: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

FEATURES

Supports input data rates up to 1.096 GSPS
Proprietary, low spurious and distortion design
Single carrier LTE 20 MHz bandwidth (BW), ACLR = $\mathbf{7 7} \mathbf{~ d B c}$ at
180 MHz IF
Six carrier GSM IMD $=\mathbf{7 8} \mathbf{~ d B c}, 600 \mathrm{kHz}$ carrier spacing at 180 MHz IF
SFDR = $\mathbf{7 2} \mathbf{~ d B c}$ at 180 MHz IF, $\mathbf{- 6} \mathbf{~ d B F S}$ single tone
Flexible 8-lane JESD204B interface
Multiple chip synchronization
Fixed latency
Data generator latency compensation
Input signal power detection
High performance, low noise phase-locked loop (PLL) clock multiplier
Digital inverse sinc filter
Digital quadrature modulation using a numerically controlled oscillator (NCO)
Nyquist band selection-mix mode
Selectable $1 \times, 2 \times, 4 \times$, and $8 \times$ interpolation filters
Low power: 2.11 W at 1.6 GSPS, full operating conditions
88-lead, exposed pad LFCSP

APPLICATIONS

Wireless communications
Multicarrier LTE and GSM base stations
Wideband repeaters
Software defined radios
Wideband communications
Point to point microwave radio
Transmit diversity, multiple input/multiple output (MIMO)
Instrumentation
Automated test equipment
GENERAL DESCRIPTION
The AD9154 is a quad, 16 -bit, high dynamic range digital-toanalog converter (DAC) that provides a maximum sample rate of 2.4 GSPS, permitting multicarrier generation up to the Nyquist frequency in baseband mode. The AD9154 includes features optimized for direct conversion transmit applications, including complex digital modulation, input signal power detection, and gain, phase, and offset compensation. The DAC outputs are optimized to interface seamlessly with the ADRF6720-27 radio frequency quadrature modulator (AQM) from Analog Devices, Inc. In mix mode, the AD9154 DAC can reconstruct carriers in the second and third Nyquist zones. A serial port interface (SPI) provides the programming/readback of internal parameters.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The full-scale output current can be programmed over a range of 4 mA to 20 mA . The AD9154 is available in two different 88-lead LFCSP packages.

PRODUCT HIGHLIGHTS

1. Ultrawide signal bandwidth enables emerging wideband and multiband wireless applications.
2. Advanced low spurious and distortion design techniques provide high quality synthesis of wideband signals from baseband to high intermediate frequencies.
3. JESD204B Subclass 1 support simplifies multichip synchronization.
4. Small package size with a $12 \mathrm{~mm} \times 12 \mathrm{~mm}$ footprint.

AD9154* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- Evaluation board for evaluating AD9154 Quad, 16-Bit, 2.4 GSPS, TxDAC+ ${ }^{\oplus}$ Digital-to-Analog Product

DOCUMENTATION

Data Sheet

- AD9154: Quad, 16-Bit, 2.4 GSPS, TxDAC+ ${ }^{\oplus}$ Digital-toAnalog Converter

TOOLS AND SIMULATIONS

- AD9144/AD9152/AD9154/AD9135/AD9136 AMI Model Download
- AD9154 IBIS Model

REFERENCE MATERIALS

Press

- Industry's Highest Dynamic-Range Quad, 16-bit D/A Converter Supports All Wireless and Mobile Device Frequency Standards

Technical Articles

- Digital Signal Process in IF RF Data Converters

DESIGN RESOURCES

- AD9154 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD9154 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 3
Detailed Functional Block Diagram 4
Specifications 5
DC Specifications 5
Digital Specifications 6
Maximum DAC Update Rate Speed Specifications by Supply. 7
JESD204B Serial Interface Speed Specifications 7
SYSREF to DAC Clock Timing Specifications 8
Digital Input Data Timing Specifications 8
Latency Variation Specifications 9
JESD204B Interface Electrical Specifications 9
AC Specifications 10
Absolute Maximum Ratings 11
Thermal Resistance 11
ESD Caution 11
Pin Configuration and Function Descriptions 12
Typical Performance Characteristics 14
Terminology 20
Theory of Operation 21
Serial Port Operation 22
Data Format 22
Serial Port Pin Descriptions 22
Serial Port Options 22
Chip Information. 24
Device Setup Guide 25
Step 1: Start Up the DAC 25
Step 2: Digital Datapath 26
Step 3: Transport Layer 26
Step 4: Physical Layer 27
Step 5: Data Link Layer. 28
Step 6: Error Monitoring 28
DAC PLL Setup. 28
Interpolation 29
JESD204B Setup 29
Equalization Mode Setup 30
Link Latency Setup 30
Crossbar Setup 32
JESD204B Serial Data Interface. 33
JESD204B Overview 33
Physical Layer 34
Data Link Layer 37
Transport Layer 45
JESD204B Test Modes 58
JESD204B Error Monitoring. 59
Digital Datapath 62
Dual Paging. 62
Data Format 62
Interpolation Modes 62
Digital Modulation 63
Inverse Sinc 64
Digital Gain, Phase Adjust, DC Offset, and Group Delay. 64
I to Q Swap 65
NCO Alignment 65
Downstream Protection 66
Datapath PRBS 68
DC Test Mode 69
Interrupt Request Operation 70
Interrupt Service Routine. 70
DAC Input Clock Configurations 72
Driving the CLK \pm Inputs 72
DAC PLL Fixed Register Writes 72
Condition Specific Register Writes 72
Starting the PLL 73
Analog Outputs 75
Transmit DAC Operation. 75
Normal and Mix Modes of Operation 76
Temperature Sensor 77
Example Start-Up Sequence. 78
Step 1: Start Up the DAC. 78
Step 2: Digital Datapath. 78
Step 3: Transport Layer 79
Step 4: Physical Layer 79
Step 5: Data Link Layer 80
Step 6: Error Monitoring 80
Board Level Hardware Considerations 81

Power Supply Recommendations81

JESD204B Serial Interface Inputs (SERDIN0 \pm to SERDIN7 \pm) . 81
Register Summary .. 84
Register Details .91

REVISION HISTORY

2/2017—Rev. B to Rev. C
Change to Features Section 1
Change to Table 14 24
Change to Table 15 25
Change to Table 93 91
7/2015-Rev. A to Rev. B
Changes to General Description Section1
Changes to Figure 33 19
Added Figure 34; Renumbered Sequentially 19
Changes to Figure 43 35
Outline Dimensions 123
Ordering Guide 124
Changes to SERDES PLL Fixed Register Writes Section 36
Change to Table 8779
Change to ERRWINDOW, Table 93 95
Updated Outline Dimensions. 123
Changes to Ordering Guide. 123
3/2015—Rev. 0 to Rev. A
Changes to Figure 1 and General Description Section 1

