: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1.2 GHz Clock Distribution IC, 1.6 GHz Inputs, Dividers, Delay Adjust, Five Outputs

FEATURES

Two 1.6 GHz, differential clock inputs 5 programmable dividers, 1 to 32, all integers
Phase select for output-to-output coarse delay adjust
3 independent 1.2 GHz LVPECL outputs
Additive output jitter 225 fs rms
2 independent 800 MHz/250 MHz LVDS/CMOS clock outputs
Additive output jitter 275 fs rms
Fine delay adjust on 1 LVDS/CMOS output
Serial control port
Space-saving 48-lead LFCSP

APPLICATIONS

Low jitter, low phase noise clock distribution
Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs
High performance wireless transceivers
High performance instrumentation
Broadband infrastructure

GENERAL DESCRIPTION

The AD9512 provides a multi-output clock distribution in a design that emphasizes low jitter and low phase noise to maximize data converter performance. Other applications with demanding phase noise and jitter requirements can also benefit from this part.

There are five independent clock outputs. Three outputs are LVPECL (1.2 GHz), and two are selectable as either LVDS (800 MHz) or CMOS (250 MHz) levels.

Each output has a programmable divider that may be bypassed or set to divide by any integer up to 32 . The phase of one clock output relative to another clock output may be varied by means of a divider phase select function that serves as a coarse timing adjustment.

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

One of the LVDS/CMOS outputs features a programmable delay element with a range of up to 10 ns of delay. This fine tuning delay block has 5-bit resolution, giving 32 possible delays from which to choose.

The AD9512 is ideally suited for data converter clocking applications where maximum converter performance is achieved by encode signals with subpicosecond jitter.

The AD9512 is available in a 48 -lead LFCSP and can be operated from a single 3.3 V supply. The temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

[^0]Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- AD9512 Evaluation Board

DOCUMENTATION \square

Application Notes

- AN-0974: Multicarrier TD-SCMA Feasibility
- AN-501: Aperture Uncertainty and ADC System Performance
- AN-741: Little Known Characteristics of Phase Noise
- AN-756: Sampled Systems and the Effects of Clock Phase Noise and Jitter
- AN-769: Generating Multiple Clock Outputs from the AD9540
- AN-823: Direct Digital Synthesizers in Clocking Applications Time
- AN-837: DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance
- AN-873: Lock Detect on the ADF4xxx Family of PLL Synthesizers
- AN-927: Determining if a Spur is Related to the DDS/DAC or to Some Other Source (For Example, Switching Supplies)
- AN-939: Super-Nyquist Operation of the AD9912 Yields a High RF Output Signal

Data Sheet

- AD9512-DSCC: Military Data Sheet
- AD9512-EP: Enhanced Product Data Sheet
- AD9512: 1.2 GHz Clock Distribution IC, 1.6 GHz Inputs, Dividers, Delay Adjust, Five Outputs Data Sheet

TOOLS AND SIMULATIONS \square

- ADIsimCLK Design and Evaluation Software
- AD9512 IBIS Models

REFERENCE DESIGNS

- CN0109

REFERENCE MATERIALS

Press

- Analog Devices' Dual 14-bit A/D Converter Reduces Power and Size in Communications, Instrumentation, Test and Measurement Applications

Technical Articles

- ADI Buys Korean Mobile TV Chip Maker
- Design A Clock-Distribution Strategy With Confidence
- Improved DDS Devices Enable Advanced Comm Systems
- Low-power direct digital synthesizer cores enable high level of integration
- Speedy A/Ds Demand Stable Clocks
- Understand the Effects of Clock Jitter and Phase Noise on Sampled Systems

DESIGN RESOURCES

- AD9512 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD9512 EngineerZone Discussions.

SAMPLE AND BUY \square

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK \square

Submit feedback for this data sheet.

