ghipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution
of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business
relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components
to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business
mainly focus on the distribution of electronic components. Line cards we deal with include
Microchip,ALPS,ROHM, Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise
IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,
and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service
and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email & Skype: info@chipsmall.com Web: www.chipsmall.com
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

iy [0

ANALOG
DEVICES

AD917x API Specification
Rev 1.1

AD917x API Specification Rev 1.1

TABLE OF CONTENTS

Introductionceeeeveeeeeeeeennnne

Purpose .

Disclaimer .

Software Architecture

Folder Structure

API Interface

OVEIVIEW...uoeveereereereereereereereenenns

AD917x.h "

api_config.h

adi_defh i,
HAL Function Pointer DataTypes
*hw_Open_t...cccccneenceneenennes

*hw_cloSe_t v

*spi_xfer_t

* tx_en_pin_ctrl_t

*reset_pin_ctrl_t

* delay_us_t

ADI API Enumerations DataTypes
adi_chip_id_t ..o

signal_type_t

signal_coupling_t

jesd_link_t

jesd_syncoutb_t........coocveueuuenneee.

jesd_param_t

Error Handling

Error Codes

AD917x API Library

ADI917X API Reference HANALEovivevieiieeieiieeeeeeteeeee ettt sttt sttt ebe st st s st ssensasstenessssensasessnsasans

ad917x_handle_t

AD917x API Definitions, Data Structures and Enumerations

ad917x_dds_select_t

ad917x_dac_select_t.....cuunene...

ad917x_channel_select_t

ad917x _jesd_link_stat_t
ad917x_jesd_serdes_pll_flg t

AD917x APIs

ad917x_init

ad917x_deinit

ad917x_reset

Page 2 of 87

ad917x_get_chip_id.....ccccocveueuunce
ad917x _set_dac_clk_frequency

ad917x_get_dac_CIRK_ITEQUENCYcuvurmiciceceeciccccceti et sees
ad917x_5et_dac_PLLCONTIZ ...cuveerereiicicieeee ettt
Ad917X_get_ daC_CIK_SLALUS «..uvvuceeeeereerieiieiceectecsie ettt see e

ad917x_set_dac_clk

ad917x_set_clkout_config

ad917x_set_page_idx

ad917x_get_page_idx

ad917x_set_channel_gain

ad917x_get_channel_gain

ad917x_set_dC_cal_tONE_AIMPcoucvucrieceieeieiceeieteieeee et eae et

ad917x_ddsm_cal_dc_input_set

ad917x_ddsm_cal_dc_input_get

ad917x_dc_test_tone_set

ad917x_dc_test_tone_get

ad917x_nco_channel_freq_get

ad917X_NCO_MAIN_FIOP_GOT.euvurrercicicieeeieeieecie ettt eese st sse s

ad917x_jesd_config_datapath

ad917x_jesd_get_cfg_param

ad917x_jesd_set_sysref_enable

ad917x_jesd_get_SYSref Nable ..o
ad917x_jesd_set_syncoutb_enable

ad917x_jesd_get_cfg_status

ad917x_jesd_set_scrambler_enable
ad917x_jesd_set_lane XDAT ..ot

ad917x_jesd_get_lane_xbar...................

ad917x_jesd_invert_lane

ad917x_jesd_enable_datapath

ad917x_jesd_get_pll_status

ad917x_jesd_enable LINK........ccccciiineurieeicicccieeeee e

A9 17X TICO_SEE_TEW vttt ettt ettt bt be s st ene st ssene s eaene s etensseneneas

ad917x_nco_get_ftw

ad917x_nco_set_phase_offset

ad917x_nco_get_phase_offset

ad917x_nco_enable

ad917x_register_write

ad917x_register_read

ad917x_get_revision

Build and Integration Guide

Building the AD917x API Library

Integrating the AD917x API Library into an Application

Page 3 of 87

37
38
39
40
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
70
71
72
73
74
76
77
78
79
79

