imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

14-Bit, 150 MSPS, 1.8 V Analog-to-Digital Converter

AD9254

FUNCTIONAL BLOCK DIAGRAM

The digital output data is presented in offset binary, Gray code, or twos complement formats. A data output clock (DCO) is provided to ensure proper latch timing with receiving logic.

The AD9254 is available in a 48-lead LFCSP_VQ and is specified over the industrial temperature range (-40° C to $+85^{\circ}$ C).

PRODUCT HIGHLIGHTS

- 1. The AD9254 operates from a single 1.8 V power supply and features a separate digital output driver supply to accommodate 1.8 V to 3.3 V logic families.
- 2. The patented SHA input maintains excellent performance for input frequencies up to 225 MHz.
- 3. The clock DCS maintains overall ADC performance over a wide range of clock pulse widths.
- 4. A standard serial port interface supports various product features and functions, such as data formatting (offset binary, twos complement, or Gray coding), enabling the clock DCS, power-down, and voltage reference mode.
- 5. The AD9254 is pin-compatible with the AD9233, allowing a simple migration from 12 bits to 14 bits.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved.

FEATURES

1.8 V analog supply operation 1.8 V to 3.3 V output supply SNR = 71.8 dBc (72.8 dBFS) to 70 MHz input SFDR = 84 dBc to 70 MHz input Low power: 430 mW @ 150 MSPS Differential input with 650 MHz bandwidth On-chip voltage reference and sample-and-hold amplifier DNL = ±0.4 LSB Flexible analog input: 1 V p-p to 2 V p-p range Offset binary, Gray code, or twos complement data format Clock duty cycle stabilizer Data output clock Serial port control Built-in selectable digital test pattern generation Programmable clock and data alignment

APPLICATIONS

Ultrasound equipment IF sampling in communications receivers CDMA2000, WCDMA, TD-SCDMA, and WiMax Battery-powered instruments Hand-held scopemeters

Low cost digital oscilloscopes

Macro, micro, and pico cell infrastructure

GENERAL DESCRIPTION

The AD9254 is a monolithic, single 1.8 V supply, 14-bit, 150 MSPS analog-to-digital converter (ADC), featuring a high performance sample-and-hold amplifier (SHA) and on-chip voltage reference. The product uses a multistage differential pipeline architecture with output error correction logic to provide 14-bit accuracy at 150 MSPS data rates and guarantees no missing codes over the full operating temperature range.

The wide bandwidth, truly differential SHA allows a variety of user-selectable input ranges and offsets, including single-ended applications. It is suitable for multiplexed systems that switch full-scale voltage levels in successive channels and for sampling single-channel inputs at frequencies well beyond the Nyquist rate. Combined with power and cost savings over previously available ADCs, the AD9254 is suitable for applications in communications, imaging, and medical ultrasound.

A differential clock input controls all internal conversion cycles. A duty cycle stabilizer (DCS) compensates for wide variations in the clock duty cycle while maintaining excellent overall ADC performance.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD9254* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

AD9254 Evaluation Board

DOCUMENTATION

Application Notes

- AN-1142: Techniques for High Speed ADC PCB Layout
- AN-282: Fundamentals of Sampled Data Systems
- AN-501: Aperture Uncertainty and ADC System Performance
- AN-715: A First Approach to IBIS Models: What They Are and How They Are Generated
- AN-737: How ADIsimADC Models an ADC
- AN-741: Little Known Characteristics of Phase Noise
- AN-742: Frequency Domain Response of Switched-Capacitor ADCs
- AN-756: Sampled Systems and the Effects of Clock Phase Noise and Jitter
- AN-807: Multicarrier WCDMA Feasibility
- AN-808: Multicarrier CDMA2000 Feasibility
- AN-812: MicroController-Based Serial Port Interface (SPI)
 Boot Circuit
- AN-827: A Resonant Approach to Interfacing Amplifiers to Switched-Capacitor ADCs
- AN-835: Understanding High Speed ADC Testing and Evaluation
- AN-851: A WiMax Double Downconversion IF Sampling Receiver Design
- AN-877: Interfacing to High Speed ADCs via SPI
- AN-878: High Speed ADC SPI Control Software
- AN-905: Visual Analog Converter Evaluation Tool Version 1.0 User Manual

Data Sheet

• AD9254: 14-Bit, 150 MSPS, 1.8 V Analog-to-Digital Converter Data Sheet

TOOLS AND SIMULATIONS \square

AD9254 IBIS Models

REFERENCE MATERIALS

Technical Articles

• MS-2210: Designing Power Supplies for High Speed ADC

Tutorials

• MT-230: Noise Considerations in High Speed Converter Signal Chains

DESIGN RESOURCES

- AD9254 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS 🖵

View all AD9254 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS

Features 1
Applications1
General Description
Functional Block Diagram 1
Product Highlights 1
Revision History
Specifications
DC Specifications
AC Specifications
Digital Specifications
Switching Specifications
Timing Diagram
Absolute Maximum Ratings7
Thermal Resistance
ESD Caution7
Pin Configuration and Function Descriptions
Equivalent Circuits
Typical Performance Characteristics
Theory of Operation
Analog Input Considerations14
Differential Input Configurations
Voltage Reference
Clock Input Considerations
Jitter Considerations
Power Dissipation and Standby Mode19
Digital Outputs

Serial Port Interface (SPI)	21
Configuration Using the SPI	21
Hardware Interface	21
Configuration Without the SPI	21
Memory Map	22
Reading the Memory Map Register Table	22
Memory Map Register Table	23
Layout Considerations	25
Power and Ground Recommendations	25
CML	25
RBIAS	25
Reference Decoupling	25
Evaluation Board	26
Power Supplies	26
Input Signals	26
Output Signals	26
Default Operation and Jumper Selection Settings	27
Alternative Clock Configurations	27
Alternative Analog Input Drive Configuration	27
Schematics	29
Evaluation Board Layout	34
Bill of Materials	37
Outline Dimensions	40
Ordering Guide	40
	Serial Port Interface (SPI) Configuration Using the SPI Hardware Interface Configuration Without the SPI Memory Map Appendix and Provide the SPI Memory Map Register Table Memory Map Register Table Memory Map Register Table Networy Map Register Table Networy Map Register Table Considerations Power and Ground Recommendations CML RBIAS Reference Decoupling Evaluation Board Power Supplies Input Signals Output Signals Default Operation and Jumper Selection Settings Alternative Clock Configurations Alternative Analog Input Drive Configuration Schematics Evaluation Board Layout Bill of Materials Outline Dimensions Ordering Guide

REVISION HISTORY

10/06—Revision 0: Initial Version

SPECIFICATIONS

DC SPECIFICATIONS

AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = -1.0 dBFS, DCS enabled, unless otherwise noted.