AD9512

TABLE OF CONTENTS

Specifications 4
Clock Inputs 4
Clock Outputs 4
Timing Characteristics 5
Clock Output Phase Noise 7
Clock Output Additive Time Jitter 10
Serial Control Port 12
FUNCTION Pin 13
SYNC Status Pin 13
Power 14
Timing Diagrams. 15
Absolute Maximum Ratings 16
Thermal Characteristics 16
ESD Caution 16
Pin Configuration and Function Descriptions. 17
Terminology 19
Typical Performance Characteristics 20
Functional Description 24
Overall 24
FUNCTION Pin 24
RESETB: $58 \mathrm{~h}<6: 5>=00 \mathrm{~b}$ (Default) 24
SYNCB: $58 \mathrm{~h}<6: 5>=01 \mathrm{~b}$ 24
PDB: $58 \mathrm{~h}<6: 5>=11 \mathrm{~b}$ 24
DSYNC and DSYNCB Pins 24
Clock Inputs 24
Dividers. 25
Setting the Divide Ratio 25
Setting the Duty Cycle. 25
Divider Phase Offset 29
Delay Block. 30
Calculating the Delay 30
Outputs 30
Power-Down Modes 31
Chip Power-Down or Sleep Mode-PDB 31
Distribution Power-Down 31
Individual Clock Output Power-Down 31
Individual Circuit Block Power-Down. 31
Reset Modes 31
Power-On Reset-Start-Up Conditions when VS is Applied. 31
Asynchronous Reset via the FUNCTION Pin 31
Soft Reset via the Serial Port. 31
Single-Chip Synchronization. 32
SYNCB—Hardware SYNC 32
Soft SYNC—Register 58h<2> 32
Multichip Synchronization 32
Serial Control Port 33
Serial Control Port Pin Descriptions 33
General Operation of Serial Control Port 33
Framing a Communication Cycle with CSB 33
Communication Cycle—Instruction Plus Data 33
Write 33
Read 34
The Instruction Word (16 Bits) 34
MSB/LSB First Transfers 34
Register Map and Description 37
Summary Table. 37
Register Map Description 39
Power Supply 43
Power Management 43
Applications 44
Using the AD9512 Outputs for ADC Clock Applications 44
CMOS Clock Distribution 44
LVPECL Clock Distribution 45
LVDS Clock Distribution 45
Power and Grounding Considerations and Power Supply
Rejection 45
Outline Dimensions 46
Ordering Guide 46
REVISION HISTORY
6/05-Rev. 0 to Rev. A
Changes to Features 1
Changes to General Description 1
Changes to Table 1 4
Changes to Table 35
Changes to Table 4 7
Changes to Table 5 and Table 6 12
Changes to Table 7 13
Changes to Figure 12 and Figure 14 to Figure 16 21
Changes to Figure 17 Caption 22
Changes to Figure 23 23
Changes to Divider Phase Offset Section 29
Changes to Chip Power-Down or Sleep Mode-PDB Section 3 31
Changes to Distribution Power-Down Section 31
Changes to Individual Clock Output Power-Down Section31
Changes to Individual Circuit Block Power-Down Section 31
Changes to Soft Reset via the Serial Port Section 31
Changes to SYNCB—Hardware SYNC Section 32
Changes to Soft SYNC Register 58h<2> Section 32
Changes to Multichip Synchronization Section 32
Changes to Serial Control Port Section33
Changes to Serial Control Port Pin Descriptions Section 33
Changes to General Operation of Serial
Control Port Section 33
Added Framing a Communication Cycle with CSB Section33
Added Communication Cycle-Instruction Plus Data Section 33
Changes to Write Section 33
Changes to Read Section 34
Changes to Instruction Word (16 Bits) Section 34
Changes to MSB/LSB First Transfers Section. 34
Changes to Figure 32 and Figure 36 35
Added Figure 38; Renumbered Sequentially 36
Changes to Table 17 37
Changes to Table 18. 39
Changes to Power Supply Section. 43
Changes to Power Management Section. 43

AD9512

SPECIFICATIONS

Typical (Typ) is given for $\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {SET }}=4.12 \mathrm{k} \Omega$, unless otherwise noted. Minimum (Min) and Maximum (Max) values are given over full V_{S} and $\mathrm{T}_{\mathrm{A}}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ variation.

