imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

EVALUATING THE AD9680/AD9234 ANALOG-TO-DIGITAL CONVERTER

Preface

This user guide describes the AD9680/AD9234 evaluation board which provides all of the support circuitry required to operate the ADC in its various modes and configurations. The application software used to interface with the devices is also described. This user guide wiki applies to the following evaluation boards:

Evaluation Board Part Number	Description
AD9680-1000EBZ	Evaluation board for AD9680-1000
AD9680-820EBZ	Evaluation board for AD9680-820
AD9680-500EBZ	Evaluation board for AD9680-500
AD9234-1000EBZ	Evaluation board for AD9234-1000
AD9234-500EBZ	Evaluation board for AD9234-500

The AD9680 data sheet provides additional information and should be consulted when using the evaluation board. All documents and software tools are available at www.analog.com/hsadcevalboard. For additional information or questions, send an email to highspeed.converters@analog.com.

AD9680/AD9234 Evaluation Board

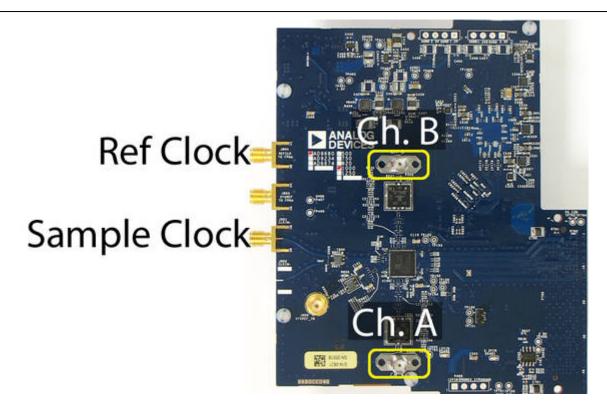


Figure 1. AD9680/AD9234 Evaluation Board

Typical Measurement Setup

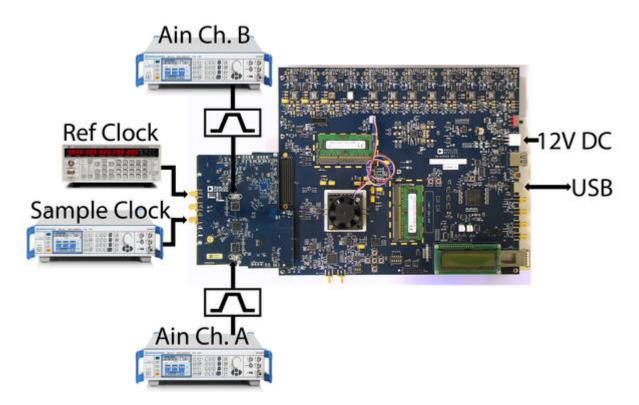


Figure 2. Evaluation Board Connection—AD9680-1000EBZ/AD9234-1000EBZ (on Left) and

ADS7-V1EBZ (on Right)

Features

- Full featured evaluation board for the AD9680 and AD9234. Includes
 - AD9680-1000EBZ
 - AD9680-820EBZ
 - AD9680-500EBZ
 - AD9234-1000EBZ
 - AD9234-500EBZ
- SPI interface for setup and control
- Wide band Balun driven input
- No external supply needed. Uses 12V-1A and 3.3V-3A supplies from FMC
- VisualAnalog® and SPI controller software interfaces

Helpful Documents

- AD9680 Data Sheet or AD9234 Data Sheet
- ADS7-V1EBZ evaluation kit (ADS7-V1EBZ)
- AN-905 Application Note, VisualAnalog Converter Evaluation Tool Version 1.0 User Manual
- AN-878 Application Note, High Speed ADC SPI Control Software
- ADI SPI Application Note ADI Serial Control Interface Standard
- AN-835 Application Note, Understanding ADC Testing and Evaluation

Software Needed

- VisualAnalog ftp://ftp.analog.com/pub/HSSP_SW/VisualAnalog/VisualAnalog_Setup.exe
- SPIController ftp://ftp.analog.com/pub/adispi/A2DComponents/Install/SPIController_Setup.exe

Design and Integration Files

- ADC evaluation board schematic, BOM, Gerber files ftp://ftp.analog.com/pub/HSC_ADC_Apps/AD9680CE04B_Design_Support/
- FPGA BIN file ftp://ftp.analog.com/pub/HSC_ADC_Apps/ADs7-V1_packet/Firmware/ad9680_ads7v1_20140821_1351. bin

Equipment Needed

- Analog signal source and antialiasing filter
- Sample clock source
- 12V, 6.5A switching power supply (such as the SL POWER CENB1080A1251F01 supplied with ADS7-V1EBZ)
- PC running Windows®
- USB 2.0 port
- AD9680-1000EBZ or AD9234-1000EBZ board
- ADS7-V1EBZ FPGA-based data capture kit

Getting Started

This section provides quick start procedures for using the evaluation board for AD9680 or AD9234.