DETAILED FUNCTIONAL BLOCK DIAGRAM

AD9154

SPECIFICATIONS

DC SPECIFICATIONS

AVDD33 $=3.3 \mathrm{~V}$, SIOVDD33 $=3.3 \mathrm{~V}, \mathrm{IOVDD}=1.8 \mathrm{~V}, \mathrm{DVDD} 12=1.2 \mathrm{~V}, \mathrm{CVDD} 12=1.2 \mathrm{~V}, \mathrm{PVDD} 12=1.2 \mathrm{~V}, \mathrm{SVDD} 12=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{TT}}=1.2 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Ioutrs $=20 \mathrm{~mA}$, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
RESOLUTION			16		Bits
```ACCURACY Differential Nonlinearity (DNL) Integral Nonlinearity (INL)```			$\begin{aligned} & \pm 4.3 \\ & \pm 8.2 \end{aligned}$		$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
MAIN DAC OUTPUTS   Gain Error   Offset Error ${ }^{1}$   I/Q Gain Mismatch   Full-Scale Output Current   Maximum Setting   Minimum Setting   Output Compliance Range   Output Resistance   Output Capacitance   Full-Scale Current DAC Monotonicity	With internal reference   Based on a $4 \mathrm{k} \Omega$ external resistor between I 120 and ground	$\begin{aligned} & -8.0 \\ & -3.0 \\ & 19.9 \\ & 3.9 \\ & 2.0 \end{aligned}$	-3.01 2322 +0.54 20.85 4.17 2.8 15 3.0 Guaranteed	$\begin{aligned} & +8.0 \\ & +3.0 \\ & 21.3 \\ & 4.4 \\ & 3.37 \end{aligned}$	$\begin{aligned} & \% \mathrm{FSR} \\ & \mathrm{ppm} \\ & \% \mathrm{FSR} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~V} \\ & \mathrm{M} \Omega \\ & \mathrm{pF} \end{aligned}$
MAIN DAC TEMPERATURE DRIFT Gain ${ }^{2}$			-114		ppm/ ${ }^{\circ} \mathrm{C}$
REFERENCE Internal Reference Voltage			1.2		V
ANALOG SUPPLY VOLTAGES   AVDD33   PVDD12   CVDD12	$\begin{aligned} & 5 \% \\ & 5 \% \\ & 2 \% \\ & 5 \% \\ & 2 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 3.13 \\ & 1.14 \\ & 1.274 \\ & 1.14 \\ & 1.274 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.2 \\ & 1.3 \\ & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 3.47 \\ & 1.26 \\ & 1.326 \\ & 1.26 \\ & 1.326 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
DIGITAL SUPPLY VOLTAGES   SIOVDD33   $V_{T T}$   DVDD12   SVDD12   IOVDD	$\begin{aligned} & 5 \% \\ & 5 \% \\ & 2 \% \\ & 5 \% \\ & 2 \% \\ & 5 \% \end{aligned}$	$\begin{aligned} & 3.13 \\ & 1.1 \\ & 1.14 \\ & 1.274 \\ & 1.14 \\ & 1.274 \\ & 1.71 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.2 \\ & 1.2 \\ & 1.3 \\ & 1.2 \\ & 1.3 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.47 \\ & 1.37 \\ & 1.26 \\ & 1.326 \\ & 1.26 \\ & 1.326 \\ & 3.47 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
POWER CONSUMPTION   $2 \times$ Interpolation Mode, JESD204B Mode 4, Dual Link, 8 SERDES Lanes   AVDD33   PVDD12   CVDD12   SVDD12   DVDD12   SIOVDD33 + IOVDD	$f_{\text {DAC }}=1.6$ GSPS, NCO on, IFout $=40 \mathrm{MHz}$, PLL on, DAC full-scale current $=20 \mathrm{~mA}$   Includes $V_{T T}$		$\begin{aligned} & 2.11 \\ & \\ & 159 \\ & 152 \\ & 355 \\ & 541.9 \\ & 264.5 \\ & 10.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.63 \\ & 185 \\ & 174 \\ & 397 \\ & 682 \\ & 442 \\ & 11.4 \\ & \hline \end{aligned}$	W   mA   mA   mA   mA   mA   mA

[^0]
## DIGITAL SPECIFICATIONS

$\operatorname{AVDD} 33=3.3 \mathrm{~V}, \mathrm{SIOVDD} 33=3.3 \mathrm{~V}, \mathrm{IOVDD}=1.8 \mathrm{~V}, \mathrm{DVDD} 12=1.2 \mathrm{~V}, \mathrm{CVDD} 12=1.2 \mathrm{~V}, \mathrm{PVDD} 12=1.2 \mathrm{~V}, \mathrm{SVDD} 12=1.2 \mathrm{~V}, \mathrm{~V} \mathrm{TT}=1.2 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Ioutrs $=20 \mathrm{~mA}$, unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
CMOS INPUT LOGIC LEVEL Input Voltage ( $\mathrm{V}_{\mathrm{IN}}$ ) Logic High Low		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{IOVDD} \leq 3.3 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{IOVDD} \leq 3.3 \mathrm{~V} \end{aligned}$	$0.7 \times$ IOVDD		$0.3 \times$ IOVDD	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMOS OUTPUT LOGIC LEVEL Output Voltage (Vout) Logic High Low		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{IOVDD} \leq 3.3 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{IOVDD} \leq 3.3 \mathrm{~V} \end{aligned}$	$0.7 \times$ IOVDD		$0.3 \times$ IOVDD	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
MAXIMUM DAC UPDATE RATE ${ }^{1}$		```1\times interpolation 2}\mathrm{ (see Table 4) 2x interpolation }\mp@subsup{}{}{3 4x interpolation 8x interpolation```	$\begin{aligned} & \hline 1096 \\ & 2192 \\ & 2400 \\ & 2400 \\ & \hline \end{aligned}$			MSPS   MSPS   MSPS   MSPS
ADJUSTED DAC UPDATE RATE		$1 \times$ interpolation   $2 \times$ interpolation   $4 \times$ interpolation   $8 \times$ interpolation	$\begin{aligned} & 1096 \\ & 1096 \\ & 600 \\ & 300 \end{aligned}$			MSPS   MSPS   MSPS   MSPS
INTERFACE ${ }^{4}$   Number of JESD204B Lanes JESD204B Serial Interface Speed Minimum Maximum		Per lane   Per lane, SVDD12 $=1.3 \mathrm{~V} \pm 2 \%$	$10.96$		1.44	Lanes   Gbps   Gbps
DAC CLOCK INPUT (CLK $\pm$ )   Differential Peak-to-Peak Voltage Common-Mode Voltage Maximum Clock Rate, DAC Clock Sourced Directly from CLK $\pm$ PLL Multiplier Mode Clock Input Frequency ${ }^{5}$		Self biased input, ac-coupled $6.0 \mathrm{GHz} \leq \text { fvco } \leq 12.0 \mathrm{GHz}$	$\begin{aligned} & 400 \\ & 2400 \\ & 35 \end{aligned}$	$\begin{aligned} & 1000 \\ & 600 \end{aligned}$	$\begin{aligned} & 2000 \\ & 1000 \end{aligned}$	mV   mV   MHz   MHz
SYSREF INPUT (SYSREF $\pm$ )   Differential Peak-to-Peak Voltage Common-Mode Voltage SYSREF $\pm$ Frequency ${ }^{6}$			$\begin{aligned} & 400 \\ & 0 \end{aligned}$	1000	$\begin{aligned} & 2000 \\ & 2000 \\ & \mathrm{f}_{\text {DATA }} /(\mathrm{K} \times(\mathrm{F} / \mathrm{S})) \end{aligned}$	mV   mV   Hz
