imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ANALOG 1.2 GHz Clock Distribution IC, 1.6 GHz Inputs, Dividers, Delay Adjust, Five Outputs

AD9512

FEATURES

Two 1.6 GHz, differential clock inputs 5 programmable dividers, 1 to 32, all integers Phase select for output-to-output coarse delay adjust 3 independent 1.2 GHz LVPECL outputs Additive output jitter 225 fs rms 2 independent 800 MHz/250 MHz LVDS/CMOS clock outputs Additive output jitter 275 fs rms Fine delay adjust on 1 LVDS/CMOS output Serial control port Space-saving 48-lead LFCSP

APPLICATIONS

Low jitter, low phase noise clock distribution Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs High performance wireless transceivers High performance instrumentation Broadband infrastructure

GENERAL DESCRIPTION

The AD9512 provides a multi-output clock distribution in a design that emphasizes low jitter and low phase noise to maximize data converter performance. Other applications with demanding phase noise and jitter requirements can also benefit from this part.

There are five independent clock outputs. Three outputs are LVPECL (1.2 GHz), and two are selectable as either LVDS (800 MHz) or CMOS (250 MHz) levels.

Each output has a programmable divider that may be bypassed or set to divide by any integer up to 32. The phase of one clock output relative to another clock output may be varied by means of a divider phase select function that serves as a coarse timing adjustment.

FUNCTIONAL BLOCK DIAGRAM

One of the LVDS/CMOS outputs features a programmable delay element with a range of up to 10 ns of delay. This fine tuning delay block has 5-bit resolution, giving 32 possible delays from which to choose.

The AD9512 is ideally suited for data converter clocking applications where maximum converter performance is achieved by encode signals with subpicosecond jitter.

The AD9512 is available in a 48-lead LFCSP and can be operated from a single 3.3 V supply. The temperature range is -40° C to $+85^{\circ}$ C.

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2005 Analog Devices, Inc. All rights reserved.

AD9512* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

AD9512 Evaluation Board

DOCUMENTATION

Application Notes

- AN-0974: Multicarrier TD-SCMA Feasibility
- AN-501: Aperture Uncertainty and ADC System Performance
- AN-741: Little Known Characteristics of Phase Noise
- AN-756: Sampled Systems and the Effects of Clock Phase
 Noise and Jitter
- AN-769: Generating Multiple Clock Outputs from the AD9540
- AN-823: Direct Digital Synthesizers in Clocking Applications Time
- AN-837: DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance
- AN-873: Lock Detect on the ADF4xxx Family of PLL Synthesizers
- AN-927: Determining if a Spur is Related to the DDS/DAC or to Some Other Source (For Example, Switching Supplies)
- AN-939: Super-Nyquist Operation of the AD9912 Yields a High RF Output Signal

Data Sheet

- AD9512-DSCC: Military Data Sheet
- AD9512-EP: Enhanced Product Data Sheet
- AD9512: 1.2 GHz Clock Distribution IC, 1.6 GHz Inputs, Dividers, Delay Adjust, Five Outputs Data Sheet

TOOLS AND SIMULATIONS \square

- ADIsimCLK Design and Evaluation Software
- AD9512 IBIS Models

REFERENCE DESIGNS

• CN0109

REFERENCE MATERIALS

Press

 Analog Devices' Dual 14-bit A/D Converter Reduces Power and Size in Communications, Instrumentation, Test and Measurement Applications

Technical Articles

- ADI Buys Korean Mobile TV Chip Maker
- Design A Clock-Distribution Strategy With Confidence
- Improved DDS Devices Enable Advanced Comm Systems
- Low-power direct digital synthesizer cores enable high level of integration
- Speedy A/Ds Demand Stable Clocks
- Understand the Effects of Clock Jitter and Phase Noise on Sampled Systems

DESIGN RESOURCES

- AD9512 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD9512 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Specifications
Clock Inputs 4
Clock Outputs
Timing Characteristics
Clock Output Phase Noise7
Clock Output Additive Time Jitter10
Serial Control Port12
FUNCTION Pin
SYNC Status Pin13
Power14
Timing Diagrams15
Absolute Maximum Ratings16
Thermal Characteristics16
ESD Caution16
Pin Configuration and Function Descriptions17
Terminology19
Typical Performance Characteristics
Functional Description
Overall24
FUNCTION Pin
RESETB: 58h<6:5> = 00b (Default)24
SYNCB: 58h<6:5> = 01b24
PDB: 58h<6:5> = 11b24
DSYNC and DSYNCB Pins24
Clock Inputs
Dividers25
Setting the Divide Ratio25
Setting the Duty Cycle
Divider Phase Offset 29
Delay Block
Calculating the Delay

Outputs
Power-Down Modes
Chip Power-Down or Sleep Mode—PDB
Distribution Power-Down
Individual Clock Output Power-Down
Individual Circuit Block Power-Down
Reset Modes
Power-On Reset—Start-Up Conditions when VS is Applied
Asynchronous Reset via the FUNCTION Pin
Soft Reset via the Serial Port
Single-Chip Synchronization
SYNCB—Hardware SYNC 32
Soft SYNC—Register 58h<2>
Multichip Synchronization 32
Serial Control Port
Serial Control Port Pin Descriptions
General Operation of Serial Control Port
Framing a Communication Cycle with CSB
Communication Cycle—Instruction Plus Data
Write
Read
The Instruction Word (16 Bits)
MSB/LSB First Transfers
Register Map and Description
Summary Table
Register Map Description
Power Supply
Power Management 43
Applications
Using the AD9512 Outputs for ADC Clock Applications 44
CMOS Clock Distribution