Table 1.

		AD9254BCPZ-150		-150	
Parameter	Temperature	Min	Тур	Max	Unit
RESOLUTION	Full	14			Bits
ACCURACY					
No Missing Codes	Full		Guarantee	d	
Offset Error	Full		±0.3	±0.8	% FSR
Gain Error	Full		±0.6	±4.5	% FSR
Differential Nonlinearity (DNL) ¹	25°C		±0.4		LSB
	Full			±1.0	LSB
Integral Nonlinearity (INL) ¹	25°C		±1.5		LSB
	Full			±5.0	LSB
TEMPERATURE DRIFT					
Offset Error	Full		±15		ppm/°C
Gain Error	Full		±95		ppm/°C
INTERNAL VOLTAGE REFERENCE					
Output Voltage Error (1 V Mode)	Full		±5	±35	mV
Load Regulation @ 1.0 mA	Full		7		mV
INPUT REFERRED NOISE					
VREF = 1.0 V	25°C		1.3		LSB rms
ANALOG INPUT					
Input Span, VREF = 1.0 V	Full		2		V p-p
Input Capacitance ²	Full		8		pF
REFERENCE INPUT RESISTANCE	Full		6		kΩ
POWER SUPPLIES					
Supply Voltage					
AVDD	Full	1.7	1.8	1.9	V
DRVDD	Full	1.7	2.5	3.6	V
Supply Current					
IAVDD ¹	Full		240	260	mA
$IDRVDD^{1}(DRVDD = 1.8 V)$	Full		11		mA
$IDRVDD^{1}$ (DRVDD = 3.3 V)	Full		23		mA
POWER CONSUMPTION					
DC Input	Full		430	470	mW
Sine Wave Input ¹ (DRVDD = 1.8 V)	Full		450		mW
Sine Wave Input ¹ (DRVDD = 3.3 V)	Full		506		mW
Standby Power ³	Full		40		mW
Power-Down Power	Full		1.8		mW

¹ Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.

² Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 4 for the equivalent analog input structure.

³ Standby power is measured with a dc input, the CLK pin inactive (set to AVDD or AGND).

AC SPECIFICATIONS

AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = -1.0 dBFS, DCS enabled, unless otherwise noted.

Table 2.

		AD9254BCPZ-150			
Parameter ¹	Temperature	Min	Тур	Мах	Unit
SIGNAL-TO-NOISE-RATIO (SNR)					
$f_{IN} = 2.4 \text{ MHz}$	25°C		72.0		dBc
$f_{IN} = 70 \text{ MHz}$	25°C		71.8		dBc
	Full	70.0			dBc
$f_{IN} = 100 \text{ MHz}$	25°C		71.6		dBc
$f_{IN} = 170 \text{ MHz}$	25°C		70.8		dBc
SIGNAL-TO-NOISE AND DISTORTION (SINAD)					
$f_{IN} = 2.4 \text{ MHz}$	25°C		71.7		dBc
$f_{IN} = 70 \text{ MHz}$	25°C		71.0		dBc
	Full	69.0			dBc
$f_{IN} = 100 \text{ MHz}$	25°C		70.6		dBc
$f_{IN} = 170 \text{ MHz}$	25°C		69.8		dBc
EFFECTIVE NUMBER OF BITS (ENOB)					-
f _{IN} = 2.4 MHz	25℃		11.7		Bits
$f_{IN} = 70 \text{ MHz}$	25°C		11.7		Bits
$f_{IN} = 100 \text{ MHz}$	25°C		11.6		Bits
$f_{IN} = 170 \text{ MHz}$	25°C		11.5		Bits
WORST SECOND OR THIRD HARMONIC					
$f_{IN} = 2.4 \text{ MHz}$	25°C		-90		dBc
$f_{\rm IN} = 70 \text{ MHz}$	25°C		-84		dBc
	Full		0.	-74	dBc
$f_{IN} = 100 \text{ MHz}$	25°C		-83		dBc
$f_{\rm IN} = 170 \text{ MHz}$	25°C		-80		dBc
SPUBIOUS-EREE DYNAMIC RANGE (SEDR)					
$f_{IN} = 2.4 \text{ MHz}$	25°C		90		dBc
$f_{\rm IN} = 70 \text{ MHz}$	25°C		84		dBc
	Full	74	0.		dBc
$f_{IN} = 100 \text{ MHz}$	25°C		83		dBc
$f_{IN} = 170 \text{ MHz}$	25°C		80		dBc
WORST OTHER (HARMONIC OR SPUR)					
$f_{\rm IN} = 2.4 \rm MHz$	25°C		-93		dBc
$f_{\rm IN} = 70 \text{ MHz}$	25°C		-93		dBc
	Full		20	-85	dBc
$f_{IN} = 100 \text{ MHz}$	25°C		-90		dBc
$f_{\rm IN} = 170 \rm MHz$	25°C		-90		dBc
TWO-TONE SEDR			20		+
$f_{IN} = 29 \text{ MHz} (-7 \text{ dBFS}), 32 \text{ MHz} (-7 \text{ dBFS})$	25°C		90		dBFS
$f_{IN} = 169 \text{ MHz} (-7 \text{ dBFS}), 172 \text{ MHz} (-7 \text{ dBFS})$	25°C		90		dBFS
ANALOG INPUT BANDWIDTH	25°C		650		MHz

¹ See Application Note AN-835, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.

DIGITAL SPECIFICATIONS

AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = -1.0 dBFS, DCS enabled, unless otherwise noted.

Table 3.