AD917x API Specification Rev 1.1

Appendix A

... 81
Pseudo Code Example for AD917X NaNdLe......c.c.vcueieiiiiiniunieniieieieie ettt sessesetse et ses st bbbttt et b s seseeee 81
APPENAIX Bt bR 84
Flow Chart For Example AD917X INItialiSatioN.......c.ciiuiiiiiiiiiiiici i ssss s ssssssssssssssssssssssssssssssssssssans 84
Flow Chart For Example CLK CONTIGUIALIONvuuvuruiuereiaeiersrieiessesssesessssssssessessssssessessssssesssssssssessessssssessessssssessessssssessessssssessessssssessesssssae 85
Flow Chart For Example JESD CONTIGUIAION «...vuvuuvunruirereiuiiereieeiessssessesssssssessesssessessessssssesssssssssessessssssessessssssessessssssessessssssessessssssessesssssses 86
ReVISION HISTOTY co.viviviiiiitiiiictcttct bbb .87

Page 4 of 87

INTRODUCTION

PURPOSE

This document serves as a programmer’s reference for using and utilizing various aspects of the ADI High Speed Converters DAC
Application Program Interface (API) library for the AD917x family of DACs. It describes the general structure of the AD917x API
library, provides a detail list of the API functions and its associated data structures, macros, and definitions.

SCOPE

Currently the AD917x API libraries targets the AD917x 16-bit 12 GSPS, RF Digital to Analog Converter with Channelizers

Table 1 AD917x

Target Device
Name

Device Description

Device Release Status

API Release Status

16-bit 12.6 GSPS, RF Digital to Analog Released Rev 1.1.1
AD9172 . .
Converter with Channelizers
AD9171 16-bit 6GSPS, RF Digital to Analog Released Rev 1.1.1
Converter.
16-bit 12.6 GSPS, RF Digital to Analog Released Rev 1.1.1
AD9173 . .
Converter with Channelizers
DISCLAIMER

The software and any related information and/or advice is provided on and “AS IS” basis, without representations, guarantees or
warranties of any kind, express or implied, oral or written, including without limitation warranties of merchantability fitness for a
particular purpose, title and non-infringement. Please refer to the Software License Agreement applied to the source code for full details.

Page 5 of 87

AD917x API Specification Rev 1.1

SOFTWARE ARCHITECTURE

The AD917x API library is a collection of APIs that provide a consistent interface to a variety of ADI High Speed Converter DAC devices.
The APIs are designed so that there is a consistent interface to the devices.

The library is a software layer that sits between the application and the DAC hardware. The library is intended to serve two purposes:

1- Provide the application with a set of APIs that can be used to configure RX hardware without the need for low-level register access.
This makes the application portable across different revisions of the hardware and even across different hardware modules.

2- Provide basic services to aid the application in controlling the DAC module, such as interrupt service routine, DAC high-level control

and status information.

The driver does not, in any shape or form, alter the configuration or state of DAC module on its own. It is the responsibility of the
application to configure the part according to the required mode of operation, poll for status, etc... The library acts only as an abstraction
layer between the application and the hardware.

As an example, the application is responsible for the following:
- Configuring the JESD Interface
- Configuring the NCOs

The application should access the DAC device only through the DAC libaries exported APIs. It is not recommended for the application to
access the DAC hardware device directly using direct SPI access. If the application chooses to directly access the DAC hardware this
should be done in a very limited scope, such as for debug purposes and it should be understood that this practice may affect the reliability

of the API functions.

dllgnd

SENTH

Figure 1 Simple Overview of the DAC API Architecture

Page 6 of 87

FOLDER STRUCTURE

The collective files of the AD917x API library are structure as depicted in Figure 2. Each branch is explained in the following sections.
The library is supplied in source format. All source files are in standard ANSI C to simply porting to any platform.

/include API Interface include files

AD917x.h
api_def.h
api_config.h
api_errors.h

JAD917x AD916x APl Implementation

/common API Common Utility Functions
/doc APl Documentation

[Applications

/dac_example API integration example application

Figure 2 AD917x Source Code Folder Structure

/API

The AD917x API root folder contain all the source code and documentation for the AD917x APL

/APl/include

This folder contains all the API public interface files. These are the header files required by the client application.
/API/AD917x

This folder includes the main API implementation code for the AD917x DAC APIs and any private header files uses by the API. ADI
maintains this code as intellectual property and all changes are at their sole discretion.

/APl/common

This folder contains ADI helper functions common to all APIs, these functions are internal private functions not designed for use by
client application.

/API/AD917x/doc
This folder contains the doxygen documentation for the AD917x APIs.