LVPECL Clock Distribution	
LVDS Clock Distribution45	
Power and Grounding Considerations and Power Supply Rejection45	
Outline Dimensions46	
Ordering Guide46	

REVISION HISTORY

6/05—Rev. 0 to Rev. A
Changes to Features1
Changes to General Description1
Changes to Table 14
Changes to Table 35
Changes to Table 47
Changes to Table 5 and Table 612
Changes to Table 713
Changes to Figure 12 and Figure 14 to Figure 1621
Changes to Figure 17 Caption22
Changes to Figure 2323
Changes to Divider Phase Offset Section
Changes to Chip Power-Down or Sleep Mode-PDB Section .31
Changes to Distribution Power-Down Section
Changes to Individual Clock Output Power-Down Section31
Changes to Individual Circuit Block Power-Down Section31
Changes to Soft Reset via the Serial Port Section
Changes to SYNCB-Hardware SYNC Section
Changes to Soft SYNC Register 58h<2> Section
Changes to Multichip Synchronization Section32

Changes to Serial Control Port Section	33
Changes to Serial Control Port Pin Descriptions Section	33
Changes to General Operation of Serial	
Control Port Section	33
Added Framing a Communication Cycle with CSB Section .	33
Added Communication Cycle—Instruction Plus	
Data Section	33
Changes to Write Section	33
Changes to Read Section	34
Changes to Instruction Word (16 Bits) Section	34
Changes to MSB/LSB First Transfers Section	34
Changes to Figure 32 and Figure 36	35
Added Figure 38; Renumbered Sequentially	36
Changes to Table 17	37
Changes to Table 18	39
Changes to Power Supply Section	43
Changes to Power Management Section	43

4/05—Revision 0: Initial Version

SPECIFICATIONS

Typical (Typ) is given for $V_S = 3.3 \text{ V} \pm 5\%$; $T_A = 25^{\circ}\text{C}$, $R_{SET} = 4.12 \text{ k}\Omega$, unless otherwise noted. Minimum (Min) and Maximum (Max) values are given over full Vs and TA (–40°C to +85°C) variation.

CLOCK INPUTS

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
CLOCK INPUTS (CLK1, CLK2) ¹					
Input Frequency	0		1.6	GHz	
Input Sensitivity		150 ²		mV p-p	Jitter performance can be improved with higher slew rates (greater swing).
Input Level			2 ³	V р-р	Larger swings turn on the protection diodes and can degrade jitter performance.
Input Common-Mode Voltage, V _{CM}	1.5	1.6	1.7	V	Self-biased; enables ac coupling.
Input Common-Mode Range, VCMR	1.3		1.8	V	With 200 mV p-p signal applied; dc-coupled.
Input Sensitivity, Single-Ended		150		mV p-p	CLK2 ac-coupled; CLK2B ac bypassed to RF ground.
Input Resistance	4.0	4.8	5.6	kΩ	Self-biased.
Input Capacitance		2		рF	

 1 CLK1 and CLK2 are electrically identical; each can be used as either differential or single-ended input. 2 With a 50 Ω termination, this is -12.5 dBm.

 3 With a 50 Ω termination, this is +10 dBm.

CLOCK OUTPUTS

Table 2.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL CLOCK OUTPUTS					Termination = 50Ω to V _s - 2 V
OUT0, OUT1, OUT2; Differential					Output level 3Dh (3Eh) (3Fh)<3:2> = 10b
Output Frequency			1200	MHz	See Figure 14
Output High Voltage (V _{OH})	Vs - 1.22	Vs - 0.98	$V_{s} - 0.93$	V	
Output Low Voltage (V _{OL})	Vs - 2.10	Vs - 1.80	Vs – 1.67	V	
Output Differential Voltage (Vod)	660	810	965	mV	
LVDS CLOCK OUTPUTS					Termination = 100Ω differential; default
OUT3, OUT4; Differential					Output level 40h (41h)<2:1> = 01b
					3.5 mA termination current
Output Frequency			800	MHz	See Figure 15
Differential Output Voltage (V _{OD})	250	360	450	mV	
Delta Vod			25	mV	
Output Offset Voltage (Vos)	1.125	1.23	1.375	V	
Delta Vos			25	mV	
Short-Circuit Current (I _{SA} , I _{SB})		14	24	mA	Output shorted to GND
CMOS CLOCK OUTPUTS					
OUT3, OUT4					Single-ended measurements;
					B outputs: inverted, termination open
Output Frequency			250	MHz	With 5 pF load each output; see Figure 16
Output Voltage High (V _{OH})	Vs - 0.1			V	@ 1 mA load
Output Voltage Low (V _{OL})			0.1	V	@ 1 mA load