		AD9254BCPZ-150			
Parameter	Temperature	Min	Тур	Max	Unit
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK-)					
Logic Compliance			CMOS/LVDS/LVPECL		
Internal Common-Mode Bias	Full		1.2		V
Differential Input Voltage	Full	0.2		6	Vp-p
Input Voltage Range	Full	AVDD - 0.3		AVDD + 1.6	V
Input Common-Mode Range	Full	1.1		AVDD	V
High Level Input Voltage (V⊮)	Full	1.2		3.6	V
Low Level Input Voltage (VIL)	Full	0		0.8	V
High Level Input Current (I⊮)	Full	-10		+10	μA
Low Level Input Current (IIL)	Full	-10		+10	μA
Input Resistance	Full	8	10	12	kΩ
Input Capacitance	Full		4		рF
LOGIC INPUTS (SCLK/DFS, OEB, PWDN)					-
High Level Input Voltage (V⊩)	Full	1.2		3.6	V
Low Level Input Voltage (V _{IL})	Full	0		0.8	V
High Level Input Current (I _{II})	Full	-50		-75	μA
Low Level Input Current (IIL)	Full	-10		+10	μA
Input Resistance	Full		30		kΩ
Input Capacitance	Full		2		pF
LOGIC INPUTS (CSB)					
High Level Input Voltage (V⊩)	Full	1.2		3.6	v
Low Level Input Voltage (V_{\parallel})	Full	0		0.8	v
High Level Input Current (III)	Full	-10		+10	μA
Low Level Input Current (I _{II})	Full	+40		+135	μA
Input Resistance	Full		26		kΩ
Input Capacitance	Full		2		рF
LOGIC INPUTS (SDIO/DCS)					-
High Level Input Voltage (V⊮)	Full	1.2		DRVDD + 0.3	v
Low Level Input Voltage (V_{IL})	Full	0		0.8	v
High Level Input Current (III)	Full	-10		+10	μA
Low Level Input Current (IIL)	Full	+40		+130	μA
Input Resistance	Full		26		kΩ
Input Capacitance	Full		5		рF
DIGITAL OUTPUTS					-
DRVDD = 3.3 V					
High Level Output Voltage (Vон, Іон = 50 µА)	Full	3.29			v
High Level Output Voltage (V_{OH} , $I_{OH} = 0.5$ mA)	Full	3.25			V
Low Level Output Voltage (V_{OL} , $I_{OL} = 1.6$ mA)	Full			0.2	v
Low Level Output Voltage (V_{OL} , I_{OL} = 50 μ A)	Full			0.05	V
DRVDD = 1.8 V					
High Level Output Voltage (V _{OH} , $I_{OH} = 50 \mu A$)	Full	1.79			V
High Level Output Voltage (V_{OH} , $I_{OH} = 0.5$ mA)	Full	1.75			V
Low Level Output Voltage (V_{OL} , I_{OL} = 1.6 mA)	Full			0.2	V
Low Level Output Voltage (V_{OL} , I_{OL} = 50 µA)	Full			0.05	V

SWITCHING SPECIFICATIONS

AVDD = 1.8 V, DRVDD = 2.5 V, unless otherwise noted.

Table 4.

		AD9254BCPZ-150		150	
Parameter ¹	Temperature	Min	Тур	Max	Unit
CLOCK INPUT PARAMETERS					
Conversion Rate, DCS Enabled	Full	20		150	MSPS
Conversion Rate, DCS Disabled	Full	10		150	MSPS
CLK Period	Full	6.7			ns
CLK Pulse Width High, DCS Enabled	Full	2.0	3.3	4.7	ns
CLK Pulse Width High, DCS Disabled	Full	3.0	3.3	3.7	ns
DATA OUTPUT PARAMETERS					
Data Propagation Delay $(t_{PD})^2$	Full	3.1	3.9	4.8	ns
DCO Propagation Delay (t _{DCO})	Full		4.4		ns
Setup Time (ts)	Full	1.9	2.9		ns
Hold Time (t _H)	Full	3.0	3.8		ns
Pipeline Delay (Latency)	Full		12		Cycles
Aperture Delay (t _A)	Full		0.8		ns
Aperture Uncertainty (Jitter, t _J)	Full		0.1		ps rms
Wake-Up Time ³	Full		350		μs
OUT-OF-RANGE RECOVERY TIME	Full		3		Cycles
SERIAL PORT INTERFACE ⁴					
SCLK Period (t _{CLK})	Full	40			ns
SCLK Pulse Width High Time (t _{HI})	Full	16			ns
SCLK Pulse Width Low Time (t _{LO})	Full	16			ns
SDIO to SCLK Setup Time (t _{Ds})	Full	5			ns
SDIO to SCLK Hold Time (t _{DH})	Full	2			ns
CSB to SCLK Setup Time (ts)	Full	5			ns
CSB to SCLK Hold Time (t _H)	Full	2			ns

¹ See Application Note AN-835, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions. ² Output propagation delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load.

³ Wake-up time is dependent on the value of the decoupling capacitors, values shown with 0.1 µF capacitor across REFT and REFB.

⁴ See Figure 50 and the Serial Port Interface (SPI) section.

TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Rating
ELECTRICAL	
AVDD to AGND	–0.3 V to +2.0 V
DRVDD to DGND	–0.3 V to +3.9 V
AGND to DGND	–0.3 V to +0.3 V
AVDD to DRVDD	-3.9 V to +2.0 V
D0 through D13 to DGND	-0.3 V to DRVDD + 0.3 V
DCO to DGND	-0.3 V to DRVDD + 0.3 V
OR to DGND	-0.3 V to DRVDD + 0.3 V
CLK+ to AGND	–0.3 V to +3.9 V
CLK– to AGND	–0.3 V to +3.9 V
VIN+ to AGND	–0.3 V to AVDD + 0.2 V
VIN- to AGND	-0.3 V to AVDD + 0.2 V
VREF to AGND	–0.3 V to AVDD + 0.2 V
SENSE to AGND	–0.3 V to AVDD + 0.2 V
REFT to AGND	–0.3 V to AVDD + 0.2 V
REFB to AGND	–0.3 V to AVDD + 0.2 V
SDIO/DCS to DGND	-0.3 V to DRVDD + 0.3 V
PDWN to AGND	–0.3 V to +3.9 V
CSB to AGND	–0.3 V to +3.9 V
SCLK/DFS to AGND	–0.3 V to +3.9 V
OEB to AGND	–0.3 V to +3.9 V
ENVIRONMENTAL	
Storage Temperature Range	–65°C to +125°C
Operating Temperature Range	-40°C to +85°C
Lead Temperature	300°C
(Soldering 10 Sec)	
Junction Temperature	150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

The exposed paddle must be soldered to the ground plane for the LFCSP_VQ package. Soldering the exposed paddle to the customer board increases the reliability of the solder joints, maximizing the thermal capability of the package.