Page 7 of 87

AD917x API Specification Rev 1.1

/Application/

This folder contains simple source code examples of how to use the DAC API. The application targets the AD917x evaluation board
platform. Customers can use this example code as a guide to develop their own application based on their requirements.

Page 8 of 87

API INTERFACE
OVERVIEW

The header files listed in include folder, /API/include, describe public interface of the DAC API the client application. It consists of
several header files listed in Table 2. Each API library will have a header file that lists its supported APIs that the client application may
use to interface with the ADI device. For example, the AD917x.h header file lists all the APIs that are available to control and configure
the AD917x DAC device. The other header files are used for definitions and configurations that may be used by the client application.
The features of which will be described in subsequent sections.

Table 2 DAC API Interface

Device Name Description To be included in Client Application
AD917x.h Lists AD917x DAC API Library exposed to client application | Yes
.) Defines the various configuration options for the DAC No
api_config.h
Module
abi defh Defines any macros/enumerations or structures or No
pi_det. definitions common to and used by all DAC API Libraries
abi errorh Defines the DAC APl interface errors and error handlers Yes
Pl ’ common to and used by all DAC API Libraries
AD917X.H

The AD917x API library has a main interface header file AD917x.h header file that defines the software interface to the AD917x DAC. It
consists of a list of API functions and a number of structures and enumerations to describe the configurations and settings that are
configurable on that particular device. In addition, the DAC device handle ad917x_handle_t this is a data structure that acts a software
reference to an instance to the DAC device. This handle maintains a reference to HAL functions and the configuration status of the chip.
This reference shall be instantiated by the client application, initialized by the application with client specific data.

API Handle

A summary of the user configurable components of this handle structure are listed in Table 3. Refer to the ad917x_handle_t section and
the HAL Function Pointer DataTypes section for full a description and more details on configuration.

The platform specific members of the structure must be configured by the client application prior to calling any API with the handle,

refer to the DAC Hardware section for more details.

Table 3 Components of the DAC APl handle

Structure Description User Read/Write Access Required by API
Member
Void Pointer to a user defined data Read/Write Optional
user_data structure. Shall be passed to all HAL
functions.
sdo Device SPI Interface configuration for DAC Read/Write Yes
hardware
syncoutb Desired Signal type for SYNCOUTB signal Read/Write
sysref Desired Input coupling for sysref signal Read/Write
dac freq hz DAC Clock Frequency in Hz. Valid range Read/Write Yes
—req- 2.9GHz to 12GHz
Pointer to SPI data transfer function for Read/Write Yes
dev_xfer
DAC hardware
delay_us Pointer to delay function for DAC hardware | Read/Write Yes
hw open Pointer to platform initialization function Read/Write Optional
-op for DAC hardware
Pointer to the platform shutdown function Read/Write Optional
hw_close
for DAC hardware
Pointer to a client event handler function Read/Write Optional
event_handler .
for DAC device.

Page 9 of 87

AD917x API Specification Rev 1.1

tx en pin ctrl Pointer to client application control Read/Write Optional
—&n_pin_ function of DAC device TX_ENABLE pin
reset bin ctrl Pointer to client application control Read/Write Optional
—pin_ function of DAC device RESETB pin

API_CONFIG.H

The API configuration header file, api_config.h, located in the /include folder defines the compilation build configuration options for the
DAC APL

The client application in general is not required to include or modify this file.

ADI_DEF.H

The AD917x APl is designed to be platform agnostic. However, it requires access to some platform functionality, such as SPI read/write
and delay functions that the client application must implement and make available to the AD917x API. These functions are collectively
referred to as the platform Hardware Abstraction Layer (HAL).

The HAL functions are defined by the API definition interface header file, adi_def.h. The implementation of these functions is platform
dependent and shall be implemented by the client application as per the client application platform specific requirements. The client
application will point the AD917x API to the required platform functions on instantiation of the AD917x API handle. The following is a
description of HAL components.

The AD917x API handle, ad917x_handle_t , has a function pointer member for each of the HAL functions and are listed in Table 4. The
client application shall assign each pointer the address of the target platform’s HAL function implementation prior to calling any DAC
API.