TIMING CHARACTERISTICS

Table 3.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL					Termination = 50 Ω to V _s – 2 V
					Output level 3Dh (3Eh) (3Fh)<3:2> = 10b
Output Rise Time, t _{RP}		130	180	ps	20% to 80%, measured differentially
Output Fall Time, t _{FP}		130	180	ps	80% to 20%, measured differentially
PROPAGATION DELAY, t _{PECL} , CLK-TO-LVPECL OUT ¹					
Divide = Bypass	335	490	635	ps	
Divide = 2 - 32	375	545	695	ps	
Variation with Temperature		0.5		ps/°C	
OUTPUT SKEW, LVPECL OUTPUTS					
OUT1 to OUT0 on Same Part, t _{SKP} ²	70	100	140	ps	
OUT1 to OUT2 on Same Part, t_{SKP}^2	15	45	80	ps	
OUT0 to OUT2 on Same Part, t _{SKP} ²	45	65	90	Ps	
All LVPECL OUT Across Multiple Parts, t _{SKP_AB} ³			275	ps	
Same LVPECL OUT Across Multiple Parts, $t_{SKP_AB}^{3}$			130	ps	
LVDS					Termination = 100Ω differential Output level 40h (41h) <2:1> = 01b 3.5 mA termination current
Output Rise Time, t _{RL}		200	350	ps	20% to 80%, measured differentially
Output Fall Time, t _{FL}		210	350	ps	80% to 20%, measured differentially
PROPAGATION DELAY, tLVDS, CLK-TO-LVDS OUT ¹					Delay off on OUT4
OUT3 to OUT4					
Divide = Bypass	0.99	1.33	1.59	ns	
Divide = 2 - 32	1.04	1.38	1.64	ns	
Variation with Temperature		0.9		ps/°C	
OUTPUT SKEW, LVDS OUTPUTS					Delay off on OUT4
OUT3 to OUT4 on Same Part, t_{SKV}^2	-85		+270	ps	
All LVDS OUTs Across Multiple Parts, t _{SKV_AB} ³			450	ps	
Same LVDS OUT Across Multiple Parts, t _{SKV_AB} ³			325	ps	
CMOS					B outputs are inverted; termination = open
Output Rise Time, t _{RC}		681	865	ps	20% to 80%; C _{LOAD} = 3 pF
Output Fall Time, t _{FC}		646	992	ps	80% to 20%; C _{LOAD} = 3 pF
PROPAGATION DELAY, t _{CMOS} , CLK-TO-CMOS OUT ¹					Delay off on OUT4
Divide = Bypass	1.02	1.39	1.71	ns	
Divide = 2 - 32	1.07	1.44	1.76	ns	
Variation with Temperature		1		ps/°C	
OUTPUT SKEW, CMOS OUTPUTS					Delay off on OUT4
OUT3 to OUT4 on Same Part, t _{SKC²}	-140	+145	+300		
All CMOS OUT Across Multiple Parts, t _{SKC_AB} ³			650	ps	
Same CMOS OUT Across Multiple Parts, t _{SKC_AB} ³			500	ps	
LVPECL-TO-LVDS OUT					Everything the same; different logic type
Output Skew, t _{skP_V}	0.74	0.92	1.14	ns	LVPECL to LVDS on same part
LVPECL-TO-CMOS OUT					Everything the same; different logic type
Output Skew, tskp_c	0.88	1.14	1.43	ns	LVPECL to CMOS on same part
LVDS-TO-CMOS OUT					Everything the same; different logic type
Output Skew, tskv_c	158	353	506	ps	LVDS to CMOS on same part

Parameter	Min	Тур	Мах	Unit	Test Conditions/Comments
DELAY ADJUST					OUT4; LVDS and CMOS
Shortest Delay Range ⁴					35h <5:1> 11111b
Zero Scale	0.05	0.36	0.68	ns	36h <5:1> 00000b
Full Scale	0.72	1.12	1.51	ns	36h <5:1> 11111b
Linearity, DNL		0.5		LSB	
Linearity, INL		0.8		LSB	
Longest Delay Range⁴					35h <5:1> 00000b
Zero Scale	0.20	0.57	0.95	ns	36h <5:1> 00000b
Full Scale	9.0	10.2	11.6	ns	36h <5:1> 11111b
Linearity, DNL		0.3		LSB	
Linearity, INL		0.6		LSB	
Delay Variation with Temperature					
Long Delay Range, 10 ns⁵					
Zero Scale		0.35		ps/°C	
Full Scale		-0.14		ps/°C	
Short Delay Range, 1 ns⁵					
Zero Scale		0.51		ps/°C	
Full Scale		0.67		ps/°C	

¹ The measurements are for CLK1. For CLK2, add approximately 25 ps.
 ² This is the difference between any two similar delay paths within a single device operating at the same voltage and temperature.
 ³ This is the difference between any two similar delay paths across multiple devices operating at the same voltage and temperature.
 ⁴ Incremental delay; does not include propagation delay.
 ⁵ All delays between the zero scale and full scale can be estimated by linear interpolation.

CLOCK OUTPUT PHASE NOISE

Table 4.

Parameter	Min Typ	Max Unit	Test Conditions/Comments
CLK1-TO-LVPECL ADDITIVE PHASE NOISE			
CLK1 = 622.08 MHz, OUT = 622.08 MHz			Input slew rate > 1 V/ns
Divide Ratio = 1			
@ 10 Hz Offset	-125	dBc/Hz	
@ 100 Hz Offset	-132	dBc/Hz	
@ 1 kHz Offset	-140	dBc/Hz	
@ 10 kHz Offset	-148	dBc/Hz	
@ 100 kHz Offset	-153	dBc/Hz	
>1 MHz Offset	-154	dBc/Hz	
CLK1 = 622.08 MHz, OUT = 155.52 MHz			
Divide Ratio = 4			
@ 10 Hz Offset	-128	dBc/Hz	
@ 100 Hz Offset	-140	dBc/Hz	
@ 1 kHz Offset	-148	dBc/Hz	
@ 10 kHz Offset	-155	dBc/Hz	
@ 100 kHz Offset	-161	dBc/Hz	
>1 MHz Offset	-161	dBc/Hz	
CLK1 = 622.08 MHz, OUT = 38.88 MHz			
Divide Ratio = 16			
@ 10 Hz Offset	-135	dBc/Hz	
@ 100 Hz Offset	-145	dBc/Hz	
@ 1 kHz Offset	-158	dBc/Hz	
@ 10 kHz Offset	-165	dBc/Hz	
@ 100 kHz Offset	-165	dBc/Hz	
>1 MHz Offset	-166	dBc/Hz	
CLK1 = 491.52 MHz, OUT = 61.44 MHz			
Divide Ratio = 8			
@ 10 Hz Offset	-131	dBc/Hz	
@ 100 Hz Offset	-142	dBc/Hz	
@ 1 kHz Offset	-153	dBc/Hz	
@ 10 kHz Offset	-160	dBc/Hz	
@ 100 kHz Offset	-165	dBc/Hz	
>1 MHz Offset	-165	dBc/Hz	
CLK1 = 491.52 MHz, OUT = 245.76 MHz			
Divide Ratio = 2			
@ 10 Hz Offset	-125	dBc/Hz	
@ 100 Hz Offset	-132	dBc/Hz	
@ 1 kHz Offset	-140	dBc/Hz	
@ 10 kHz Offset	-151	dBc/Hz	
@ 100 kHz Offset	-157	dBc/Hz	
>1 MHz Offset	-158	dBc/Hz	
CLK1 = 245.76 MHz, OUT = 61.44 MHz			
Divide Ratio = 4			
@ 10 Hz Offset	-138	dBc/Hz	
@ 100 Hz Offset	-144	dBc/Hz	
@ 1 kHz Offset	-154	dBc/Hz	
@ 10 kHz Offset	-163	dBc/Hz	
@ 100 kHz Offset	-164	dBc/Hz	
>1 MHz Offset	-165	dBc/Hz	