$\text { SYSREF } \pm \text { TO DAC CLOCK }{ }^{7}$   Setup Time Hold Time	$\begin{aligned} & \mathrm{t}_{\mathrm{SSD}} \\ & \mathrm{t}_{\mathrm{HSD}} \end{aligned}$	SYSREF $\pm$ differential swing $=0.4 \mathrm{~V}$, slew rate $=1.3 \mathrm{~V} / \mathrm{ns}$, (ac-coupled, and $0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.25 \mathrm{~V}, 2.0 \mathrm{~V}$ dc-coupled common-mode voltages)	$\begin{aligned} & 111 \\ & 145 \end{aligned}$			$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$
SPI   Maximum Clock Rate   Minimum SCLK Pulse Width   High   Low   SDIO to SCLK   Setup Time   Hold Time   SDO to SCLK   Data Valid Window	SCLK   tpwh tpwL   tDs tDH   tov	See timing diagrams shown in Figure 39 and Figure 40 $\text { IOVDD }=1.8 \mathrm{~V}$	10   5   2   25		$\begin{aligned} & 8 \\ & 12 \end{aligned}$	MHz   ns   ns   ns   ns   ns


Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
$\overline{\mathrm{CS}}$ to SCLK						
Setup Time	tses		5			ns
Hold Time	$\mathrm{thcsics}^{\text {a }}$		2			ns

${ }^{1}$ See Table 3 for detailed specifications for DAC update rate conditions.
${ }^{2}$ Maximum speed for $1 \times$ interpolation is limited by the JESD204B interface. See Table 4 for details.
${ }^{3}$ Maximum speed for $2 \times$ interpolation is limited by the JESD204B interface. See Table 4 for details.
${ }^{4}$ See Table 4 for detailed specifications for JESD204B speed conditions.
${ }^{5} \mathrm{CLK}+/ \mathrm{CLK}$ - serve as a reference oscillator input for the on-chip PLL clock multiplier when in use.
${ }^{6}$ K, F, and S are JESD204B transport layer parameters. See Table 42 for the full definitions.
${ }^{7}$ See Table 5 for detailed specifications for SYSREF to DAC clock timing conditions.

## MAXIMUM DAC UPDATE RATE SPEED SPECIFICATIONS BY SUPPLY

AVDD33 = 3.3 V, SIOVDD33 = 3.3 V, IOVDD = 1.8 V, DVDD12 = 1.2 V, CVDD12 = 1.2 V, PVDD12 = $1.2 \mathrm{~V}, \mathrm{SVDD} 12=1.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{TT}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Ioutrs $=20 \mathrm{~mA}$, unless otherwise noted.

Table 3.

Parameter	Test Conditions/Comments	Min	Typ	Max
MAXIMUM DAC UPDATE RATE	DVDD12, CVDD12, PVDD12 $=1.2 \mathrm{~V} \pm 5 \%$	1.93		GSPS
	DVDD12, CVDD12, PVDD12 $=1.2 \mathrm{~V} \pm 2 \%$	2.07		GSPS
	DVDD12, CVDD12, PVDD12 $=1.3 \mathrm{~V} \pm 2 \%$	2.4	GSPS	

## JESD204B SERIAL INTERFACE SPEED SPECIFICATIONS

AVDD33 = 3.3 V, SIOVDD33 = 3.3 V, IOVDD = 1.8 V, DVDD12 = 1.2 V, CVDD12 = 1.2 V, PVDD12 = 1.2 V, SVDD12 $=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{TT}}=1.2 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Ioutrs $=20 \mathrm{~mA}$, unless otherwise noted.

Table 4.

Parameter	Test Conditions/Comments	Min	Typ	Max
CLOCK AND DATA RECOVERY	SVDD12 $=1.2 \mathrm{~V} \pm 5 \%$	5.74	9.04	Gbps
(CDR) HALF RATE MODE			5.74	9.65
	SVDD12 $=1.2 \mathrm{~V} \pm 2 \%$	5.74	Gbps	
	SVDD12 $=1.3 \mathrm{~V} \pm 2 \%$	2.87	10.96	Gbps
CDR FULL RATE MODE	SVDD12 $=1.2 \mathrm{~V} \pm 5 \%$	2.87	4.79	Gbps
	SVDD12 $=1.2 \mathrm{~V} \pm 2 \%$	2.87	4.93	Gbps
	SVDD12 $=1.3 \mathrm{~V} \pm 2 \%$	1.44	5.73	Gbps
CDR OVERSAMPLING MODE	SVDD12 $=1.2 \mathrm{~V} \pm 5 \%$	1.44	2.39	Gbps
	SVDD12 $=1.2 \mathrm{~V} \pm 2 \%$	1.44	2.50	Gbps
	SVDD12 $=1.3 \mathrm{~V} \pm 2 \%$	2.93	Gbps	

## SYSREF TO DAC CLOCK TIMING SPECIFICATIONS

AVDD33 $=3.3 \mathrm{~V}$, SIOVDD33 $=3.3 \mathrm{~V}, \mathrm{IOVDD}=1.8 \mathrm{~V}, \mathrm{DVDD} 12=1.2 \mathrm{~V}, \mathrm{CVDD} 12=1.2 \mathrm{~V}, \mathrm{PVDD} 12=1.2 \mathrm{~V}, \mathrm{SVDD} 12=1.2 \mathrm{~V}, \mathrm{~V}$ TT $=1.2 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Ioutrs $=20 \mathrm{~mA}$, SYSREF $\pm$ common-mode voltages $=0.0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.25 \mathrm{~V}$, and 2.0 V , unless otherwise noted.

Table 5.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
SYSREF	Differential swing $=0.4 \mathrm{~V}$, slew rate $=1.3 \mathrm{~V} / \mathrm{ns}$				
Setup Time	AC-coupled	89			ps
	DC-coupled	111			ps
Hold Time	AC-coupled	105			ps
	DC-coupled	145			ps
	Differential swing $=0.7 \mathrm{~V}$, slew rate $=2.28 \mathrm{~V} / \mathrm{ns}$				
Setup Time	AC-coupled	71			ps
	DC-coupled	81			ps
Hold Time	AC-coupled	97			ps
	DC-coupled	118			ps
	Differential swing $=1.0 \mathrm{~V}$, slew rate $=3.26 \mathrm{~V} / \mathrm{ns}$				
Setup Time	AC-coupled	58			ps
	DC-coupled	64			ps
Hold Time	AC-coupled	92			ps
	DC-coupled	108			ps

## DIGITAL INPUT DATA TIMING SPECIFICATIONS

AVDD33 $=3.3 \mathrm{~V}, \mathrm{SIOVDD} 33=3.3 \mathrm{~V}, \mathrm{IOVDD}=1.8 \mathrm{~V}, \mathrm{DVDD} 12=1.2 \mathrm{~V}, \mathrm{CVDD} 12=1.2 \mathrm{~V}, \mathrm{PVDD} 12=1.2 \mathrm{~V}, \mathrm{SVDD} 12=1.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{TT}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Ioutfs $=20 \mathrm{~mA}$, unless otherwise noted.

Table 6.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
LATENCY		17			PClock ${ }^{1}$ cycles
Interface, Excluding Transport Layer Delay Buffer	With or without modulation				
Interpolation					
$1 \times$			94		DAC clock cycles
$2 \times$			130		DAC clock cycles
$4 \times$			250		DAC clock cycles
$8 \times$			474		DAC clock cycles
Inverse Sinc			17		DAC clock cycles
Fine Modulation			20		DAC clock cycles
Coarse Modulation					