Table 4 Short Description of HAL Functions

Function Pointer | Purpose Requirement
Name

*spi_xfer_t Implement a SPI transaction Required
*hw_open_t Open and initialize Il resources and peripherals required for DAC Device Optional
*hw_close_t Shutdown and close any resources opened by hw_open_t Optional
*delay_us_t Perform a wait/thread sleep in units of microseconds Required
*tx_en_pin_ctrl_t | Set DAC device TX_ENABLE pin high or low. Optional
*reset_pin_ctrl_t Set DAC device RESETB pin high or low. Optional
*event_handler_t | Event notification handler Optional

DAC Hardware Initialization

The client application is responsible for ensuring that all required hardware resources and peripherals required by but external to the
DAC are correctly configured. The DAC API handle ad917x_handle_t defines two pointer function members to which the client
application may optionally provide HAL functions to initialize these resources, *hw_open_t and *hw_close_t. If the client application
provides valid functions via these function pointers, the DAC initialization APIs Error! Reference source not found. and ad917x_deinit
shall call hw_open_t and *hw_close_t respectively to handle the initialization and shutdown of required hardware resources. If the client
application chooses not use this feature, the AD917x API assumes that SPI and all the external resources for the AD917x DAC are
available.

The DAC API libraries require limited access to hardware interfaces on the target platform. These are depicted in Figure 3.

Page 10 of 87

Platform
Processor

sl | 1 [m

Figure 3 Hardware Controls Required By DAC API HAL
SPI Access

Access to the SPI controller that communicates with the AD917x DAC devices is required for correct operation of the API. The API
requires access to a SPI function that can send SPI commands. This function *spi_xfer_t is defined in detail in the next section. The DAC
SPI requires 15 bit addressing with 8-bit data bytes. The AD917x DAC SPI interface supports 3 wire or 4 wire and the AD917x DAC must
be configured as such to match the platform implementation. This is done during initialization via the Error! Reference source not found.
APL Please refer to the target ADI device datasheet for full details of the SPI Interface protocol

RESETB Pin Access
Optionally access to the function that controls the AD917x DAC RESETB pin can be included in the HAL layer. This function if provided

allows the API to implement a hardware reset rather than a software reset.

The HAL function *reset_pin_ctrl_t is defined in detail in the next section. Please refer to the target ADI device datasheet for full details
on the RESETB pin hardware connections.

System Software Functions

Delay Function

For best performance, it is recommended to provide the API access to the client application’s delay function. The delay function can be a wait or
sleep function depending on the client application. This function allows the API to wait the recommended microsecond between initialization
steps.

The HAL function * delay_us_t is defined in detail in the next section.

Page 11 of 87

AD917x API Specification Rev 1.1

HAL FUNCTION POINTER DATATYPES
*HW_OPEN_T
Description

Function pointer definition to a client application function that implements platform hardware initialization for the AD917x
Device.

This function may initialize external hardware resources required by the AD917x Device and API for correct functionality as
per the target platform. For example, initialization of SPI, GPIO resources, clocks etc.

If provided, this function shall be called during the DAC module initialization via API ad917x_init. The API will then assume
that all require external hardware resources required by the DAC are configured and it is safe to interact with the DAC device.

Synopsis

typedef void(*hw_open_t)(void *user_data);
Preconditions

Unknown- Platform Implementation.
Post conditions

It is expected that all external hardware and software resources required by the DAC API are now initialized appropriately and
accessible by the DAC APL

Dependencies

Unknown- Platform Implementation

Parameters
user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to open the hardware for the ADI Device.
Return value

Zero shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.

Notes

This function is not required to integrate the API. It is an optional feature that may be used by the client application.

Page 12 of 87

*HW_CLOSE_T
Description
Function pointer to function that implements platform hardware de-initialization for the AD917x Device

This function shall close or shutdown external hardware resources required by the AD917x Device and API for correct
functionality as per the target platform. For example, initialization of SPI, GPIO resources, clocks etc.

It should close and free any resources assigned in the hw_open_t function. This function if provided shall be called during the
DAC module de-initialization via API ad917x_deinitError! Reference source not found. . The API will then assume that all
require external hardware resources required by the DAC are no longer available and it is not-safe to interact with the DAC
device.

Synopsis
typedef void(*hw_close_t)(void *user_data);
Preconditions

It is expected that there are no pre-conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad917x_init.