Parameter	Min	Тур	Мах	Unit	Test Conditions/Comments
CLK1-TO-LVDS ADDITIVE PHASE NOISE					
CLK1 = 622.08 MHz, OUT = 622.08 MHz					
Divide Ratio = 1					
@ 10 Hz Offset		-100		dBc/Hz	
@ 100 Hz Offset		-110		dBc/Hz	
@ 1 kHz Offset		-118		dBc/Hz	
@ 10 kHz Offset		-129		dBc/Hz	
@ 100 kHz Offset		-135		dBc/Hz	
@ 1 MHz Offset		-140		dBc/Hz	
>10 MHz Offset		-148		dBc/Hz	
CLK1 = 622.08 MHz, OUT = 155.52 MHz					
Divide Ratio = 4					
@ 10 Hz Offset		-112		dBc/Hz	
@ 100 Hz Offset		-122		dBc/Hz	
@ 1 kHz Offset		-132		dBc/Hz	
@ 10 kHz Offset		-142		dBc/Hz	
@ 100 kHz Offset		-148		dBc/Hz	
@ 1 MHz Offset		-152		dBc/Hz	
>10 MHz Offset		-155		dBc/Hz	
CLK1 = 491.52 MHz, OUT = 245.76 MHz					
Divide Ratio = 2					
@ 10 Hz Offset		-108		dBc/Hz	
@ 100 Hz Offset		-118		dBc/Hz	
@ 1 kHz Offset		-128		dBc/Hz	
@ 10 kHz Offset		-138		dBc/Hz	
@ 100 kHz Offset		-145		dBc/Hz	
@ 1 MHz Offset		-148		dBc/Hz	
>10 MHz Offset		-154		dBc/Hz	
CLK1 = 491.52 MHz, OUT = 122.88 MHz					
Divide Ratio = 4					
@ 10 Hz Offset		-118		dBc/Hz	
@ 100 Hz Offset		-129		dBc/Hz	
@ 1 kHz Offset		-136		dBc/Hz	
@ 10 kHz Offset		-147		dBc/Hz	
@ 100 kHz Offset		-153		dBc/Hz	
@ 1 MHz Offset		-156		dBc/Hz	
>10 MHz Offset		-158		dBc/Hz	
CLK1 = 245.76 MHz, OUT = 245.76 MHz					
Divide Ratio = 1					
@ 10 Hz Offset		-108		dBc/Hz	
@ 100 Hz Offset		-118		dBc/Hz	
@ 1 kHz Offset		-128		dBc/Hz	
@ 10 kHz Offset		-138		dBc/Hz	
@ 100 kHz Offset		-145		dBc/Hz	
@ 1 MHz Offset		-148		dBc/Hz	
>10 MHz Offset		-155		dBc/Hz	

Parameter	Min Typ	Max Unit	Test Conditions/Comments
CLK1 = 245.76 MHz, OUT = 122.88 MHz			
Divide Ratio = 2			
@ 10 Hz Offset	-118	dBc/Hz	
@ 100 Hz Offset	-127	dBc/Hz	
@ 1 kHz Offset	-137	dBc/Hz	
@ 10 kHz Offset	-147	dBc/Hz	
@ 100 kHz Offset	-154	dBc/Hz	
@ 1 MHz Offset	-156	dBc/Hz	
>10 MHz Offset	-158	dBc/Hz	
CLK1-TO-CMOS ADDITIVE PHASE NOISE			
CLK1 = 245.76 MHz, OUT = 245.76 MHz			
Divide Ratio = 1			
@ 10 Hz Offset	-110	dBc/Hz	
@ 100 Hz Offset	-121	dBc/Hz	
@ 1 kHz Offset	-130	dBc/Hz	
@ 10 kHz Offset	-140	dBc/Hz	
@ 100 kHz Offset	-145	dBc/Hz	
@ 1 MHz Offset	-149	dBc/Hz	
> 10 MHz Offset	-156	dBc/Hz	
CLK1 = 245.76 MHz, OUT = 61.44 MHz	150	000/112	
Divide Ratio = 4			
@ 10 Hz Offset	-122	dBc/Hz	
@ 100 Hz Offset	-132	dBc/Hz	
@ 1 kHz Offset	-143	dBc/Hz	
@ 10 kHz Offset	-152	dBc/Hz	
@ 100 kHz Offset	-158	dBc/Hz	
@ 1 MHz Offset	-160	dBc/Hz	
>10 MHz Offset	-162	dBc/Hz	
CLK1 = 78.6432 MHz, OUT = 78.6432 MHz	102	000/112	
Divide Ratio = 1			
@ 10 Hz Offset	-122	dBc/Hz	
@ 100 Hz Offset	-132	dBc/Hz	
@ 1 kHz Offset	-140	dBc/Hz	
@ 10 kHz Offset	-150	dBc/Hz	
@ 100 kHz Offset	-155	dBc/Hz	
@ 1 MHz Offset	-158	dBc/Hz	
>10 MHz Offset	-160	dBc/Hz	
CLK1 = 78.6432 MHz, OUT = 39.3216 MHz	-100	UDC/112	
Divide Ratio = 2			
@ 10 Hz Offset	170	ᆔᅀ	
@ 100 Hz Offset @ 100 Hz Offset	-128 -136	dBc/Hz dBc/Hz	
@ 1 kHz Offset			
	-146	dBc/Hz	
@ 10 kHz Offset @ 100 kHz Offset	-155	dBc/Hz	
	-161	dBc/Hz	
>1 MHz Offset	-162	dBc/Hz	