Table 6. Thermal Resistance

Package Type	Αιθ	ονο	Unit
48-lead LFCSP_VQ (CP-48-3)	26.4	2.4	°C/W

Typical θ_{JA} and θ_{JC} are specified for a 4-layer board in still air. Airflow increases heat dissipation, effectively reducing θ_{JA} . In addition, metal in direct contact with the package leads from metal traces and through holes, ground, and power planes, reduces the θ_{JA} .

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 7. Pin Function Description

Pin No.	Mnemonic	Description
0, 21, 23, 29, 32, 37, 41	AGND	Analog Ground. (Pin 0 is the exposed thermal pad on the bottom of the package.)
45, 46, 1 to 6, 9 to 14	D0 (LSB) to D13 (MSB)	Data Output Bits.
7, 16, 47	DRGND	Digital Output Ground.
8, 17, 48	DRVDD	Digital Output Driver Supply (1.8 V to 3.3 V).
15	OR	Out-of-Range Indicator.
18	SDIO/DCS	Serial Port Interface (SPI) Data Input/Output (Serial Port Mode); Duty Cycle Stabilizer Select (External Pin Mode). See Table 10.
19	SCLK/DFS	Serial Port Interface Clock (Serial Port Mode); Data Format Select Pin (External Pin Mode).
20	CSB	Serial Port Interface Chip Select (Active Low). See Table 10.
22, 24, 33, 40, 42	AVDD	Analog Power Supply.
25	SENSE	Reference Mode Selection. See Table 9.
26	VREF	Voltage Reference Input/Output.
27	REFB	Differential Reference (–).
28	REFT	Differential Reference (+).
30	VIN+	Analog Input Pin (+).
31	VIN-	Analog Input Pin (–).
34	CML	Common-Mode Level Bias Output.
35	RBIAS	External Bias Resistor Connection. A 10 $k\Omega$ resistor must be connected between this pin and analog ground (AGND).
36	PDWN	Power-Down Function Select.
38	CLK+	Clock Input (+).
39	CLK–	Clock Input (–).
43	OEB	Output Enable (Active Low).
44	DCO	Data Clock Output.

EQUIVALENT CIRCUITS

06216-005

Figure 7. Equivalent Digital Output Circuit

Figure 8. Equivalent SCLK/DFS, OEB, PDWN Input Circuit

Figure 9. Equivalent CSB Input Circuit

Figure 10. Equivalent Sense Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

AVDD = 1.8 V; DRVDD = 2.5 V; maximum sample rate, DCS enabled, 1 V internal reference; 2 V p-p differential input; AIN = -1.0 dBFS; 64k sample; $T_A = 25^{\circ}C$, unless otherwise noted.

Figure 19. AD9254 Two-Tone FFT with $f_{IN1} = 29.1$ MHz, $f_{IN2} = 32.1$ MHz

Figure 20. AD9254 Single-Tone SNR/SFDR vs. Input Frequency (f_{iN}) and Temperature with 2 V p-p Full Scale

Figure 21. AD9254 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with $f_{\rm IN}$ = 2.4 MHz

Figure 22. AD9254 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with $f_{\rm IN1}$ = 29.1 MHz, $f_{\rm IN2}$ = 32.1 MHz

Figure 23. AD9254 Single-Tone SNR/SFDR vs. Input Frequency (f_{iN}) and Temperature with 1 V p-p Full Scale

Figure 29. AD9254 Gain and Offset vs. Temperature

THEORY OF OPERATION

The AD9254 architecture consists of a front-end sample-andhold amplifier (SHA) followed by a pipelined switched capacitor ADC. The quantized outputs from each stage are combined into a final 14-bit result in the digital correction logic. The pipeline architecture permits the first stage to operate on a new input sample, while the remaining stages operate on preceding samples. Sampling occurs on the rising edge of the clock.

Each stage of the pipeline, excluding the last, consists of a low resolution flash ADC connected to a switched capacitor DAC and interstage residue amplifier (MDAC). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage consists only of a flash ADC.

The input stage contains a differential SHA that can be ac- or dc-coupled in differential or single-ended modes. The output staging block aligns the data, carries out the error correction, and passes the data to the output buffers. The output buffers are powered from a separate supply, allowing adjustment of the output voltage swing. During power-down, the output buffers go into a high impedance state.

ANALOG INPUT CONSIDERATIONS

The analog input to the AD9254 is a differential switched capacitor SHA that has been designed for optimum performance while processing a differential input signal.

The clock signal alternately switches the SHA between sample mode and hold mode (see Figure 31). When the SHA is switched into sample mode, the signal source must be capable of charging the sample capacitors and settling within one-half of a clock cycle. A small resistor in series with each input can help reduce the peak transient current required from the output stage of the driving source.

A shunt capacitor can be placed across the inputs to provide dynamic charging currents. This passive network creates a lowpass filter at the ADC input; therefore, the precise values are dependent upon the application.

In IF undersampling applications, any shunt capacitors should be reduced. In combination with the driving source impedance, these capacitors would limit the input bandwidth. For more information, see Application Note AN-742, *Frequency Domain Response of Switched-Capacitor ADCs*; Application Note AN-827, *A Resonant Approach to Interfacing Amplifiers to Switched-Capacitor ADCs*; and the *Analog Dialogue* article, "Transformer-Coupled Front-End for Wideband A/D Converters."

Figure 31. Switched-Capacitor SHA Input

For best dynamic performance, the source impedances driving VIN+ and VIN- should match such that common-mode settling errors are symmetrical. These errors are reduced by the common-mode rejection of the ADC.

An internal differential reference buffer creates two reference voltages used to define the input span of the ADC core. The span of the ADC core is set by the buffer to be $2 \times VREF$. The reference voltages are not available to the user. Two bypass points, REFT and REFB, are brought out for decoupling to reduce the noise contributed by the internal reference buffer. It is recommended that REFT be decoupled to REFB by a 0.1 μ F capacitor, as described in the Layout Considerations section.

Input Common Mode

The analog inputs of the AD9254 are not internally dc-biased. In ac-coupled applications, the user must provide this bias externally. Setting the device such that $V_{CM} = 0.55 \times AVDD$ is recommended for optimum performance; however, the device functions over a wider range with reasonable performance (see Figure 30). An on-board common-mode voltage reference is included in the design and is available from the CML pin. Optimum performance is achieved when the common-mode voltage of the analog input is set by the CML pin voltage (typically 0.55 × AVDD). The CML pin must be decoupled to ground by a 0.1 µF capacitor, as described in the Layout Considerations section.