Configuring the Board

Before using the software for testing, configure the evaluation board as follows:

- 1. Connect the evaluation board to the ADS7-V1EBZ data capture board, as shown in Figure 2.
- Connect one 12V, 6.5A switching power supply (such as the CENB1080A1251F01 supplied) to P4 on the ADS7-V1EBZ board. Connect the Standard-B USB port of the ADS7-V1EBZ board to the PC with the supplied USB cable.
- 3. Turn on the ADS7-V1EBZ.
- 4. The ADS7-V1EBZ will appear in the Device Manager as shown in Figure 3.

- Figure 3. Device Manager showing ADS7-V1EBZ
- 5. If the Device Manager does not show the ADS7-V1EBZ listed as shown in Figure 2, unplug all USB devices from the PC, uninstall and re-install SPIController and VisualAnalog and restart the hardware setup from step 1.
- 6. On the ADC evaluation board, provide a clean, low jitter 1GHz clock source to connector J801 and set the amplitude to 14dBm. This is the ADC Sample Clock.

7. On the ADC evaluation board, provide a clean, low jitter clock source to connector J804 and set the amplitude to 10dBm. This is the Reference Clock for the gigabit transceivers in the FPGA. The REFCLK frequency can be calculated using the following empirical formulae:

$$LaneLineRate = \frac{M \times Nprime \times \left(\frac{10}{8}\right) \times f_{out}}{L} \text{ bps/lane, where}$$

$$f_{out} = \frac{f_{ADC \ SAMPLE \ CLOCK}}{DecimationRatio}, Nprime = 8 \text{ or } 16 \text{ (Default Nprime = 16) } REFCLK = \frac{LaneLineRate}{20}$$

- 8. On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel A to P200. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.)
- 9. On the ADC evaluation board, use a clean signal generator with low phase noise to provide an input signal for channel B to P202. Use a shielded, RG-58, 50 Ω coaxial cable to connect the signal generator output to the ADC Evaluation Board. For best results, use a narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency. (ADI uses TTE, Allen Avionics, and K & L band-pass filters.)

Visual Analog Setup

- 1. Click Start \rightarrow All Programs \rightarrow Analog Devices \rightarrow VisualAnalog \rightarrow VisualAnalog
- 2. On the VisualAnalog "New Canvas" window, click $ADC \rightarrow Dual \rightarrow AD9680$ or $ADC \rightarrow Dual \rightarrow$

Categories:	ting Recent		Templates:			
	AD9613 AD9627 AD9627 AD9628 AD9635 AD9638 AD9640 AD9643 AD9644 AD9645 AD9645 AD9647 AD9648 AD9650 AD9652 AD9655 AD9680	•	Samples	Average FFT	Two-Tone	Average Two-Ton
					Open	0

Figure 4. Selecting the AD9680 canvas

3. If VisualAnalog opens with a collapsed view, click on the "Expand Display" icon (see figure 5)

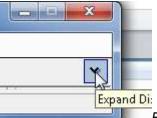


Figure 5. Expanding Display in VA

4. Click the Settings button in the ADC Data Capture block as shown in Figure 6

	ala C	ADCDa	
		S₿	
ļ) <u>s</u> ₿	

Figure 6. Changing the ADC Capture Settings

5. On the **General** tab make sure the clock frequency is set to **1000MHz** (or other clock frequency). The FFT capture length may be changed to 131072 (128k) or 262144 (256k) per channel. The ADs7-V1 FPGA software supports up to 2M FFT capture (1M per channel)