CLOCK OUTPUT ADDITIVE TIME JITTER

Table 5. Unit **Test Conditions/Comments** Parameter Min Typ Max LVPECL OUTPUT ADDITIVE TIME JITTER BW = 12 kHz - 20 MHz (OC-12) CLK1 = 622.08 MHz 40 fs rms Any LVPECL (OUT0 to OUT2) = 622.08 MHz Divide Ratio = 1 CLK1 = 622.08 MHz 55 BW = 12 kHz - 20 MHz (OC-3)fs rms Any LVPECL (OUT0 to OUT2) = 155.52 MHz Divide Ratio = 4CLK1 = 400 MHz215 fs rms Calculated from SNR of ADC method; $F_C = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$ Any LVPECL (OUT0 to OUT2) = 100 MHz Divide Ratio = 4 Calculated from SNR of ADC method; CLK1 = 400 MHz 215 fs rms $F_C = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$ Any LVPECL (OUT0 to OUT2) = 100 MHz Divide Ratio = 4Other LVPECL = 100 MHz Interferer(s) Both LVDS (OUT3, OUT4) = 100 MHz Interferer(s) CLK1 = 400 MHz 222 Calculated from SNR of ADC method; fs rms $F_C = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$ Any LVPECL (OUT0 to OUT2) = 100 MHz Divide Ratio = 4Other LVPECL = 50 MHz Interferer(s) Interferer(s) Both LVDS (OUT3, OUT4) = 50 MHz Calculated from SNR of ADC method; CLK1 = 400 MHz 225 fs rms $F_C=100\mbox{ MHz}$ with $A_{IN}=170\mbox{ MHz}$ Any LVPECL (OUT0 to OUT2) = 100 MHz Divide Ratio = 4Other LVPECL = 50 MHz Interferer(s) Both CMOS (OUT3, OUT4) = 50 MHz (B Outputs Off) Interferer(s) Calculated from SNR of ADC method; CLK1 = 400 MHz 225 fs rms $F_C = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$ Any LVPECL (OUT0 to OUT2) = 100 MHz Divide Ratio = 4Other LVPECL = 50 MHz Interferer(s) Both CMOS (OUT3, OUT4) = 50 MHz (B Outputs On) Interferer(s) LVDS OUTPUT ADDITIVE TIME JITTER CLK1 = 400 MHz 264 fs rms Calculated from SNR of ADC method: $F_C = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$ LVDS (OUT3) = 100 MHz Divide Ratio = 4 CLK1 = 400 MHz 319 Calculated from SNR of ADC method; fs rms $F_C = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$ LVDS (OUT4) = 100 MHz Divide Ratio = 4fs rms CLK1 = 400 MHz 395 Calculated from SNR of ADC method: $F_C = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$ LVDS (OUT3) = 100 MHz Divide Ratio = 4 LVDS (OUT4) = 50 MHz Interferer(s) All LVPECL = 50 MHz Interferer(s)