$\mathrm{f}_{5} / 8$			8		DAC clock cycles
$\mathrm{f}_{5} / 4$			4		DAC clock cycles
Digital Phase Adjust			12		DAC clock cycles
Digital Gain Adjust			12		DAC clock cycles
Power-Up Time					
Dual A Only	Register 0x011 from 0x60 to 0x00		30		$\mu \mathrm{s}$
Dual B Only	Register 0x011 from 0x18 to 0x00		30		$\mu \mathrm{s}$
All DACs	Register 0x011 from 0x78 to 0x00		30		$\mu \mathrm{s}$

[^1]AD9154

## LATENCY VARIATION SPECIFICATIONS

AVDD33 $=3.3 \mathrm{~V}$, SIOVDD33 $=3.3 \mathrm{~V}, \mathrm{IOVDD}=1.8 \mathrm{~V}, \mathrm{DVDD} 12=1.2 \mathrm{~V}, \mathrm{CVDD} 12=1.2 \mathrm{~V}, \mathrm{PVDD} 12=1.2 \mathrm{~V}, \mathrm{SVDD} 12=1.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{TT}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Ioutrs $=20 \mathrm{~mA}$, unless otherwise noted.

Table 7.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DAC LATENCY VARIATION					
Subclass 1					
PLL Off		-1		1	
PLL On		+1	DACCLK cycles		

## JESD204B INTERFACE ELECTRICAL SPECIFICATIONS

AVDD33 $=3.3 \mathrm{~V}$, SIOVDD33 $=3.3 \mathrm{~V}, \mathrm{IOVDD}=1.8 \mathrm{~V}, \mathrm{DVDD} 12=1.2 \mathrm{~V}, \mathrm{CVDD} 12=1.2 \mathrm{~V}, \mathrm{PVDD} 12=1.2 \mathrm{~V}, \mathrm{SVDD} 12=1.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{TT}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Ioutfs $=20 \mathrm{~mA}$, unless otherwise noted.

Table 8.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
JESD204B DATA INPUTS						
Input Leakage Current		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				
Logic High		Input level $=1.2 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\text {TT }}=1.2 \mathrm{~V}$		10		$\mu \mathrm{A}$
Logic Low		Input level $=0 \mathrm{~V}$		-4		$\mu \mathrm{A}$
Unit Interval	UI		94		714	ps
Common-Mode Voltage	$\mathrm{V}_{\text {RCM }}$	AC-coupled	-0.05		+1.85	V
		$\mathrm{V}_{T T}=$ SVDD $^{\text {2 }}{ }^{1}$				
Differential Voltage	R_V ${ }_{\text {difF }}$		110		1050	mV
$\mathrm{V}_{\text {TT }}$ Source Impedance	$\mathrm{Z}_{\mathrm{TT}}$	At dc			30	$\Omega$
Differential Impedance	$\mathrm{Z}_{\text {RDIFF }}$	At dc	80	100	120	$\Omega$
Differential Return Loss	RLRDIF			8		dB
Common-Mode Return Loss	RLrcm			6		dB
DIFFERENTIAL OUTPUTS ( $\overline{\text { SYNCOUT }})^{2}$						
Output Offset Voltage	Vos		1.19		1.27	V
DETERMINISTIC LATENCY						
Fixed					17	PClock ${ }^{3}$ cycles
Variable					2	PClock ${ }^{3}$ cycles
SYSREF $\pm$ TO LOCAL MULTIFRAME CLOCK (LMFC) DELAY				4		DAC clock cycles

${ }^{1}$ As measured on the input side of the ac coupling capacitor.
${ }^{2}$ IEEE Standard 1596.3 LVDS compatible.
${ }^{3}$ PClock is the AD9154 internal processing clock; its frequency is equal to the JESD204B lane rate $\div 40$.

## AC SPECIFICATIONS

AVDD33 $=3.3 \mathrm{~V}$, SIOVDD33 $=3.3 \mathrm{~V}, \mathrm{IOVDD}=1.8 \mathrm{~V}, \mathrm{DVDD} 12=1.2 \mathrm{~V}, \mathrm{CVDD} 12=1.2 \mathrm{~V}, \mathrm{PVDD} 12=1.2 \mathrm{~V}, \mathrm{SVDD} 12=1.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{TT}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Ioutfs $=20 \mathrm{~mA}$, unless otherwise noted.

Table 9.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
SPURIOUS-FREE DYNAMIC RANGE (SFDR) $\begin{aligned} & f_{D A C}=1966.08 \mathrm{MSPS} \\ & \mathrm{f}_{\mathrm{DAC}}=1966.08 \mathrm{MSPS} \\ & \mathrm{f}_{\mathrm{DAC}}=1966.08 \mathrm{MSPS} \end{aligned}$	-6 dBFS single tone $\begin{aligned} & \text { fout }=20 \mathrm{MHz} \\ & \text { fout }=150 \mathrm{MHz} \\ & \text { fout }=180 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 76 \\ & 73 \\ & 72 \end{aligned}$		dBc   dBc   dBc
TWO-TONE THIRD INTERMODULATION DISTORTION (IMD) $\begin{aligned} & f_{D A C}=983.04 \mathrm{MSPS} \\ & \mathrm{f}_{\mathrm{DAC}}=983.04 \mathrm{MSPS} \\ & \mathrm{f}_{\mathrm{DAC}}=1966.08 \mathrm{MSPS} \\ & \mathrm{f}_{\mathrm{DAC}}=1966.08 \mathrm{MSPS} \end{aligned}$	$\begin{aligned} & -6 \mathrm{dBFS} \\ & \mathrm{f}_{\text {out }}=30 \mathrm{MHz} \\ & \mathrm{f}_{\text {out }}=150 \mathrm{MHz} \\ & \mathrm{f}_{\text {out }}=30 \mathrm{MHz} \\ & \text { fout }=180 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 87 \\ & 77 \\ & 86 \\ & 78 \end{aligned}$		dBc   dBc   dBc   dBc
NOISE SPECTRAL DENSITY (NSD), SINGLE TONE $\begin{aligned} f_{D A C} & =983.04 \mathrm{MSPS} \\ f_{D A C} & =1966.08 \mathrm{MSPS} \end{aligned}$	$\begin{aligned} & 0 \mathrm{dBFS} \\ & \mathrm{f}_{\text {out }}=150 \mathrm{MHz} \\ & \text { fout }=180 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & -164 \\ & -163 \end{aligned}$		$\mathrm{dBm} / \mathrm{Hz}$ dBm/Hz
```5 MHz BW LTE FIRST ADJACENT CHANNEL LEAKAGE RATIO (ACLR), SINGLE CARRIER \(f_{\text {DAC }}=1966.08\) MSPS \(\mathrm{f}_{\mathrm{DAC}}=1966.08\) MSPS \(\mathrm{f}_{\mathrm{DAC}}=1966.08\) MSPS```	0 dBFS , PLL off $\begin{aligned} & \mathrm{f}_{\text {out }}=50 \mathrm{MHz} \\ & \mathrm{f}_{\text {out }}=150 \mathrm{MHz} \\ & \mathrm{f}_{\text {out }}=180 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 79 \\ & 77 \\ & 77 \end{aligned}$		dBc   dBc   dBc
5 MHz BW LTE SECOND ACLR, SINGLE CARRIER $\begin{aligned} & f_{D A C}=1966.08 \mathrm{MSPS} \\ & f_{\mathrm{DAC}}=1966.08 \mathrm{MSPS} \\ & \mathrm{f}_{\mathrm{DAC}}=1966.08 \mathrm{MSPS} \end{aligned}$	0 dBFS , PLL off $\mathrm{f}_{\text {out }}=50 \mathrm{MHz}$ $\mathrm{f}_{\text {out }}=150 \mathrm{MHz}$ $\mathrm{f}_{\text {out }}=180 \mathrm{MHz}$		$\begin{aligned} & 82 \\ & 81 \\ & 81 \end{aligned}$		dBc dBc dBc