ADS7V1 (38CE0EF383800000F -	Data		Length	
			Longar	
AD 9680 -	Ch. A D	ata	262144	
AD9680	🖉 Ch. B D	ata	262144	
	Select Data:	Ch. A Data	Remove Clear	•
	uency (MHz): 1000	uency (MHz): 1000	Refresh uency (MHz): 1000	Refresh Ch. B Data 262144 uency (MHz): 10000

Figure 7. Setting the clock frequency and Capture length

- 6. Click on the Capture Board tab and browse to the ad9680_ads7v1_09242013_0949am.bin file. Click the Program button. The FPGA_DONE LED should illuminate on the ADS7-V1 board indicating that the FPGA has been correctly programmed. The bin file is available at the ftp site ftp://ftp.analog.com/pub/HSC_ADC_Apps/ADs7-V1_packet/Firmware/ad9680_ads7v1_09242013_094 9am.bin
- 7. On the **Device** tab. Make sure that **Enable Alternate REFCLK** option is unchecked.
- 8. Click **OK**

SPIController Setup

- 1. Click Start \rightarrow All Programs \rightarrow Analog Devices \rightarrow SPIController \rightarrow SPIController
- 2. Select the appropriate configuration file when prompted.
- 3. In the **Global** tab, under the **Generic Read/Write** section, write 0x81 to register 0x000. This issues a Soft reset for the DUT.

SPIController 4.0.6.4052 : USB Ezus	b-0:CS1:AD9680_14bit_1.256	SspiR2Si.cfg : AD9680_14Bit_1.25	iGSspiR2Si.cal		
File Config Help					
M 🖪 🖸 🖬 🖽 🗠 🗸	1 10 10 10 10 10 10 10 10 10 10 10 10 10				
Global ADCBase0 ADCBase1 ADC	Base2 ADCBase3 ADCBase4	ADCBase5 ADC A ADC B			
CHIP PORT CFG(0)	DEVICE INDEX(8)	6	SENERIC READ AWRIT	IE .	
	ADC	Bin	Hex	Dec	
LSB First Controller will also be updated from	A	00000000	00000000	000000000 Address	
Reset DUT	₩ B	10000001	00000081	0000000129 Write	
CHIPID(4-5)	S			Read	{
Read	B				·
Unknown		Select Remove Clear	Run	8 Reg length	
CHIP GRADE(6)	SPI CONFIG B(1)	HEX 00000000 W 00000083	1 1000 0 0001		
Read	Enable	HEX 0000000 @ 0000008	T ADCO @ CSB1		<u>^</u>
Unknown	Data Path Soft Reset				
Chip Die Revision ?		ε.			
Read	CHIP TYPE REG(3)				
	? Read				
VENDOR ID REG(C-D)					
	CHIP SCRATCH PAD(A)				
? Read	00 E Hex				
SPI REVISION REG(B)					
? Read					
Read					

Figure 8. Sending a Soft Reset to the AD9680

4. The JESD204B quick configuration and Lane Rate registers are available in the **ADCBase3** tab. Set the Lane Rate setting register 0x56E to **Maximum Lane Rate**

			.3905 : US	B Ezusb-0 :)	CS1:AD968	10_14bit_1.25	GSspiR2Si.cf	g : AD968	80_14Bi
File	Config	Help							
	A. N								
Globa	ADCB	ase0 A	DCBase1	ADCBase2	ADCBase3	ADCBase4	ADCBase5	ADCA	ADC B
		ROL REG	G(56E) ate Mode.						
Max	ximum La	ne Rate I	/lode : Seri	al Line Rate r	must be >= 6.3	25 Gbps and	<= 12.5 Gbps		-
Junca		No. Totol	In second col						-

Figure 9. Setting

the JESD204B Lane Rate

5. Set the JESD204B Quick Configuration register 0x570. For 1000MSPS operation with **NO** DDCs (*Full Bandwidth Mode*), the values for **L.M.F** are **4.2.1**

le Config Help	
I 🔝 💌 🔜 📟 🔜	
obal ADCBase0 ADCBase1 ADCB	ase2 ADCBase3 ADCBase4 ADCBase5 ADCA ADCB
PLL CONTROL REG (56E) PLL Low Encode Rate Mode.	
Maximum Lane Rate Mode : Serial Line	Rate must be >= 6.25 Gbps and <= 12.5 Gbps
PLL STATUS REG(56F)	JESD204B LINK CTRL REG(571) JESD204B Standby Mode Zeros for all converter samples. *
JESD 2048 QUICK CONFIGURATION REG (570) Number of Lanes	☐ JESD204B Serial Tail Bit PN Enable ☐ JESD204B Serial Test Sample Enable ☑ JESD204B Serial Lane Synchronization Enable
4	JESD204B Serial Initial Lane Alignment Sequence Mode
Number of Converters	Enabled *
2 Number of Octets/Frame	JESD204B Serial Frame Alignment Character Insertion (FACI) Disable JESD204B Serial Transmit Link Power Down (active high)