Parameter	Min	Тур	Мах	Unit	Test Conditions/Comments
CLK1 = 400 MHz		395		fs rms	Calculated from SNR of ADC method; $F_c = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$
LVDS (OUT4) = 100 MHz					
Divide Ratio = 4					
LVDS (OUT3) = 50 MHz					Interferer(s)
All LVPECL = 50 MHz					Interferer(s)
CLK1 = 400 MHz		367		fs rms	Calculated from SNR of ADC method; $F_c = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$
LVDS (OUT3) = 100 MHz					
Divide Ratio = 4					
CMOS (OUT4) = 50 MHz (B Outputs Off)					Interferer(s)
All LVPECL = 50 MHz					Interferer(s)
CLK1 = 400 MHz		367		fs rms	Calculated from SNR of ADC method; $F_c = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$
LVDS (OUT4) = 100 MHz					
Divide Ratio = 4					
CMOS (OUT3) = 50 MHz (B Outputs Off)					Interferer(s)
All LVPECL = 50 MHz					Interferer(s)
CLK1 = 400 MHz		548		fs rms	Calculated from SNR of ADC method; $F_c = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$
LVDS (OUT3) = 100 MHz					
Divide Ratio = 4					
CMOS (OUT4) = 50 MHz (B Outputs On)					Interferer(s)
All LVPECL = 50 MHz					Interferer(s)
CLK1 = 400 MHz		548		fs rms	Calculated from SNR of ADC method; $F_c = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$
LVDS (OUT4) = 100 MHz					
Divide Ratio = 4					
CMOS (OUT3) = 50 MHz (B Outputs On)					Interferer(s)
All LVPECL = 50 MHz					Interferer(s)
MOS OUTPUT ADDITIVE TIME JITTER					
CLK1 = 400 MHz		275		fs rms	Calculated from SNR of ADC method; $F_c = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$
Both CMOS (OUT3, OUT4) = 100 MHz (B Output On)					
Divide Ratio = 4					
CLK1 = 400 MHz		400		fs rms	Calculated from SNR of ADC method; $F_C = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$
CMOS (OUT3) = 100 MHz (B Output On)					
Divide Ratio = 4					
All LVPECL = 50 MHz					Interferer(s)
LVDS (OUT4) = 50 MHz					Interferer(s)
CLK1 = 400 MHz		374		fs rms	Calculated from SNR of ADC method; $F_c = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$
CMOS (OUT3) = 100 MHz (B Output On)					
Divide Ratio = 4					
All LVPECL = 50 MHz				1	Interferer(s)
CMOS (OUT4) = 50 MHz (B Output Off)					Interferer(s)
CLK1 = 400 MHz		555		fs rms	Calculated from SNR of ADC method; $F_c = 100 \text{ MHz}$ with $A_{IN} = 170 \text{ MHz}$
CMOS (OUT3) = 100 MHz (B Output On)					
Divide Ratio = 4					
All LVPECL = 50 MHz				1	Interferer(s)
CMOS (OUT4) = 50 MHz (B Output On)					Interferer(s)

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DELAY BLOCK ADDITIVE TIME JITTER ¹					Incremental additive jitter ¹
100 MHz Output					
Delay FS = 1 ns (1600 μA, 1C) Fine Adj. 00000		0.61		ps	
Delay FS = 1 ns (1600 μA, 1C) Fine Adj. 11111		0.73		ps	
Delay FS = 2 ns (800 μA, 1C) Fine Adj. 00000		0.71		ps	
Delay FS = 2 ns (800 μA, 1C) Fine Adj. 11111		1.2		ps	
Delay FS = 3 ns (800 μA, 4C) Fine Adj. 00000		0.86		ps	
Delay FS = 3 ns (800 μA, 4C) Fine Adj. 11111		1.8		ps	
Delay FS = 4 ns (400 μA, 4C) Fine Adj. 00000		1.2		ps	
Delay FS = 4 ns (400 μA, 4C) Fine Adj. 11111		2.1		ps	
Delay FS = 5 ns (200 μA, 1C) Fine Adj. 00000		1.3		ps	
Delay FS = 5 ns (200 μA, 1C) Fine Adj. 11111		2.7		ps	
Delay FS = 11 ns (200 μA, 4C) Fine Adj. 00000		2.0		ps	
Delay FS = 11 ns (200 μA, 4C) Fine Adj. 00100		2.8		ps	

¹ This value is incremental. That is, it is in addition to the jitter of the LVDS or CMOS output without the delay. To estimate the total jitter, the LVDS or CMOS output jitter should be added to this value using the root sum of the squares (RSS) method.

SERIAL CONTROL PORT Table 6.

l able 6.					
Parameter	Min	Тур	Мах	Unit	Test Conditions/Comments
CSB, SCLK (INPUTS)					CSB and SCLK have 30 $k\Omega$
					internal pull-down resistors
Input Logic 1 Voltage	2.0			V	
Input Logic 0 Voltage			0.8	V	
Input Logic 1 Current		110		μΑ	
Input Logic 0 Current			1	μΑ	
Input Capacitance		2		pF	
SDIO (WHEN INPUT)					
Input Logic 1 Voltage	2.0			V	
Input Logic 0 Voltage			0.8	V	
Input Logic 1 Current		10		nA	
Input Logic 0 Current		10		nA	
Input Capacitance		2		pF	
SDIO, SDO (OUTPUTS)					
Output Logic 1 Voltage	2.7			V	
Output Logic 0 Voltage			0.4	V	
TIMING					
Clock Rate (SCLK, 1/t _{SCLK})			25	MHz	
Pulse Width High, t _{PWH}	16			ns	
Pulse Width Low, tPWL	16			ns	
SDIO to SCLK Setup, t _{DS}	2			ns	
SCLK to SDIO Hold, t _{DH}	1			ns	
SCLK to Valid SDIO and SDO, t_{DV}	6			ns	
CSB to SCLK Setup and Hold, t_s , t_H	2			ns	
CSB Minimum Pulse Width High, tPWH	3			ns	

FUNCTION PIN Table 7.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
INPUT CHARACTERISTICS					The FUNCTION pin has a 30 k Ω internal pull-down resistor This pin should normally be held high. Do not leave NC.
Logic 1 Voltage	2.0			V	
Logic 0 Voltage			0.8	V	
Logic 1 Current		110		μΑ	
Logic 0 Current			1	μΑ	
Capacitance		2		pF	
RESET TIMING					
Pulse Width Low	50			ns	
SYNC TIMING					
Pulse Width Low	1.5			High speed clock cycles	High speed clock is CLK1 or CLK2, whichever is being used for distribution.