CLOCK INPUTS

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLOCK INPUTS (CLK1, CLK2) ${ }^{1}$					
Input Frequency	0		1.6	GHz	
Input Sensitivity		150^{2}		mV p-p	Jitter performance can be improved with higher slew rates (greater swing).
Input Level			2^{3}	$\checkmark \mathrm{p}$-p	Larger swings turn on the protection diodes and can degrade jitter performance.
Input Common-Mode Voltage, $\mathrm{V}_{\text {cm }}$	1.5	1.6	1.7	V	Self-biased; enables ac coupling.
Input Common-Mode Range, $\mathrm{V}_{\text {cmi }}$	1.3		1.8	V	With 200 mV p-p signal applied; dc-coupled.
Input Sensitivity, Single-Ended		150		mV p-p	CLK2 ac-coupled; CLK2B ac bypassed to RF ground.
Input Resistance	4.0	4.8	5.6	$k \Omega$	Self-biased.
Input Capacitance		2		pF	

${ }^{1}$ CLK1 and CLK2 are electrically identical; each can be used as either differential or single-ended input.
${ }^{2}$ With a 50Ω termination, this is -12.5 dBm .
${ }^{3}$ With a 50Ω termination, this is +10 dBm .

CLOCK OUTPUTS

Table 2.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL CLOCK OUTPUTS OUTO, OUT1, OUT2; Differential Output Frequency Output High Voltage (Vон) Output Low Voltage (Vol) Output Differential Voltage (Vod)	$\begin{aligned} & V_{s}-1.22 \\ & V_{s}-2.10 \\ & 660 \end{aligned}$	$\begin{aligned} & V_{s}-0.98 \\ & V_{s}-1.80 \\ & 810 \end{aligned}$	$\begin{aligned} & 1200 \\ & V_{s}-0.93 \\ & V_{s}-1.67 \\ & 965 \end{aligned}$	MHz V V mV	```Termination \(=50 \Omega\) to \(\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}\) Output level 3Dh (3Eh) (3Fh)<3:2> = 10b See Figure 14```
LVDS CLOCK OUTPUTS OUT3, OUT4; Differential Output Frequency Differential Output Voltage (Vod) Delta Vod Output Offset Voltage (Vos) Delta Vos Short-Circuit Current (IsA, $^{\text {I }}$ SB)	$\begin{aligned} & 250 \\ & 1.125 \end{aligned}$	$\begin{aligned} & 360 \\ & 1.23 \\ & 14 \end{aligned}$	$\begin{aligned} & 800 \\ & 450 \\ & 25 \\ & 1.375 \\ & 25 \\ & 24 \end{aligned}$	MHz mV mV V mV mA	Termination $=100 \Omega$ differential; default Output level 40h (41 h)<2:1> = 01b 3.5 mA termination current See Figure 15 Output shorted to GND
CMOS CLOCK OUTPUTS OUT3, OUT4 Output Frequency Output Voltage High (Vон) Output Voltage Low (Vol)	Vs - 0.1		$\begin{aligned} & 250 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	Single-ended measurements; B outputs: inverted, termination open With 5 pF load each output; see Figure 16 @ 1 mA load @ 1 mA load