ABSOLUTE MAXIMUM RATINGS

Table 10.

Parameter	Rating
1120 to Ground	-0.3 V to AVDD33 + 0.3 V
SERDINx $\pm V_{\pi}, \overline{\text { SYNCOUTx } \pm}$, and TXENx	-0.3 V to SIOVDD33 +0.3 V
OUTx \pm	-0.3 V to AVDD33 + 0.3 V
SYSREF \pm	GND - 0.5 V
CLK \pm to Ground	-0.3 V to PVDD12 + 0.3 V
$\overline{\mathrm{RESET}}, \overline{\mathrm{IRQ}}, \overline{\mathrm{CS}}, \mathrm{SCLK}, \mathrm{SDIO}, \mathrm{SDO}$, and PDP OUTx to Ground	-0.3 V to IOVDD +0.3 V
LDO_BYP1	-0.3 V to SVDD12 +0.3 V
LDO_BYP2	-0.3 V to PVDD12 +0.3 V
Ambient Operating Temperature (T_{A})	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

The exposed pad (EPAD) must be soldered to the ground plane for the 88-lead LFCSP. The EPAD provides an electrical, thermal, and mechanical connection to the board.

Typical $\theta_{\mathrm{JA}}, \theta_{\mathrm{JB}}$, and θ_{JC} values are specified for a 4-layer, JESD51-7 high effective thermal conductivity test board for leaded surface-mount packages. θ_{JA} is obtained in still air conditions (JESD51-2). Airflow increases heat dissipation, effectively reducing $\theta_{\mathrm{TA}} . \theta_{\mathrm{JB}}$ is obtained following double-ring cold plate test conditions (JESD51-8). θ_{JC} is obtained with the test case temperature monitored at the bottom of the exposed pad.
$\Psi_{\text {Jт }}$ and $\Psi_{\text {Jв }}$ are thermal characteristic parameters obtained with $\theta_{\text {JA }}$ in still air test conditions.

Junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ can be estimated using the following equations:

$$
\begin{aligned}
& T_{J}=T_{T}+\left(\Psi_{I T} \times P\right), \\
& \text { or } \\
& T_{J}=T_{B}+\left(\Psi_{I B} \times P\right)
\end{aligned}
$$

where:
T_{T} is the temperature measured at the top of the package.
P is the total device power dissipation.
T_{B} is the temperature measured at the board.
Table 11. Thermal Resistance

Package	θ_{JA}	$\theta_{\text {נв }}$	$\theta_{\text {Jc }}$	$\boldsymbol{\Psi}_{\text {Jт }}$	$\boldsymbol{\Psi}_{\text {Jв }}$	Unit
88-Lead LFCSP ${ }^{1}$	22.6	5.59	1.17	0.1	5.22	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ The exposed pad must be securely connected to the ground plane.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. THE EXPOSED PAD MUST BE SECURELY CONNECTED TO THE GROUND PLANE. 2. $\operatorname{DNC}=$ DO NOT CONNECT.

Figure 3. Pin Configuration
Table 12. Pin Function Descriptions

Pin No.	Mnemonic	Description
$\begin{aligned} & 1,4,7,8,9,10, \\ & 56,57 \end{aligned}$	PVDD12	1.2 V Clock Supplies.
2	CLK+	PLL Reference/Clock Input, Positive. When the PLL is used, this pin is the positive reference clock input. When the PLL is not used, this pin is the positive device clock input. This pin is self biased and must be ac-coupled.
3	CLK-	PLL Reference/Clock Input, Negative. When the PLL is used, this pin is the negative reference clock input. When the PLL is not used, this pin is the negative device clock input. This pin is self biased and must be ac-coupled.
5	SYSREF+	Timing Reference Input, Positive. This pin is used in JESD204B Subclass 1 systems and is self biased, ac-coupled, or dc-coupled.
6	SYSREF-	Timing Reference Input, Negative. This pin is used in JESD204B Subclass 1 systems and is self biased, ac-coupled, or dc-coupled.
11	TXENO	Transmit enable for DAC0 and DAC1. CMOS levels are determined with respect to IOVDD.
12	TXEN1	Transmit Enable for DAC2 and DAC3. CMOS levels are determined with respect to IOVDD.
13, 14, 53	DVDD12	1.2 V Digital Supplies.
15	SERDIN0+	Serial Channel Input 0, Positive. CML compliant. SERDINO+ is internally terminated to the $\mathrm{V}_{\text {TT }}$ pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
16	SERDINO-	Serial Channel Input 0, Negative. CML compliant. SERDINO- is internally terminated to the $V_{T T}$ pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
$\begin{aligned} & 17,20,22,28, \\ & 31,32,33,36, \\ & 39,45,47,50 \end{aligned}$	SVDD12	1.2 V JESD204B Receiver Supplies.
18	SERDIN1+	Serial Channel Input 1, Positive. CML compliant. SERDIN1+ is internally terminated to the $\mathrm{V}_{\text {TT }}$ pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
19	SERDIN1-	Serial Channel Input 1, Negative. CML compliant. SERDIN1- is internally terminated to the $V_{T T}$ pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
21, 25, 42, 46	$V_{T T}$	1.2 V Termination Voltage Pins.