Post conditions
It is expected that there are no post conditions to this function.
Dependencies

Unknown- Platform Implementation

Parameters
user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to close the hardware for the ADI Device.
Return value

Zero shall indicate success.
Any other positive integer value may represent an error code to be returned to the application.
Notes

This function is not required to integrate the API. It is an optional feature that may be used by the client application.

Page 13 of 87

AD917x API Specification Rev 1.1

*SPI_XFER_T
Description
Function to implement a SPI transaction to the DAC device.

This function shall perform send a read/write SPI command to targeted ADI DAC device. The SPI implementation shall
support 15-bit addressing and 8-bit data bytes. This function shall control the SPI interface including the appropriate chip select
to correctly send and retrieve data to the targeted ADI DAC device over SPI.

The implementation may support 3-wire or 4-wire mode. The DAC API must be configured to support the platform
implementation this is done during the DAC initialization API Error! Reference source not found. .

Once a DAC device is initialized via the Error! Reference source not found. AP, it is expected that the API may call this function
at any time.

Synopsis
typedef int(*spi_xfer_t)(void *user_data, uint8_t *indata, uint8_t *outdata, int size_bytes);

Preconditions

It is expected that there are no pre-conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) Error! Reference source not found.. Once a DAC device is initialized via the Error! Reference source not found.
API, it is expected that the API may call this function at any time.

Post conditions

It is expected that there are no post conditions to this function.

Dependencies

Unknown- Platform Implementation

Parameters

user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the SPI for the ADI Device. For example, chip select may be passed to the function
via this parameter.

indata pointer to a uint8_t array with the data to be sent on the SPI
outdata pointer to a unit8_t array to which the data from the SPI device will be written

size_bytes an integer value indicating the size in bytes of both indata and outdata arrays.

Return value

Zero shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.
Notes

indata and outdata arrays shall be the same size.

Page 14 of 87

*TX_EN_PIN_CTRL_T
Description
Function to implement set the TX_ENABLE pin of the DAC device high or low.
Once a DAC device is initialized via the ad917x_init API, it is expected that the API may call this function at any time.
Synopsis
typedef int(*tx_en_pin_ctrl_t)(void *user_data, uint8_t enable);
Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad917x_init. Once a DAC device is initialized via the ad917x_init API, it is expected that the API may call
this function at any time.

Post conditions
It is expected that there are no post conditions to this function.
Dependencies

Unknown- Platform Implementation

Parameters
user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the SPI for the ADI Device. For example, chip select may be passed to the function
via this parameter.
enable A uint8_t value indicating the desired enable/disable setting for the tx_enable pin.
A value of 1 indicates TX_ENABLE pin is set HIGH.
A value of 0 indicates TX_ENABLE pin is set LOW.
Return value

Zero shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.

Notes

This function is not required to integrate the APL It is an optional feature that may be used by the client application should the
user which to control the pin via the APIL

Page 15 of 87

AD917x API Specification Rev 1.1

*RESET_PIN_CTRL_T
Description

Function to implement set the RESETB pin of the DAC device high or low.
Synopsis

typedef int(*reset_pin_ctrl_t)(void *user_data, uint8_t enable);
Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad917x_init. Once a DAC device is initialized via the ad917x_init API, it is expected that the API may call

this function at any time.
Post conditions

It is expected that there are no post conditions to this function.

Dependencies

Unknown- Platform Implementation

Parameters

user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the SPI for the ADI Device. For example, chip select may be passed to the function via this

parameter.
enable A uint8_t value indicating the desired enable/disable setting for the tx_enable pin.
A value of 1 indicates RESETB pin is set HIGH.
A value of 0 indicates RESETB pin is set LOW.
Return value
Zero shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.

Notes
This function is not required to integrate the API. It is an optional feature that may be used by the client application should the
user which to control the pin via the API. The relevant API function is ad917x_reset.

Page 16 of 87

*DELAY_US_T
Description
Function to implement a delay for specified number of microseconds.

Any timer hardware initialization required for the platform dependent implementation of this function must be performed
prior to providing to calling any DAC APIs.

Once a DAC device is initialized via the ad917x_init AP]I, it is expected that the API may call this function at any time.
Synopsis

typedef int(*delay_us_t)(void *user_data, int us);
Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad917x_init. Once a DAC device is initialized via the ad917x_init API, it is expected that the API may call
this function at any time.