DIFFERENTIAL INPUT CONFIGURATIONS

Optimum performance is achieved by driving the AD9254 in a differential input configuration. For baseband applications, the AD8138 differential driver provides excellent performance and a flexible interface to the ADC. The output common-mode voltage of the AD8138 is easily set with the CML pin of the AD9254 (see Figure 32), and the driver can be configured in a Sallen-Key filter topology to provide band limiting of the input signal.

Figure 32. Differential Input Configuration Using the AD8138

For baseband applications where SNR is a key parameter, differential transformer coupling is the recommended input configuration (see Figure 33). The CML voltage can be connected to the center tap of the secondary winding of the transformer to bias the analog input.

The signal characteristics must be considered when selecting a transformer. Most RF transformers saturate at frequencies below a few megahertz, and excessive signal power can cause core saturation, which leads to distortion.

Figure 33. Differential Transformer-Coupled Configuration

At input frequencies in the second Nyquist zone and above, the noise performance of most amplifiers is not adequate to achieve the true SNR performance of the AD9254. For applications where SNR is a key parameter, transformer coupling is the recommended input. For applications where SFDR is a key parameter, differential double balun coupling is the recommended input configuration (see Figure 35). As an alternative to using a transformer-coupled input at frequencies in the second Nyquist zone, the AD8352 differential driver can be used (see Figure 36).

In any configuration, the value of the shunt capacitor, C, is dependent on the input frequency and source impedance and may need to be reduced or removed. Table 8 displays recommended values to set the RC network. However, these values are dependent on the input signal and should only be used as a starting guide.

Frequency Range (MHz)	R Series (Ω)	C Differential (pF)			
0 to 70	33	15			
70 to 200	33	5			
200 to 300	15	5			
>300	15	Open			

Table 8. RC Network Recommended Values

Single-Ended Input Configuration

Although not recommended, it is possible to operate the AD9254 in a single-ended input configuration, as long as the input voltage swing is within the AVDD supply. Single-ended operation can provide adequate performance in cost-sensitive applications.

In this configuration, SFDR and distortion performance degrade due to the large input common-mode swing. If the source impedances on each input are matched, there should be little effect on SNR performance. Figure 34 details a typical single-ended input configuration.

Figure 34. Single-Ended Input Configuration

Figure 35. Differential Double Balun Input Configuration

Figure 36. Differential Input Configuration Using the AD8352

Table 9. Reference Configuration Summary

Selected Mode	SENSE Voltage	Resulting VREF (V)	Resulting Differential Span (V p-p)
External Reference	AVDD	N/A	$2 \times \text{external reference}$
Internal Fixed Reference	VREF	0.5	1.0
Programmable Reference	0.2 V to VREF	$0.5 \times \left(1 + \frac{R2}{R1}\right)$ (see Figure 38)	2 × VREF
Internal Fixed Reference	AGND to 0.2 V	1.0	2.0

VOLTAGE REFERENCE

A stable and accurate voltage reference is built into the AD9254. The input range is adjustable by varying the reference voltage applied to the AD9254, using either the internal reference or an externally applied reference voltage. The input span of the ADC tracks reference voltage changes linearly. The various reference modes are summarized in the following sections. The Reference Decoupling section describes the best practices and requirements for PCB layout of the reference.

Internal Reference Connection

A comparator within the AD9254 detects the potential at the SENSE pin and configures the reference into four possible states, as summarized in Table 9. If SENSE is grounded, the reference amplifier switch is connected to the internal resistor divider (see Figure 37), setting VREF to 1 V.

Connecting the SENSE pin to VREF switches the reference amplifier input to the SENSE pin, completing the loop and providing a 0.5 V reference output. If a resistor divider is connected external to the chip, as shown in Figure 38, the switch sets to the SENSE pin. This puts the reference amplifier in a noninverting mode with the VREF output defined as

$$VREF = 0.5 \left(1 + \frac{R2}{R1} \right)$$

If the SENSE pin is connected to AVDD, the reference amplifier is disabled, and an external reference voltage can be applied to the VREF pin (see the External Reference Operation section).

The input range of the ADC always equals twice the voltage at the reference pin for either an internal or an external reference.

Figure 37. Internal Reference Configuration

Figure 38. Programmable Reference Configuration

If the internal reference of the AD9254 is used to drive multiple converters to improve gain matching, the loading of the reference by the other converters must be considered. Figure 39 depicts how the internal reference voltage is affected by loading.

External Reference Operation

The use of an external reference may be necessary to enhance the gain accuracy of the ADC or improve thermal drift characteristics. Figure 40 shows the typical drift characteristics of the internal reference in both 1 V and 0.5 V modes.

When the SENSE pin is tied to AVDD, the internal reference is disabled, allowing the use of an external reference. An internal resistor divider loads the external reference with an equivalent 6 k Ω load (see Figure 11). In addition, an internal buffer generates the positive and negative full-scale references for the ADC core. Therefore, the external reference must be limited to a maximum of 1 V.

CLOCK INPUT CONSIDERATIONS

For optimum performance, the AD9254 sample clock inputs (CLK+ and CLK-) should be clocked with a differential signal. The signal is typically ac-coupled into the CLK+ pin and the CLK- pin via a transformer or capacitors. These pins are biased internally (see Figure 5) and require no external bias.

Clock Input Options

The AD9254 has a very flexible clock input structure. The clock input can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless of the type of signal used, the jitter of the clock source is of the most concern, as described in the Jitter Considerations section.

Figure 41 shows one preferred method for clocking the AD9254. A low jitter clock source is converted from singleended to a differential signal using an RF transformer. The back-to-back Schottky diodes across the transformer secondary limit clock excursions into the AD9254 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9254, while preserving the fast rise and fall times of the signal, which are critical to a low jitter performance.

Figure 41. Transformer Coupled Differential Clock

If a low jitter clock source is not available, another option is to ac-couple a differential PECL signal to the sample clock input pins as shown in Figure 42. The AD9510/AD9511/AD9512/ AD9513/AD9514/AD9515 family of clock drivers offers excellent jitter performance.