Figure 10. Setting

the JESD204B Quick Configuration Register

- 6. After the quick configuration setting is completed, the PLL Lock Detect register 0x56F will read 0x80 to denote a lock. The SPIController interface will show a "1" to denote a lock.
- 7. Toggle the JESD204B link by checking and then unchecking the JESD204B Serial Transmit Power Down box
- 8. Individual Channel control for **ADC A** and **ADC B** are done using the Device Index Register (0x008)

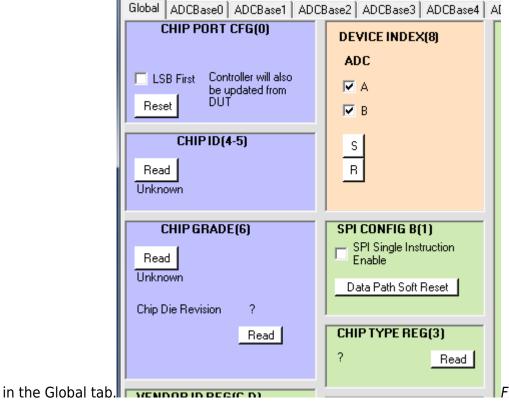


Figure 11. Device Index

for ADC Channel A and Channel B

- 9. Under **ADC A** and **ADC B** tabs the options for Channel A and B are listed. Default settings have been programmed to ensure optimal performance for the input bandwidth and sample rate. Only the following options need to be operated with:
 - 1. Chip Configuration Register (2): This option allows the channel to be powered on
 - 2. Buffer Current Setting (18): This option allows the buffer current to change to enable better harmonic performance at different frequencies. At high analog input frequencies, the buffer current may need to be increased to optimize harmonic distortion performance (HD2, HD3). Keep in mind that at high frequencies, the performance is also jitter limited. So increasing the buffer currents may lead to diminishing returns with higher power consumption. Refer to the datasheet to understand the relationship between I_{AVDD3} and Buffer Current Setting.
 - 3. Analog Input Differential Termination (16): This sets the input termination. Recommended settings are 500, 200, 100, 50 ohms. At lower termination settings, the harmonic distortion performance may show improvement, but the analog input signal amplitude will be reduced.
 - 4. Input Full Scale Range (25): At high input frequencies, in order to preserve the linearity of the input buffer, it may be beneficial to reduce the input full-scale range in order to get more harmonic distortion performance. This in turn may negatively affect the SNR of the ADC.

Obtaining an FFT

1. Click the Run button in VisualAnalog , you should see the captured data similar to the plot shown in Figure 12.

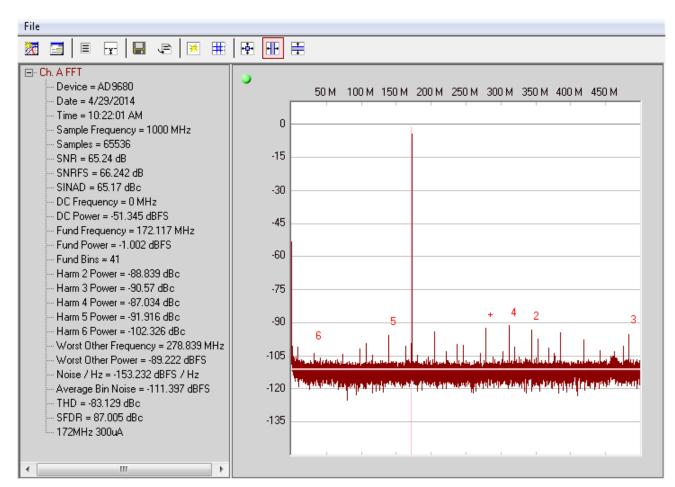


Figure 12. AD9680-1000 FFT at 170MHz Analog Input

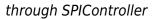
- 2. Adjust the amplitude of the input signal so that the fundamental is at the desired level. (Examine the **Fund Power** reading in the left panel of the VisualAnalog FFT window.)
- 3. To save the FFT plot do the following
 - 1.