Post conditions
It is expected that there are no post conditions to this function.
Dependencies

Unknown- Platform Implementation

Parameters

user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the delay for the ADI Device.

int us time to delay/sleep in microseconds
Return value

Zero shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.

Notes
This is required for optimal performance.

Performs a blocking or sleep delay for the specified time in microseconds.

Page 17 of 87

AD917x API Specification Rev 1.1

ADI APl ENUMERATIONS DATATYPES
The following are a list of enumerations and datatypes that are common to and used by ADI APIs libraries including the AD917x APL

They are defined in adi_defh

ADI_CHIP_ID_T
Description
A structure detailing the AD917x Device Identification Data. Please refer to the specific DAC Data sheet for expected values.
Synopsis
#include api_def.h
typedef struct {
uint8_t chip_type;
uintl6_t prod_id;
uint8_t prod_grade;
uint8_t dev_revision;

}adi_chip_id_t;

Fields
uint8_t chip_type Chip Type
uintl6_t prod_id Product ID code
uint8_t prod_grade Product Grade
uint8_t dev_revision Silicon Revision.
Notes

Product ID and product grade are only available after initialization.

Page 18 of 87

SIGNAL_TYPE_T
Description
A enumeration defining various signal types such as CMOS or LVDS.
Synopsis
#include api_def.h
typedef enum
{
SIGNAL_CMOS =0,
SIGNAL_LVDS,
SIGNAL_UNKNOWN
Jsignal_type_t;

Fields
SIGNAL_CMOS CMOS TYPE Signal
SIGNAL_LVDS LVDS Type Signal
SIGNAL_UNKNOWN Undefined Signal Type
Notes

Page 19 of 87

AD917x API Specification Rev 1.1

SIGNAL_COUPLING_T
Description
An enumeration defining AC and DC coupling modes.
Synopsis
#include api_def.h
typedef enum
{
COUPLING_AC =0,
COUPLING_DC,
COUPLING_DC
Jsignal_coupling_t;

Fields
COUPLING_AC AC Coupled Signal
COUPLING_DC DC Coupled Signal
COUPLING_DC Undefined coupling Signal
Notes

Page 20 of 87

JESD_LINK_T

Description

Synopsis

Fields

Notes

An enumeration of JESD Links available supported on the device.

#include api_def.h

typedef enum {
JESD_LINK_0 = 0x0,
JESD_LINK 1 = 0x1,
JESD_LINK_ALL = 0xFF

}jesd_link_t;

JESD_LINK_0 JESD Link 0
JESD_LINK 1 JESD Link 1
JESD_LINK _ALL ALL JESD LINKS Available

Page 21 of 87

AD917x API Specification Rev 1.1

JESD_SYNCOUTB_T
Description
An enumeration of JESD SYNCOUTB Signals available on the device.
Synopsis
#include api_def.h
typedef enum {
SYNCOUTB_0 = 0x0, /**<SYNCOUTB0*/
SYNCOUTB_1 =0x1, /**<SYNCOUTB1*/
SYNCOUTB_0 = 0xFF /**< ALL SYNCOUTB SIGNALS */
}jesd_syncoutb_t;

Fields
SYNCOUTB_0 JESD Link 0 SYNCOUTB Signal
SYNCOUTB_1 JESD Link 1 SYNCOUTB Signal
SYNCOUTB_0 ALL JESD LINKS SYNCOUTB Signals Available
Notes

Page 22 of 87

JESD_SYSREF_MODE_T
Description
An enumeration of JESD SYSREF Signal modes of operation
Synopsis
#include api_def.h
typedef enum {
SYSREF_NONE,
SYSREF_ONESHOT,
SYSREF_CONT,
SYSREF_MON,
SYSREF_MODE_INVLD
}jesd_sysref_mode_t;

Fields
SYSREF_NONE, No SYSREF Support
SYSREF_ONESHOT, ONE-SHOT SYSREF Mode
SYSREF_CONT, Continuous Sysref Synchronisation
SYSREF_MON, SYSREF monitor Mode
SYSREF_MODE_INVLD