Figure 42. Differential PECL Sample Clock

A third option is to ac-couple a differential LVDS signal to the sample clock input pins, as shown in Figure 43. The AD9510/ AD9511/AD9512/AD9513/AD9514/AD9515 family of clock drivers offers excellent jitter performance.

Figure 43. Differential LVDS Sample Clock

In some applications, it is acceptable to drive the sample clock inputs with a single-ended CMOS signal. In such applications, directly drive CLK+ from a CMOS gate, while bypassing the CLK- pin to ground using a 0.1 µF capacitor in parallel with a 39 k Ω resistor (see Figure 44). CLK+ can be directly driven from a CMOS gate. This input is designed to withstand input voltages up to 3.6 V, making the selection of the drive logic voltage very flexible. When driving CLK+ with a 1.8 V CMOS signal, biasing the CLK- pin with a 0.1 µF capacitor in parallel with a 39 k Ω resistor (see Figure 44) is required. The 39 k Ω resistor is not required when driving CLK+ with a 3.3 V CMOS signal (see Figure 45).

Figure 45. Single-Ended 3.3 V CMOS Sample Clock

Clock Duty Cycle

Typical high speed ADCs use both clock edges to generate a variety of internal timing signals. As a result, these ADCs may be sensitive to clock duty cycle. Commonly, a ±5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics.

The AD9254 contains a duty cycle stabilizer (DCS) that retimes the nonsampling, or falling edge, providing an internal clock signal with a nominal 50% duty cycle. This allows a wide range of clock input duty cycles without affecting the performance of the AD9254. Noise and distortion performance are nearly flat for a wide range of duty cycles when the DCS is on, as shown in Figure 28.

Jitter in the rising edge of the input is still of paramount concern and is not reduced by the internal stabilization circuit. The duty cycle control loop does not function for clock rates less than 20 MHz nominally. The loop has a time constant associated with it that needs to be considered in applications where the clock rate can change dynamically. This requires a wait time of 1.5 µs to 5 µs after a dynamic clock frequency increase (or decrease) before the DCS loop is relocked to the input signal. During the time period the loop is not locked, the DCS loop is bypassed, and the internal device timing is dependent on the duty cycle of the input clock signal. In such an application, it may be appropriate to disable the duty cycle stabilizer. In all other applications, enabling the DCS circuit is recommended to maximize ac performance.

The DCS can be enabled or disabled by setting the SDIO/DCS pin when operating in the external pin mode (see Table 10), or via the SPI, as described in Table 13.

Table 10. Mode Selection (External Pin Mode)				
Voltage at Pin	SCLK/DFS	SDIO/DCS		
AGND	Binary (default)	DCS disabled		
AVDD	Twos complement	DCS enabled		

JITTER CONSIDERATIONS

High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input frequency (f_{IN}) due to jitter (t_J) is calculated as follows:

(default)

 $SNR = -20 \log (2\pi \times f_{IN} \times t_I)$

In the equation, the rms aperture jitter represents the root mean square of all jitter sources, which include the clock input, analog input signal, and ADC aperture jitter specification. IF undersampling applications are particularly sensitive to jitter, as shown in Figure 46.

Treat the clock input as an analog signal in cases where aperture jitter can affect the dynamic range of the AD9254. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. The power supplies should also not be shared with analog input circuits, such as buffers, to avoid the clock modulating onto the input signal or vice versa. Low jitter, crystal-controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or other methods), it should be retimed by the original clock at the last step.

Refer to Application Notes AN-501, Aperture Uncertainty and ADC System Performance; and AN-756, Sampled Systems and the Effects of Clock Phase Noise and Jitter, for more in-depth information about jitter performance as it relates to ADCs.

POWER DISSIPATION AND STANDBY MODE

The power dissipated by the AD9254 is proportional to its sample rate (see Figure 47). The digital power dissipation is determined primarily by the strength of the digital drivers and the load on each output bit. Maximum DRVDD current (IDRVDD) can be calculated as

$$V_{DRVDD} = V_{DRVDD} \times C_{LOAD} \times \frac{f_{CLK}}{2} \times N$$

Ì

where *N* is the number of output bits, 14 in the AD9254.

This maximum current occurs when every output bit switches on every clock cycle, that is, a full-scale square wave at the Nyquist frequency, $f_{CLK}/2$. In practice, the DRVDD current is established by the average number of output bits switching, which is determined by the sample rate and the characteristics of the analog input signal. Reducing the capacitive load presented to the output drivers can minimize digital power consumption. The data in Figure 47 was taken under the same operating conditions as the data for the Typical Performance Characteristics section, with a 5 pF load on each output driver.

Figure 47. AD9254 Power and Current vs. Clock Frequency $f_{IN} = 30 \text{ MHz}$

Power-Down Mode

By asserting the PDWN pin high, the AD9254 is placed in powerdown mode. In this state, the ADC typically dissipates 1.8 mW. During power-down, the output drivers are placed in a high impedance state. Reasserting the PDWN pin low returns the AD9254 to its normal operational mode. This pin is both 1.8 V and 3.3 V tolerant.

Low power dissipation in power-down mode is achieved by shutting down the reference, reference buffer, biasing networks, and clock. The decoupling capacitors on REFT and REFB are discharged when entering power-down mode and then must be recharged when returning to normal operation. As a result, the wake-up time is related to the time spent in power-down mode; and shorter power-down cycles result in proportionally shorter wake-up times. With the recommended 0.1 µF decoupling capacitors on REFT and REFB, it takes approximately 0.25 ms to fully discharge the reference buffer decoupling capacitors and 0.35 ms to restore full operation.

Standby Mode

When using the SPI port interface, the user can place the ADC in power-down or standby modes. Standby mode allows the user to keep the internal reference circuitry powered when faster wake-up times are required (see the Memory Map section).

DIGITAL OUTPUTS

The AD9254 output drivers can be configured to interface with 1.8 V to 3.3 V logic families by matching DRVDD to the digital supply of the interfaced logic. The output drivers are sized to provide sufficient output current to drive a wide variety of logic families. However, large drive currents tend to cause current glitches on the supplies that may affect converter performance. Applications requiring the ADC to drive large capacitive loads or large fan-outs may require external buffers or latches.

The output data format can be selected for either offset binary or twos complement by setting the SCLK/DFS pin when operating in the external pin mode (see Table 10). As detailed in the *Interfacing to High Speed ADCs via SPI* user manual, the data format can be selected for either offset binary, twos complement, or Gray code when using the SPI control.

