω) ZLOAD (Ω) L1 (µH) L2 (µH) L3 (µH) L4 (µH) C1 (pF) C2 (pF) 

5 25 200 6.6 6.6 6.0 6.0 220 180 

10 25 200 3.3 3.3 3 3 110 90 

28 25 200 1.2 1.2 1 1 39 33 
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CHARACTERIZATION SETUPS 
Figure 58 and Figure 59 are characterization setups used 
extensively to characterize the AD8366. Characterization was 
done on single-ended and differential evaluation boards. The 
bulk of the characterization was done using an automated VEE 
program to control the equipment as shown in Figure 58. This 
setup was used to measure P1dB, OIP3, OIP2, IMD2, IMD3, 
harmonic distortion, gain, gain error, supply current, and noise 
density. All measurements were done with a 200 Ω load. All balun, 
output matching network, and filter losses were de-embedded. 
Gain error was measured with constant input power. All other 
measurements were done on 2 V p-p (4 dBm, re: 200 Ω) on  

the output of the device under test (DUT), and 2 V p-p composite 
output for two-tone measurements. To measure harmonic 
distortion, band-pass and band-reject filters were used on  
the input and output of the DUT. 

Figure 59 shows the setup used to make differential measurements. 
All measurements on this setup were done in a 50 Ω system and 
post processed to reference the measurements to a 200 Ω system. 
Gain and phase mismatch were measured with 2 V p-p on the 
output, and small signal frequency responses were measured 
with −30 dBm on the input of the DUT. 
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Figure 58. Characterization Setup, Single-Ended Measurements 
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Figure 59. Characterization Setup, Differential Measurements 
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