Click on the Float Form button in the FFT window window

Float Form...

Figure 13. Floating the FFT

2. Click on File \rightarrow Save Form As button and save it to a location of choice


	Graph - AD9680 FFT	
File]	
	Save Form As	1
	Page Setup	
	Print	
	Exit	
-		Figure 14. Saving the FF

Troubleshooting Tips

FFT plot appears abnormal

- If you see a normal noise floor when you disconnect the signal generator from the analog input, be sure you are not overdriving the ADC. Reduce input level if necessary.
- In VisualAnalog, Click on the Settings button in the **Input Formatter** block. Check that **Number Format** is set to the correct encoding (twos compliment by default). Repeat for the other channel.
- Issue a Data Path Soft Reset through SPIController Global tab as shown in Figure 15

File Config Help	
Global ADCBase0 ADCBase1 ADC CHIP PORT CFG(0) LSB First Controller will also be updated from DUT CHIP ID(4-5) Read Unknown	DEVICE INDEX(8) ADC IV A IV B S R
CHIP GRADE (6) Read Unknown Chip Die Revision ? Read	SPI CONFIG B(1) SPI Single Instruction Enable Data Path Soft Reset CHIP TYPE REG(3) ? Read

Figure 15. Issuing a data path soft reset

The FFT plot appears normal, but performance is poor.

- Make sure you are using the appropriate band-pass filter on the analog input.
- Make sure the signal generators for the clock and the analog input are clean (low phase noise).
- If you are using non-coherent sampling, change the analog input frequency slightly, or use coherent frequencies.
- Make sure the SPI config file matches the product being evaluated.

The FFT window remains blank after the Run button is clicked

- Make sure the evaluation board is securely connected to the ADS7-V1.
- Make sure the FPGA has been programmed by verifying that the **Config DONE** LED is illuminated

on the ADS7-V1. If this LED is not illuminated reprogram the FPGA through VisualAnalog. If the LED still does not illuminate disconnect the USB and power cord for 15 seconds. Connect again and repeat the ADS7-V1 setup process.

- Make sure the correct FPGA *bin* file was used to program the FPGA.
- Be sure that the correct sample rate is programmed. Click on the **Settings** button in the **ADC Data Capture** block in VisualAnalog, and verify that the **Clock Frequency** is properly set.

	Boards	Outp	out Data	1	
Capture:	ADS7V1 (3BCE0EF383B00000F		Data	Length	_
Device:	AD 9680 🔹	1	Ch. A Data Ch. B Data	262144 262144	
Clock Freq	uency (MHz): 1000				
		Sele	ect Data: Ch. A (emove	▼ Clear

Figure 16. Setting the correct clock frequeency in VisualAnalog

- Ensure that the REFCLOCK is ON and set to the appropriate frequency.
- Restart SPIController.

VisualAnalog indicates that the "FIFO capture timed out" or "FIFO not ready for read back"

- Make sure all power and USB connections are secure.
- Make sure that the REFCLOCK is ON and set to the appropriate frequency.

VisualAnalog displays a blank FFT when the RUN button is clicked

• Ensure that the clock to the ADC is supplied. Using SPIController **ADCBase0** tab the status of the clock can be read out. See figure 17.

e Config Help	
1 🖪 🔳 🖽 🔤	
bal ADCBase0 ADCBase1 ADCBase2 A	ADCBase3 ADCBase4 ADCBase5 ADCA ADC
CHIP PIN CTRL REG(40) xternal Power Down Pin Functionality	CLOCK STATUS REG(11C) Clock detection status
Power Down Pin 🗾	Read
ast Detect B Pin Functionality	
)isabled 🗾 🚽	SYSREF CONTROL REG(120)
ast Detect A Pin Functionality	and the second
)isabled 💌	SYSREF Flag Reset SYSREF Transition Selection
LOCK DIVIDER CONTROL REG(108)	LOW to HIGH *

Detection Status Register

• Ensure that the ADC's PLL is locked by checking the status of the PLL lock detect register 0x56F. This can be done using SPIController.

 $\ensuremath{\mathbb{S}}$ Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

www.analog.com