Out-of-Range (OR) Condition

An out-of-range condition exists when the analog input voltage is beyond the input range of the ADC. OR is a digital output that is updated along with the data output corresponding to the particular sampled input voltage. Thus, OR has the same pipeline latency as the digital data.

Figure 48. OR Relation to Input Voltage and Output Data

OR is low when the analog input voltage is within the analog input range and high when the analog input voltage exceeds the input range, as shown in Figure 48. OR remains high until the analog input returns to within the input range and another conversion is completed. By logically AND'ing the OR bit with the MSB and its complement, overrange high or underrange low conditions can be detected. Table 11 is a truth table for the overrange/underrange circuit in Figure 49, which uses NAND gates.

Figure 49. Overrange/Underrange Logic

Table 11.	Overrange/	Underrange	Truth	Table
-----------	------------	------------	-------	-------

OR	MSB	Analog Input Is:
0	0	Within range
0	1	Within range
1	0	Underrange
1	1	Overrange

Digital Output Enable Function (OEB)

The AD9254 has three-state ability. If the OEB pin is low, the output data drivers are enabled. If the OEB pin is high, the output data drivers are placed in a high impedance state. This is not intended for rapid access to the data bus. Note that OEB is referenced to the digital supplies (DRVDD) and should not exceed that supply voltage.

TIMING

The lowest typical conversion rate of the AD9254 is 10 MSPS. At clock rates below 10 MSPS, dynamic performance can degrade.

The AD9254 provides latched data outputs with a pipeline delay of twelve clock cycles. Data outputs are available one propagation delay (t_{PD}) after the rising edge of the clock signal.

The length of the output data lines and the loads placed on them should be minimized to reduce transients within the AD9254. These transients can degrade the dynamic performance of the converter.

Data Clock Output (DCO)

The AD9254 also provides data clock output (DCO) intended for capturing the data in an external register. The data outputs are valid on the rising edge of DCO, unless the DCO clock polarity has been changed via the SPI. See Figure 2 for a graphical timing description.

1					
Input (V)	Condition (V)	Binary Output Mode	Twos Complement Mode	Gray Code Mode	OR
mpac (v)	condition (v)	Dinary Output mode	rwos complement mode	(SI I Accessible)	UN
VIN+-VIN-	< VREF 0.5 LSB	00 0000 0000 0000	10 0000 0000 0000	11 0000 0000 0000	1
VIN+-VIN-	= -VREF	00 0000 0000 0000	10 0000 0000 0000	11 0000 0000 0000	0
VIN+-VIN-	= 0	10 0000 0000 0000	00 0000 0000 0000	00 0000 0000 0000	0
VIN+-VIN-	= +VREF – 1.0 LSB	11 1111 1111 1111	01 1111 1111 1111	10 0000 0000 0000	0
VIN+-VIN-	> +VREF – 0.5 LSB	11 1111 1111 1111	01 1111 1111 1111	10 0000 0000 0000	1

Table 12. Output Data Format

SERIAL PORT INTERFACE (SPI)

The AD9254 serial port interface (SPI) allows the user to configure the converter for specific functions or operations through a structured register space provided inside the ADC. This provides the user added flexibility and customization depending on the application. Addresses are accessed via the serial port and may be written to or read from via the port. Memory is organized into bytes that are further divided into fields, as documented in the Memory Map section. For detailed operational information, see the *Interfacing to High Speed ADCs via SPI* user manual.

CONFIGURATION USING THE SPI

As summarized in Table 13, three pins define the SPI of this ADC. The SCLK/DFS pin synchronizes the read and write data presented to the ADC. The SDIO/DCS dual-purpose pin allows data to be sent to and read from the internal ADC memory map registers. The CSB pin is an active low control that enables or disables the read and write cycles.

Table 13. Serial Port Interface Pins

Pin Name	Function
SCLK/DFS	SCLK (serial clock) is the serial shift clock in. SCLK
	synchronizes serial interface reads and writes.
SDIO/DCS	SDIO (serial data input/output) is a dual-purpose
	pin. The typical role for this pin is an input and
	output, depending on the instruction being sent
	and the relative position in the timing frame.
CSB	CSB (chip select bar) is an active-low control that
	gates the read and write cycles.

The falling edge of the CSB in conjunction with the rising edge of the SCLK determines the start of the framing. Figure 50 and Table 14 provide examples of the serial timing and its definitions.

Other modes involving the CSB are available. The CSB can be held low indefinitely to permanently enable the device (this is called streaming). The CSB can stall high between bytes to allow for additional external timing. When CSB is tied high, SPI functions are placed in a high impedance mode. This mode turns on any SPI pin secondary functions.

During an instruction phase, a 16-bit instruction is transmitted. Data follows the instruction phase and the length is determined by the W0 bit and the W1 bit. All data is composed of 8-bit words. The first bit of each individual byte of serial data indicates whether a read or write command is issued. This allows the serial data input/output (SDIO) pin to change direction from an input to an output. In addition to word length, the instruction phase determines if the serial frame is a read or write operation, allowing the serial port to be used to both program the chip as well as read the contents of the on-chip memory. If the instruction is a readback operation, performing a readback causes the serial data input/output (SDIO) pin to change direction from an input to an output at the appropriate point in the serial frame.

Data can be sent in MSB- or in LSB-first mode. MSB first is the default on power-up and can be changed via the configuration register. For more information, see the *Interfacing to High Speed ADCs via SPI* user manual.

Name	Description
t _{DS}	Setup time between data and rising edge of SCLK
t _{DH}	Hold time between data and rising edge of SCLK
t clk	Period of the clock
ts	Setup time between CSB and SCLK
tн	Hold time between CSB and SCLK
t _{HI}	Minimum period that SCLK should be in a logic high state
t∟o	Minimum period that SCLK should be in a logic low state

Table 14. SPI Timing Diagram Specifications

HARDWARE INTERFACE

The pins described in Table 13 comprise the physical interface between the user's programming device and the serial port of the AD9254. The SCLK and CSB pins function as inputs when using the SPI interface. The SDIO pin is bidirectional, functioning as an input during write phases and as an output during readback.