SYNC STATUS PIN

Table 8.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
OUTPUT CHARACTERISTICS					
Output Voltage High (V _{он})	2.7			V	
Output Voltage Low (Vol)			0.4	V	

POWER

Table 9.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
POWER-UP DEFAULT MODE POWER DISSIPATION		550	600	mW	Power-up default state; does not include power dissipated in output load resistors. No clock.
POWER DISSIPATION			800	mW	All outputs on. Three LVPECL outputs @ 800 MHz, two CMOS out @ 62 MHz (5 pF load). Does not include power dissipated in external resistors.
			850	mW	All outputs on. Three LVPECL outputs @ 800 MHz, two CMOS out @ 125 MHz (5 pF load). Does not include power dissipated in external resistors.
Full Sleep Power-Down		35	60	mW	Maximum sleep is entered by setting $0Ah<1:0> = 01b$ and $58h<4> = 1b$. This powers off all band gap references. Does not include power dissipated in terminations.
Power-Down (PDB)		60	80	mW	Set FUNCTION pin for PDB operation by setting 58h<6:5> = 11b. Pull PDB low. Does not include power dissipated in terminations.
POWER DELTA					
CLK1, CLK2 Power-Down	10	15	25	mW	
Divider, DIV 2 – 32 to Bypass	23	27	33	mW	For each divider.
LVPECL Output Power-Down (PD2, PD3)	50	65	75	mW	For each output. Does not include dissipation in termination (PD2 only).
LVDS Output Power-Down	80	92	110	mW	For each output.
CMOS Output Power-Down (Static)	56	70	85	mW	For each output. Static (no clock).
CMOS Output Power-Down (Dynamic)	115	150	190	mW	For each CMOS output, single-ended. Clocking at 62 MHz with 5 pF load.
CMOS Output Power-Down (Dynamic)	125	165	210	mW	For each CMOS output, single-ended. Clocking at 125 MHz with 5 pF load.
Delay Block Bypass	20	24	60	mW	Vs. delay block operation at 1 ns fs with maximum delay; output clocking at 25 MHz.

05287-065

TIMING DIAGRAMS

 $20\% - - + t_{RL} + t_{FL}$ Figure 4. LVDS Timing, Differential

DIFFERENTIAL

80%-

ABSOLUTE MAXIMUM RATINGS

Table 10.

	With Respect			
Parameter or Pin	to	Min	Max	Unit
VS	GND	-0.3	+3.6	V
DSYNC/DSYNCB	GND	-0.3	$V_{\text{S}} + 0.3$	V
RSET	GND	-0.3	$V_{s} + 0.3$	V
CLK1, CLK1B, CLK2, CLK2B	GND	-0.3	$V_{\text{S}} + 0.3$	V
CLK1	CLK1B	-1.2	+1.2	V
CLK2	CLK2B	-1.2	+1.2	V
SCLK, SDIO, SDO, CSB	GND	-0.3	$V_{s} + 0.3$	V
OUT0, OUT1, OUT2, OUT3, OUT4	GND	-0.3	V _s + 0.3	V
FUNCTION	GND	-0.3	Vs + 0.3	v
SYNC STATUS	GND	-0.3	$V_{s} + 0.3$	V
Junction Temperature			150	°C
Storage Temperature		-65	+150	°C
Lead Temperature (10 sec)			300	°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Thermal Resistance¹

48-Lead LFCSP

 $\theta_{JA} = 28.5^{\circ}C/W$

¹ Thermal impedance measurements were taken on a 4-layer board in still air, in accordance with EIA/JESD51-7.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Note that the exposed paddle on this package is an electrical connection as well as a thermal enhancement. For the device to function properly, the paddle must be attached to ground, GND.

Table 11. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	DSYNC	Detect Sync. Used for multichip synchronization.
2	DSYNCB	Detect Sync Complement. Used for multichip synchronization.
3, 4, 6, 9, 18, 22, 23, 25, 28, 29, 32, 33, 36, 39, 40, 44, 47, 48	VS	Power Supply (3.3 V).
5	DNC	Do Not Connect.
7	CLK2	Clock Input.
8	CLK2B	Complementary Clock Input. Used in conjunction with CLK2.
10	CLK1	Clock Input.
11	CLK1B	Complementary Clock Input. Used in conjunction with CLK1.
12	FUNCTION	Multipurpose Input. Can be programmed as a reset (RESETB), sync (SYNCB), or power-down (PDB) pin.
13	STATUS	Output Used to Monitor the Status of Multichip Synchronization.
14	SCLK	Serial Data Clock.
15	SDIO	Serial Data I/O.
16	SDO	Serial Data Output.
17	CSB	Serial Port Chip Select.
19, 24, 37, 38, 43, 46	GND	Ground.
20	OUT2B	Complementary LVPECL Output.
21	OUT2	LVPECL Output.
26	OUT1B	Complementary LVPECL Output.
27	OUT1	LVPECL Output.
30	OUT4B	Complementary LVDS/Inverted CMOS Output. OUT4 includes a delay block.
31	OUT4	LVDS/CMOS Output. OUT4 includes a delay block.
34	OUT3B	Complementary LVDS/Inverted CMOS Output.
35	OUT3	LVDS/CMOS Output.
41	OUTOB	Complementary LVPECL Output.
42	OUTO	LVPECL Output.
45	RSET	Current Set Resistor to Ground. Nominal value = $4.12 \text{ k}\Omega$.

Note that the exposed paddle on this package is an electrical connection as well as a thermal enhancement. For the device to function properly, the paddle must be attached to ground, GND.

TERMINOLOGY

Phase Jitter and Phase Noise

An ideal sine wave can be thought of as having a continuous and even progression of phase with time from 0 degrees to 360 degrees for each cycle. Actual signals, however, display a certain amount of variation from ideal phase progression over time. This phenomenon is called phase jitter. Although many causes can contribute to phase jitter, one major cause is random noise, which is characterized statistically as being Gaussian (normal) in distribution.

This phase jitter leads to a spreading out of the energy of the sine wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are dBc/Hz at a given offset in frequency from the sine wave (carrier). The value is a ratio (expressed in dB) of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement, the offset from the carrier frequency is also given.