Notes

Page 23 of 87

AD917x API Specification Rev 1.1

JESD_PARAM_T
Description
A structure defining the parameters of JESD Interface as per the JESD Specification
Synopsis
#include api_def.h
typedef struct {
uint8_t jesd_L;
uint8_t jesd_F;
uint8_t jesd_M;
uint8_t jesd_S;
uint8_t jesd_HD;
uint8_t jesd_K;
uint8_t jesd_N;
uint8_t jesd_NP;
uint8_t jesd_CF;
uint8_t jesd_CS;
uint8_t jesd_DID;
uint8_t jesd_BID;
uint8_t jesd_LIDO0;
uint8_t jesd_JESDV;
Jjesd_param_t;

Members
jesd_L JESD Lane Param L.
jesd_F JESD Octet Param F.
jesd_M JESD Converter Param M.
jesd_S JESD No of Sample Param S.
jesd_HD JESD High Density Param HD.
jesd_K JESD multiframe Param K.
jesd_N JESD Converter Resolution Param N.
jesd_NP JESD Bit Packing Sample NP.
jesd_CF JESD Param CE
jesd_CS JESD Param CS.
jesd_DID JESD Device ID Param DID.
jesd_BID JESD Bank ID. Param BID
jesd_LIDO JESD Lane ID for Lane 0 Param LIDO
jesd_JESDV JESD Version

Notes

Page 24 of 87

ERROR HANDLING

ERROR CODES

Each API return value represents a DAC API error code. The possible error codes for ADI device APIs are defined by a number of macros
listed in api_errors.h. Table 5 lists the possible error codes and their meanings returned by the AD917x APIs.

If a HAL function, called by during the execution of an API, returns a non-zero value the API shall return an error code indicating that
there was an error returned from a HAL function. Table 6 lists the possible errors returned by API due to a HAL function.

Table 5 API Error Code Macro definitions.

ERROR CODE

Description

API_ERROR_OK

API completed successfully

API_ERROR_SPI_SDO

API could not complete success fully due to SPI_SDO configuration in APl Handle

API_ERROR_INVALID_HANDLE_PTR

API could not complete success fully due to invalid pointer to APl Handle

API_ERROR_INVALID_XFER_PTR

API could not complete success fully due to invalid pointer to SPI transfer function

API_ERROR_INVALID_DELAYUS_PTR

API could not complete success fully due to invalid pointer to Delay function

API_ERROR_INVALID_PARAM

API could not complete successfully due to invalid APl parameter

API_ERROR_FTW_LOAD_ACK

API could not complete successfully due to Frequency Turning Word No-ACK

API_ERROR_NCO_NOT_ENABLED

API could not complete successfully due to NCO not currently Enabled

API_ERROR_INIT_SEQ_FAIL

API could not complete successfully due to NVRAM load error.

Table 6 API HAL function Error Code Macro definitions.

ERROR CODE

Description

API_ERROR_SPI_XFER

SPI HAL function return an error during the implementation of this API

API_ERROR_US_DELAY

DELAY HAL function return an error during the implementation of this API

API_ERROR_TX_EN_PIN_CTRL

TX_ENABLE pin ctrl HAL function return an error during the implementation of this API

API_ERROR_RESET_PIN_CTRL

RESET pin ctrl HAL function return an error during the implementation of this API

API_ERROR_EVENT_HNDL

EVENT Handle HAL function return an error during the implementation of this API

API_ERROR_HW_OPEN

HW Open HAL function returned an error during the implementation of this API

API_ERROR_HW_CLOSE

HW Close HAL function returned an error during the implementation of this API

Page 25 of 87

	Contact us
	Introduction
	Purpose
	Scope
	Disclaimer

	Software Architecture
	Folder Structure
	/API
	/API/include
	/API/AD917x
	/API/common
	/API/AD917x/doc
	/Application/

	API Interface
	Overview
	AD917x.h
	API Handle

	api_config.h
	adi_def.h
	DAC Hardware Initialization
	SPI Access
	RESETB Pin Access
	System Software Functions
	Delay Function

	HAL Function Pointer DataTypes
	*hw_open_t
	*hw_close_t
	*spi_xfer_t
	* tx_en_pin_ctrl_t
	*reset_pin_ctrl_t
	* delay_us_t
	ADI API Enumerations DataTypes
	adi_chip_id_t
	signal_type_t
	signal_coupling_t
	jesd_link_t
	jesd_syncoutb_t
	jesd_param_t