The SPI interface is flexible enough to be controlled by either PROM or PIC microcontrollers. This provides the user with the ability to use an alternate method to program the ADC. One method is described in detail in Application Note AN-812, *Microcontroller-Based Serial Port Interface Boot Circuit.*

When the SPI interface is not used, some pins serve a dual function. When strapped to AVDD or ground during device power on, the pins are associated with a specific function.

CONFIGURATION WITHOUT THE SPI

In applications that do not interface to the SPI control registers, the SDIO/DCS and SCLK/DFS pins serve as stand-alone CMOS-compatible control pins. When the device is powered up, it is assumed that the user intends to use the pins as static control lines for the output data format and duty cycle stabilizer (see Table 10). In this mode, the CSB chip select should be connected to AVDD, which disables the serial port interface. For more information, see the *Interfacing to High Speed ADCs via SPI* user manual.

MEMORY MAP **READING THE MEMORY MAP REGISTER TABLE**

Each row in the memory map register table has eight address locations. The memory map is roughly divided into three sections: the chip configuration registers map (Address 0x00 to Address 0x02), the device index and transfer registers map (Address 0xFF), and the ADC functions map (Address 0x08 to Address 0x18).

Table 15 displays the register address number in hexadecimal in the first column. The last column displays the default value for each hexadecimal address. The Bit 7 (MSB) column is the start of the default hexadecimal value given. For example, Hexadecimal Address 0x14, output_phase, has a hexadecimal default value of 0x00. This means Bit 3 = 0, Bit 2 = 0, Bit 1 = 1, and Bit 0 = 1 or 0011 in binary. This setting is the default output clock or DCO phase adjust option. The default value adjusts the DCO phase 90° relative to the nominal DCO edge and 180° relative to the data edge. For more information on this function, consult the Interfacing to High Speed ADCs via SPI user manual.

Open Locations

Locations marked as open are currently not supported for this device. When required, these locations should be written with 0s. Writing to these locations is required only when part of an address location is open (for example, Address 0x14). If the entire address location is open (Address 0x13), then the address location does not need to be written.

Default Values

Coming out of reset, critical registers are loaded with default values. The default values for the registers are shown in Table 15.

Logic Levels

An explanation of two registers follows:

- "Bit is set" is synonymous with "Bit is set to Logic 1" or "Writing Logic 1 for the bit."
- "Clear a bit" is synonymous with "Bit is set to Logic 0" or "Writing Logic 0 for the bit."

SPI-Accessible Features

A list of features accessible via the SPI and a brief description of what the user can do with these features follows. These features are described in detail in the Interfacing to High Speed ADCs via **SPI** user manual.

- Modes: Set either power-down or standby mode.
- Clock: Access the DCS via the SPI.
- Offset: Digitally adjust the converter offset.
- Test I/O: Set test modes to have known data on output bits.
- Output Mode: Setup outputs, vary the strength of the output drivers.
- Output Phase: Set the output clock polarity.
- VREF: Set the reference voltage.

Figure 50. Serial Port Interface Timing Diagram

MEMORY MAP REGISTER TABLE

Table 15.	Memory	Map	Register
-----------	--------	-----	----------

Addr. (Hex)	Parameter Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default Value (Hex)	Default Notes/ Comments
Chip Co	Chip Configuration Registers										
00	chip_port_config	0	LSB first 0 = Off (Default) 1 = On	Soft reset 0 = Off (Default) 1 = On	1	1	Soft reset 0 = Off (Default) 1 = On	LSB first 0 = Off (Default) 1 = On	0	0x18	The nibbles should be mirrored. See the Interfacing to High Speed ADCs via SPI user manual.
01	chip_id			(A	8-bit Chip D9254 = 0x	D Bits 7:0 00), (default)			Read only	Default is unique chip ID, different for each device.
02	chip_grade	Open	Open	Open	Open	Child ID 0 = 150 MSPS	Open	Open	Open	Read only	Child ID used to differentiate speed grades.
Device	Index and Transfer	Registers									
FF	device_update	Open	Open	Open	Open	Open	Open	Open	SW transfer	0x00	Synchronously transfers data from the master shift register to the slave.
Global	ADC Functions										
08	modes	Open	Open	PDWN 0—Full 1— Standby	Open	Open	Internal po 000—norr 001—full 010—stan 011—norr Note: Exte overrides	ower-down nal (power- power-dowr dby nal (power- rnal PDWN µ this setting.	mode up) up) oin	0x00	Determines various generic modes of chip operation. See the Power Dissipation and Standby Mode and the SPI- Accessible Features sections.
09	clock	Open	Open	Open	Open	Open	Open	Open	Duty cycle stabilizer 0— disabled 1— enabled	0x01	See the Clock Duty Cycle section and the SPI-Accessible Features section.

Addr. (Hex)	Parameter Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default Value (Hex)	Default Notes/ Comments
Flexible ADC Functions											
10	offset			Digital Offs 011111 011110 011101 000010	et Adjust<5:0:	>	Offset in LSBs +31 +30 +29 +2			0x00	Adjustable for offset inherent in the converter. See SPI- Accessible
				000001 000000 111111 111110 111101 			+1 0 (Default) 1 -2 -3				Features section.
				100001 100000			-31 -32				
0D	test_io			PN23 0 = normal (Default) 1 = reset	PN9 0 = normal (Default) 1 = reset		Global Output Test Options 000—off 001—midscale short 010—+FS short 011—-FS short 100—checker board output 101—PN 23 sequence 110—PN 9 111—one/zero word toggle			0x00	See the Interfacing to High Speed ADCs via SPI user manual.
14	output_mode	Output Driver Configuration 00 for DRVDD = 3.3 V 10 for DRVDD =	= 2.5 V to = 1.8 V	Open	Output Disable 1— disabled 0— enabled ¹	Open	Output Data Format Select Data 00—offset binary Invert (default) 1 = 01—twos invert complement 10—Gray Code		0x00	Configures the outputs and the format of the data.	
16	output_phase	Output Clock Polarity 1 = inverted 0 = normal (Default)	Open	Open	Open	Open	Open	Open	Open	0x00	See the SPI- Accessible Features section.
18	VREF	Internal Referen Resistor Divider 00—VREF = 1.2 01—VREF = 1.5 10—VREF = 1.7 11—VREF = 2.0 (Default)	nce r 5 V V 5 V 0 V	Open	Open	Open	Open	Open	Open	0xC0	See the SPI- Accessible Features section.

¹ External output enable (OEB) pin must be high.