Pin No.	Mnemonic	Description
23	SYNCOUTO+	Positive LVDS Synchronization Output Signal for Channel Link 0.
24	$\overline{\text { SYNCOUT0- }}$	Negative LVDS Synchronization Output Signal for Channel Link 0.
26	SERDIN2+	Serial Channel Input 2, Positive. CML compliant. SERDIN2+ is internally terminated to the V_{TT} pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
27	SERDIN2-	Serial Channel Input 2, Negative. CML compliant. SERDIN2- is internally terminated to the $V_{T T}$ pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
29	SERDIN3+	Serial Channel Input 3, Positive. CML compliant. SERDIN3+ is internally terminated to the V_{TT} pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
30	SERDIN3-	Serial Channel Input 3, Negative. CML compliant. SERDIN3- is internally terminated to the $V_{T T}$ pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
34	LDO_BYP1	LDO SERDES Bypass. This pin requires a 1Ω resistor in series with a $1 \mu \mathrm{~F}$ capacitor to ground.
35	SIOVDD33	SERDES Ports Input/Output Supply.
37	SERDIN4-	Serial Channel Input 4, Negative. CML compliant. SERDIN4- is internally terminated to the $V_{T T}$ pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
38	SERDIN4+	Serial Channel Input 4, Positive. CML compliant. SERDIN4+ is internally terminated to the V_{TT} pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
40	SERDIN5-	Serial Channel Input 5, Negative. CML compliant. SERDIN5- is internally terminated to the V_{TT} pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
41	SERDIN5+	Serial Channel Input 5, Positive. CML compliant. SERDIN5+ is internally terminated to the V_{TT} pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
43	$\overline{\text { SYNCOUT1- }}$	Negative LVDS Synchronization Output Signal for Channel Link 1.
44	$\overline{\text { SYNCOUT1+ }}$	Positive LVDS Synchronization Output Signal for Channel Link 1.
48	SERDIN6-	Serial Channel Input 6, Negative. CML compliant. SERDIN6- is internally terminated to the $V_{T T}$ pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
49	SERDIN6+	Serial Channel Input 6, Positive. CML compliant. SERDIN6+ is internally terminated to the V_{TT} pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
51	SERDIN7-	Serial Channel Input 7, Negative. CML compliant. SERDIN7- is internally terminated to the V_{TT} pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
52	SERDIN7+	Serial Channel Input 7, Positive. CML compliant. SERDIN7+ is internally terminated to the V_{TT} pin voltage using a calibrated 50Ω resistor. This pin is ac-coupled only.
54,55	DNC	Do Not Connect. Do not connect to this pin.
58	PDP OUT1	Power Detection and Protection (PDP) Indicator for DAC2 and DAC3.
59	PDP OUT0	PDP Indicator for DAC0 and DAC1.
60	$\overline{\mathrm{IRQ}}$	Interrupt Request (Active Low, Open Drain).
61	$\overline{\text { RESET }}$	Reset (Active Low). CMOS levels with are determined with respect to IOVDD.
62	SDO	Serial Port Data Output. CMOS levels with are determined with respect to IOVDD.
63	SDIO	Serial Port Data Input/Output. CMOS levels with are determined with respect to IOVDD.
64	SCLK	Serial Port Clock Input. CMOS levels with are determined with respect to IOVDD.
65	$\overline{C S}$	Serial Port Chip Select (Active Low). CMOS levels with are determined with respect to IOVDD.
66	IOVDD	CMOS Input/Output and SPI Pin Supply.
$\begin{aligned} & 67,70,72,75, \\ & 77,80,82,85 \end{aligned}$	AVDD33	3.3V Analog Supplies for the DAC Cores.
68	OUT3+	DAC3 Positive Current Output.
69	OUT3-	DAC3 Negative Current Output.
71, 76, 81, 87	CVDD12	1.2 V Clock Supplies.
73	OUT2-	DAC2 Negative Current Output.
74	OUT2+	DAC2 Positive Current Output.
78	OUT1+	DAC1 Positive Current Output.
79	OUT1-	DAC1 Negative Current Output.
83	OUTO-	DAC0 Negative Current Output.
84	OUT0+	DACO Positive Current Output.
86	1120	Output Current Generation Pin for DAC Full-Scale Current. Tie a $4 \mathrm{k} \Omega$ resistor from this pin to ground.
88	$\begin{aligned} & \text { LDO_BYP2 } \\ & \text { EPAD } \end{aligned}$	LDO Clock Bypass for the DAC PLL. Tie a 1Ω resistor in series with a $1 \mu \mathrm{~F}$ capacitor from this pin to ground. Exposed Pad. The exposed pad must be securely connected to the ground plane.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Single Tone (0 dBFS) SFDR vs. fout in the First Nyquist Zone over $f_{\text {DAC }}=1966.08 \mathrm{MHz}$ and 1228.80 MHz , All Four DAC Outputs

Figure 5. Single Tone (0 dBFS) SFDR vs. fout in the First Nyquist Zone over $f_{D A C}=1474.56 \mathrm{MHz}$ and 983.04 MHz , All Four DAC Outputs

Figure 6. Single Tone (0 dBFS) SFDR vs. fout in the First Nyquist Zone over $f_{D A C}=1966.08 \mathrm{MHz}, 1474.56 \mathrm{MHz}, 1228.8 \mathrm{MHz}$, and 983.04 MHz

Figure 7. Single Tone SFDR vs. fout in the First Nyquist Zone over Digital Back Off, $f_{D A C}=1966.08 \mathrm{MHz}$

Figure 8. In-Band Second Harmonic vs. fout in the First Nyquist Zone over Digital Back Off, $f_{D A C}=1966.08 \mathrm{MHz}$

Figure 9. In-Band Third Harmonic vs. fout in the First Nyquist Zone, $f_{D A C}=1966.08 \mathrm{MHz}$

Figure 10. In-Band Second Harmonic vs. fout in the
First Nyquist Zone over Analog Full-Scale Current, $f_{D A C}=1966.08 \mathrm{MHz}$

Figure 11. In-Band Third Harmonic vs. fout in the First Nyquist Zone over Analog Full-Scale Current, $f_{\text {DAC }}=1966.08 \mathrm{MHz}$

Figure 12. Two-Tone Third Harmonic (IMD3) vs. $f_{\text {OUT }}, f_{D A C}=1966.08 \mathrm{MHz}$, 1474.56 MHz, 1228.8 MHz, and 983.04 MHz

Figure 13. Two-Tone Third Harmonic (IMD3) vs. fout over Digital Backoff

Figure 14. Two-Tone Third Harmonic (IMD3) vs. fout over Analog Full-Scale Current, $f_{D A C}=1966.08 \mathrm{MHz}$

Figure 15. Single Tone (0 dBFS) NSD vs. fout over $f_{\text {DAC }}=1966.08 \mathrm{MHz}$, 1474.56 MHz, 1228.8 MHz, and 983.04 MHz at 70 MHz

Figure 16. Single Tone (0 dBFS) NSD vs. fout over $f_{D A C,}$ 20 MHz Offset from Carrier

Figure 17. Single Tone NSD vs. fout over Digital Back Off, $f_{D A C}=1966.08 \mathrm{MHz}$, Measured at 70 MHz