It is meaningful to integrate the total power contained within some interval of offset frequencies (for example, 10 kHz to 10 MHz). This is called the integrated phase noise over that frequency offset interval and can be readily related to the time jitter due to the phase noise within that offset frequency interval.

Phase noise has a detrimental effect on the performance of ADCs, DACs, and RF mixers. It lowers the achievable dynamic range of the converters and mixers, although they are affected in somewhat different ways.

Time Jitter

Phase noise is a frequency domain phenomenon. In the time domain, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings is seen to vary. In a square wave, the time jitter is seen as a displacement of the edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Since these variations are random in nature, the time jitter is specified in units of seconds root mean square (rms) or 1 sigma of the Gaussian distribution.

Time jitter that occurs on a sampling clock for a DAC or an ADC decreases the SNR and dynamic range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.

Additive Phase Noise

It is the amount of phase noise that is attributable to the device or subsystem being measured. The phase noise of any external oscillators or clock sources has been subtracted. This makes it possible to predict the degree to which the device impacts the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contribute their own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise.

Additive Time Jitter

It is the amount of time jitter that is attributable to the device or subsystem being measured. The time jitter of any external oscillators or clock sources has been subtracted. This makes it possible to predict the degree to which the device will impact the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contribute their own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. CLK1 Smith Chart (Evaluation Board)

Figure 10. CLK2 Smith Chart (Evaluation Board)

Figure 11. LVPECL Differential Output @ 800 MHz

Figure 12. LVDS Differential Output @ 800 MHz

Figure 13. CMOS Single-Ended Output @ 250 MHz with 10 pF Load

Figure 14. LVPECL Differential Output Swing vs. Frequency

Figure 18. Additive Phase Noise—LVDS DIV1, 245.76 MHz

Figure 19. Additive Phase Noise—CMOS DIV1, 245.76 MHz

Figure 20. Additive Phase Noise—LVPECL DIV1, 622.08 MHz

Figure 22. Additive Phase Noise—CMOS DIV4, 61.44 MHz

Figure 23. Functional Block Diagram Showing Maximum Frequencies

FUNCTIONAL DESCRIPTION overall

Figure 23 shows a block diagram of the AD9512. The AD9512 accepts inputs on either of two clock inputs (CLK1 or CLK2). This clock can be divided by any integer value from 1 to 32. The duty cycle and relative phase of the outputs can be selected. There are three LVPECL outputs (OUT0, OUT1, OUT2) and two outputs that can be either LVDS or CMOS level outputs (OUT3, OUT4). OUT4 can also make use of a variable delay block.

The AD9512 provides clock distribution function only; there is no clock clean-up. The jitter of the input clock signal is passed along directly to the distribution section and can dominate at the clock outputs.

See Figure 24 for the equivalent circuit of CLK1 and CLK2.

Figure 24. CLK1, CLK2 Equivalent Input Circuit

FUNCTION PIN

The FUNCTION pin (Pin 12) has three functions that are selected by the value in Register 58h<6:5>. There is an internal 30 k Ω pull-down resistor on this pin.

RESETB: 58h<6:5> = 00b (Default)

In its default mode, the FUNCTION pin acts as RESETB, which generates an asynchronous reset or hard reset when pulled low. The resulting reset writes the default values into the serial control port buffer registers as well as loading them into the chip control registers. The AD9512 immediately resumes operation according to the default values. When the pin is taken high again, an asynchronous sync is issued (see the SYNCB: 58h<6:5> = 01b section).

SYNCB: 58h<6:5> = 01b

The FUNCTION pin can be used to cause a synchronization or alignment of phase among the various clock outputs. The synchronization applies only to clock outputs that:

- are not powered down
- the divider is not masked (no sync = 0)
- are not bypassed (bypass = 0)

SYNCB is level and rising edge sensitive. When SYNCB is low, the set of affected outputs are held in a predetermined state, defined by each divider's start high bit. On a rising edge, the dividers begin after a predefined number of fast clock cycles (fast clock is the selected clock input, CLK1 or CLK2) as determined by the values in the divider's phase offset bits.

The SYNCB application of the FUNCTION pin is always active, regardless of whether the pin is also assigned to perform reset or power-down. When the SYNCB function is selected, the FUNCTION pin does not act as either RESETB or PDB.

PDB: 58h<6:5> = 11b

The FUNCTION pin can also be programmed to work as an asynchronous full power-down, PDB. Even in this full powerdown mode, there is still some residual Vs current because some on-chip references continue to operate. In PDB mode, the FUNCTION pin is active low. The chip remains in a powerdown state until PDB is returned to logic high. The chip returns to the settings programmed prior to the power-down.

See the Chip Power-Down or Sleep Mode—PDB section for more details on what occurs during a PDB initiated power-down.

DSYNC AND DSYNCB PINS

The DSYNC and DSYNCB pins (Pin 1 and Pin 2) are used when the AD9512 is used in a multichip synchronized configuration (see the Multichip Synchronization section).

CLOCK INPUTS

Two clock inputs (CLK1, CLK2) are available for use on the AD9512. CLK1 and CLK2 can accept inputs up to 1600 MHz. See Figure 24 for the CLK1 and CLK2 equivalent input circuit.

The clock inputs are fully differential and self-biased. The signal should be ac-coupled using capacitors. If a single-ended input must be used, this can be accommodated by ac coupling to one side of the differential input only. The other side of the input should be bypassed to a quiet ac ground by a capacitor.

The unselected clock input (either CLK1 or CLK2) should be powered down to eliminate any possibility of unwanted crosstalk between the selected clock input and the unselected clock input.