Figure 18. Single Tone NSD vs. fout, $f_{D A C}=1966.08 \mathrm{MHz}$, Measured at 70 MHz , PLL On and Off

Figure 19. 1-Channel (1C) 5 MHz BW LTE, First Adjacent ACLR vs. fout, PLL On and Off

Figure 20. 1C 5 MHz BW LTE, Second Adjacent ACLR vs. fout, PLL On and Off

Figure 21. Two-Tone, Third IMD Performance, IF $=180 \mathrm{MHz}$
$f_{D A C}=1966.08 \mathrm{MHz}$

Figure 22. 1C 5 MHz BW LTE ACLR Performance, $I F=180 \mathrm{MHz}$, $f_{D A C}=1966.08 \mathrm{MHz}$

Figure 23. 1C 20 MHz BW LTE ACLR Performance, $I F=180 \mathrm{MHz}$, $f_{D A C}=1966.08 \mathrm{MHz}$

Figure 24. Single Tone $f_{D A C}=1966.08 \mathrm{MHz}, f_{\text {OUT }}=280 \mathrm{MHz},-14 \mathrm{dBFS}$

Figure 25. 2-Channel (2C) 5 MHz BW with 5 MHz Gap, LTE ACLR Performance, $I F=180 \mathrm{MHz}, f_{D A C}=1966.08 \mathrm{MHz}$ (Total LTE Carrier Power is 20.982 dBm)

Figure 26. Single Tone SFDR $f_{D A C}=1966.08 \mathrm{MHz}, 4 \times$ Interpolation, $f_{\text {OUT }}=10 \mathrm{MHz},-14 \mathrm{dBFS}$

Figure 27. 6-Channel (6C) Spaced by 600 kHz GSM, Enhanced Data Rates for GSM Evolution (EDGE) Adjacent Channel Power (ACP) IMD Performance, IF $=180 \mathrm{MHz}, f_{D A C}=1966.08 \mathrm{MHz}$

Figure 28. Total Power Consumption vs. $f_{\text {DAC }}$ over Interpolation

Figure 29. DVDD12 Supply Current vs. $f_{D A C}$ over Interpolation

Figure 30. Additive DVDD12 Supply Current vs. fDAC over Digital Functions

Figure 31. AVDD33, CVDD12, and PVDD12 Supply Current vs. $f_{D A C}$

Figure 32. Total SERDES Supply Current (SVDD12) vs. Lane Rate: 2, 4, and 8 Lanes

Figure 33. Single Tone Phase Noise vs. Offset Frequency at Four Different fout Rates, $f_{D A C}=2.0 \mathrm{GHz}$, PLL Off

Figure 34. Single Tone Phase Noise vs. Offset Frequency at Four Different fout Rates, $f_{D A C}=2.0 \mathrm{GHz}$, PLL On

Figure 35. 1C 256 Point Quadrature Amplitude Modulation (QAM) Signal ACLR Performance, $I F=180 \mathrm{MHz}, f_{D A C}=1966.08 \mathrm{MHz}$

TERMINOLOGY

Integral Nonlinearity (INL)

INL is the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero scale to full scale.

Differential Nonlinearity (DNL)

DNL is the measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code.

Offset Error

Offset error is a measure of how far from full-scale range (FSR) the DAC output current is at $25^{\circ} \mathrm{C}$ (in ppm).

Gain Error

Gain error is the difference between the actual and ideal output span. The actual span is determined by the difference between the output when the input is at its minimum code and the output when the input is at its maximum code.

Output Compliance Range

The output compliance range is the range of allowable voltages at the output of a current output DAC. Operation beyond the maximum compliance limits can cause either output stage saturation or breakdown, resulting in nonlinear performance.

Temperature Drift

Temperature drift is specified as the maximum change from the ambient value $\left(25^{\circ} \mathrm{C}\right)$ to the value at either $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$. For offset and gain drift, the drift is reported in ppm of FSR per degree Celsius.

Settling Time

Settling time is the time required for the output to reach and remain within a specified error band around its final value, measured from the start of the output transition.

Spurious-Free Dynamic Range (SFDR)

SFDR is the difference, in decibels, between the peak amplitude of the output signal and the peak spurious signal within the dc to Nyquist frequency of the DAC. Typically, energy in this band is rejected by the interpolation filters. This specification, therefore, defines how well the interpolation filters work and the effect of other parasitic coupling paths on the DAC output.

Interpolation Filter

If the digital inputs to the DAC are sampled at a multiple rate of $f_{\text {DATA }}$ (interpolation rate), a digital filter can be constructed that has a sharp transition band near $\mathrm{f}_{\mathrm{DATA}} / 2$. Images that typically appear around $\mathrm{f}_{\mathrm{DAC}}$ (output data rate) can be greatly suppressed.

Adjacent Channel Leakage Ratio (ACLR)

ACLR is the ratio in decibels relative to the carrier (dBc) between the measured power within a channel relative to its adjacent channel.

Complex Image Rejection

In a single sideband upconversion, two images are created around the second IF frequency; the desired signal is on one of these images. The other signal is unwanted, and a complex modulator rejects this unwanted image.

Adjusted DAC Update Rate

The adjusted DAC update rate the DAC update rate divided by the selected interpolation factor.

Physical Lane

Physical Lane x refers to SERDINx \pm.
Logical Lane
Logical Lane x refers to physical lanes after optionally being remapped by the crossbar block (Register 0x308 to Register 0x30B).

Link Lane

Link Lane x refers to logical lanes considered per link. When paging Link 0 (Register 0x300, Bit $2=0$), Link Lane $\mathrm{x}=$ Logical Lane x . When paging Link 1 (Register 0×300, Bit $2=1$, dual link only), Link Lane $\mathrm{x}=$ Logical Lane $\mathrm{x}+4$.

THEORY OF OPERATION

The AD9154 is a 16 -bit, quad DAC with a SERDES interface. Figure 2 shows a detailed functional block diagram of the AD9154. Eight high speed serial lanes carry data into the AD9154.
The clock for the input data is derived from the device clock (as called out in the JESD204B specification). This device clock can be sourced with a phase-locked loop (PLL) reference clock used by the on-chip PLL to generate a DAC clock or a high fidelity direct external DAC sampling clock. The device can be configured to operate in one-, two-, four-, or eight-lane modes, depending on the required input data rate. The quad DAC can be configured as a dual link device with each JESD204B link providing data for a dual DAC pair to add application flexibility.

The signal processing datapath of the AD9154 offers four interpolation modes ($1 \times, 2 \times, 4 \times$, and $8 \times$) through three half-band filters. An inverse sinc filter compensates for DAC output sinc rolloff. A digital inphase and quadrature modulator upcoverts a pair of DAC input signals to an IF frequency within the first Nyquist zone of the DAC programmed into an NCO. Gain, phase, dc offset, and group delay adjustments can programmably predistort the DAC input signals to improve LO feedthrough and unwanted sideband cancellation performance of an analog quadrature modulator following the AD9154 in a transmitter signal chain.

The AD9154 DAC cores provide a differential current output with a nominal full-scale current of 20 mA . The differential current outputs are optimized for integration with the Analog Devices ADRF6720-27 wideband quadrature modulator. The AD9154 has a mechanism for multichip synchronization, as well as a mechanism for achieving deterministic latency (latency locking). The latency for each DAC remains constant from link establishment to link establishment. The AD9154 makes use of the JESD204B Subclass 1 SYSREF signal to establish multichip synchronization.
The various functional blocks and the data interface must be set up in a specific sequence for proper operation (see the Device Setup Guide section). This data sheet describes the various blocks of the AD9154 in detail, including descriptions of the JESD204B interface, the control parameters, and the various registers that set up and monitor the device. The recommended start-up routine reliably sets up the data link.

SERIAL PORT OPERATION

The serial port interface (SPI) is a flexible, synchronous serial communications port that allows easy interfacing with many industry-standard microcontrollers and microprocessors. The interface facilitates read/write access to all registers that configure the AD9154. MSB first or LSB first transfer formats are supported. The SPI is configurable as a 4 -wire interface or a 3-wire interface in which the input and output share a single-pin I/O, SDIO.

There are two phases to a communication cycle with the AD9154. Phase 1 is the instruction cycle (the writing of an instruction byte into the device), coincident with the first 16 SCLK rising edges. The instruction word provides the serial port controller with information regarding the data transfer cycle, Phase 2 of the communication cycle. The Phase 1 instruction word defines whether the upcoming data transfer is a read or write, along with the starting register address for the following data transfer.
A logic high on the $\overline{\mathrm{CS}}$ pin, followed by a logic low, resets the serial port timing to the initial state of the instruction cycle. From this state, the next 16 rising SCLK edges represent the instruction bits of the current input/output (I/O) operation.
The remaining SCLK edges are for Phase 2 of the communication cycle. Phase 2 is the actual data transfer between the device and the system controller. Phase 2 of the communication cycle is a transfer of one or more data bytes. Eight \times N SCLK cycles are needed to transfer N bytes during the transfer cycle. Registers change immediately upon writing to the last bit of each transfer byte, except for the frequency tuning word (FTW) and numerically controlled oscillator (NCO) phase offsets, which change only when the frequency tuning word FTW_UPDATE_REQ bit is set.

DATA FORMAT

The instruction byte contains the information shown in Table 13.
Table 13. Serial Port Instruction Word

I15 (MSB)	$\mathrm{I}[14: 0]$
$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{A}[14: 0]$

$\mathrm{R} / \overline{\mathrm{W}}$, Bit 15 of the instruction word, determines whether a read or a write data transfer occurs after the instruction word write. Logic 1 indicates a read operation, and Logic 0 indicates a write operation.
A14 to A0, Bit 14 to Bit 0 of the instruction word, determine the register accessed during the data transfer portion of the communication cycle. For multibyte transfers, $\mathrm{A}[14: 0]$ is the starting address. The device generates the remaining register addresses based on the address increment bits. If the address increment bits are set high (Register 0x000, Bit 5 and Bit 2), multibyte SPI writes start on A [14:0] and increment by 1 every eight bits sent/ received. If the address increment bits are set to 0 , the address decrements by 1 every eight bits.

SERIAL PORT PIN DESCRIPTIONS

Serial Clock (SCLK)

The serial clock pin synchronizes data to and from the device and runs the internal state machines. The maximum frequency of SCLK is specified in Table 2. All data input is registered on the rising edge of SCLK. All data is driven out on the falling edge of SCLK.

Chip Select ($\overline{C S}$)

An active low input starts and gates a communication cycle. It allows the use of more than one device on the same serial communications lines. The SDIO pin goes to a high impedance state when this input is high. During the communication cycle, chip select must stay low.

Serial Data I/O (SDIO)

This pin is a bidirectional data line. In 4-wire mode, this pin acts as the data input and SDO acts as the data output.

SERIAL PORT OPTIONS

The serial port can support both MSB first and LSB first data formats. The LSB first bits (Register 0x000, Bit 6 and Bit 1) control this functionality. The default is MSB first (the LSB first bits $=0$).

When the LSB first bits $=0$ (MSB first), the instruction and data bits must be written from MSB to LSB. R/W is followed by A [14:0] as the instruction word, and $\mathrm{D}[7: 0]$ is the data-word. When the LSB first bits =1 (LSB first), the opposite is true. $\mathrm{A}[0: 14]$ is followed by $\mathrm{R} / \overline{\mathrm{W}}$, which is subsequently followed by $\mathrm{D}[0: 7]$.
The serial port supports a 3-wire or 4 -wire interface. When the SDO active bits $=1$ (Register 0x000, Bit 4 and Bit 3), a 4 -wire interface with a separate input pin (SDIO) and output pin (SDO) is used. When the SDO active bits $=0$, the SDO pin is unused and the SDIO pin is used for both input and output.

Multibyte data transfers can be performed as well. Hold the $\overline{\mathrm{CS}}$ pin low for multiple data transfer cycles (eight SCLKs) after the first data transfer word following the instruction cycle. The first eight SCLKs following the instruction cycle read from or write to the register provided in the instruction cycle. For each additional eight SCLK cycles, the address is either incremented or decremented and the read/write occurs on the new register. Set the direction of the address using the address increment bits (Register 0x000, Bit 5 and Bit 2).

When the address increment bits $=1$, the multicycle addresses are incremented. When the address increment bits $=0$, the addresses are decremented. A new write cycle can always be initiated by bringing $\overline{\mathrm{CS}}$ high and then low again.
During writes to Register 0x0000 only, the chip tests the first nibble following the address phase, ignoring the second nibble. This is completed independently from the LSB first bit and ensures that there are extra clock cycles following the soft reset bits (Register 0x000, Bit 0 and Bit 7).

Figure 37. Serial Register Interface Timing, MSB First, Address Increment Bits $=0$

Figure 38. Serial Register Interface Timing, LSB First, Address Increment Bits $=1$

Figure 39. Timing Diagram for Serial Port Register Read

Figure 40. Timing Diagram for Serial Port Register Write

CHIP INFORMATION
Register 0x003 to Register 0x006 contain chip information, as shown in Table 14.
Table 14. Chip Information

Information	Description
Chip Type	The product is a high speed DAC represented by a code of 0x04 in Register 0x003.
Product ID	8 MSBs in Register 0x005 and 8 LSBs in Register 0x004. The product ID is 0x9154.
Product Grade	Register 0x006, Bits[7:4]. The product grade is 0x9.
Device Revision	Register 0x006, Bits[3:0]. The device revision is 0x9.

[^0]: ${ }^{1}$ Offset error is a measure of how far from full-scale range (FSR) the DAC output current is at $25^{\circ} \mathrm{C}$ (in ppm).
 ${ }^{2}$ Gain drift is a measure of the slope of the DAC output current across its full temperature range (in ppm/ ${ }^{\circ} \mathrm{C}$).

[^1]: ${ }^{1}$ PClock is the AD9154 internal processing clock running at the JESD204B lane rate $\div 40$.