TIMING CHARACTERISTICS

Table 3.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL Output Rise Time, trp Output Fall Time, $t_{\text {FP }}$		$\begin{aligned} & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	Termination $=50 \Omega$ to $\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}$ Output level 3Dh (3Eh) (3Fh) $<3: 2>=10 b$ 20% to 80%, measured differentially 80% to 20%, measured differentially
PROPAGATION DELAY, tpecL, CLK-TO-LVPECL OUT ${ }^{1}$ Divide $=$ Bypass Divide $=2-32$ Variation with Temperature	$\begin{aligned} & 335 \\ & 375 \end{aligned}$	$\begin{aligned} & 490 \\ & 545 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 635 \\ & 695 \end{aligned}$	ps ps $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
OUTPUT SKEW, LVPECL OUTPUTS OUT1 to OUT0 on Same Part, $\mathrm{t}_{\text {sKP }}{ }^{2}$ OUT1 to OUT2 on Same Part, $\mathrm{t}_{\text {sKP }}{ }^{2}$ OUT0 to OUT2 on Same Part, $\mathrm{t}_{\text {sKP }}{ }^{2}$ All LVPECL OUT Across Multiple Parts, tskp_AB 3 Same LVPECL OUT Across Multiple Parts, $\mathrm{t}_{\text {SkP } A B^{3}}$	$\begin{aligned} & 70 \\ & 15 \\ & 45 \end{aligned}$	$\begin{aligned} & 100 \\ & 45 \\ & 65 \end{aligned}$	$\begin{aligned} & 140 \\ & 80 \\ & 90 \\ & 275 \\ & 130 \end{aligned}$	$\begin{aligned} & \text { ps } \\ & \text { ps } \end{aligned}$	
LVDS Output Rise Time, t_{RL} Output Fall Time, $t_{\text {fL }}$		$\begin{aligned} & 200 \\ & 210 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	Termination $=100 \Omega$ differential Output level 40h (41 h) <2:1> $=01 \mathrm{~b}$ 3.5 mA termination current 20% to 80%, measured differentially 80% to 20%, measured differentially
PROPAGATION DELAY, tıvos, CLK-TO-LVDS OUT ${ }^{1}$ OUT3 to OUT4 Divide $=$ Bypass Divide $=2-32$ Variation with Temperature	$\begin{aligned} & 0.99 \\ & 1.04 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.38 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.59 \\ & 1.64 \end{aligned}$	ns ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	Delay off on OUT4
OUTPUT SKEW, LVDS OUTPUTS OUT3 to OUT4 on Same Part, $\mathrm{t}_{\mathrm{skv}}{ }^{2}$ All LVDS OUTs Across Multiple Parts, tskv_AB ${ }^{3}$ Same LVDS OUT Across Multiple Parts, tskv_AB ${ }^{3}$	-85		$\begin{aligned} & +270 \\ & 450 \\ & 325 \end{aligned}$	$\begin{aligned} & \text { ps } \\ & \text { ps } \\ & \text { ps } \end{aligned}$	Delay off on OUT4
CMOS Output Rise Time, t_{RC} Output Fall Time, t_{fc}		$\begin{aligned} & 681 \\ & 646 \end{aligned}$	$\begin{aligned} & 865 \\ & 992 \end{aligned}$	$\begin{aligned} & \text { ps } \\ & \text { ps } \\ & \hline \end{aligned}$	B outputs are inverted; termination = open $20 \% \text { to } 80 \% ; C_{\text {LOAD }}=3 \mathrm{pF}$ $80 \% \text { to } 20 \% ; C_{\text {LOAD }}=3 \mathrm{pF}$
PROPAGATION DELAY, tcmos, CLK-TO-CMOS OUT ${ }^{1}$ Divide $=$ Bypass Divide $=2-32$ Variation with Temperature	$\begin{aligned} & 1.02 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 1.39 \\ & 1.44 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.71 \\ & 1.76 \end{aligned}$	ns ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	Delay off on OUT4
OUTPUT SKEW, CMOS OUTPUTS OUT3 to OUT4 on Same Part, tskc 2 All CMOS OUT Across Multiple Parts, tskc_AB 3 Same CMOS OUT Across Multiple Parts, tsKc_AB ${ }^{3}$	-140	+145	$\begin{aligned} & +300 \\ & 650 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$	Delay off on OUT4
LVPECL-TO-LVDS OUT Output Skew, $\mathrm{t}_{\text {skP_v }}$	0.74	0.92	1.14	ns	Everything the same; different logic type LVPECL to LVDS on same part
LVPECL-TO-CMOS OUT Output Skew, tskp c	0.88	1.14	1.43	ns	Everything the same; different logic type LVPECL to CMOS on same part
LVDS-TO-CMOS OUT Output Skew, tskv_c	158	353	506	ps	Everything the same; different logic type LVDS to CMOS on same part

AD9512

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DELAY ADJUST					OUT4; LVDS and CMOS
Shortest Delay Range ${ }^{4}$					$35 \mathrm{~h}<5: 1>11111 \mathrm{~b}$
Zero Scale	0.05	0.36	0.68	ns	36h <5:1> 00000b
Full Scale	0.72	1.12	1.51	ns	36h <5:1> 11111b
Linearity, DNL		0.5		LSB	
Linearity, INL		0.8		LSB	
Longest Delay Range ${ }^{4}$					$35 \mathrm{~h}<5: 1>00000 \mathrm{~b}$
Zero Scale	0.20	0.57	0.95	ns	$36 \mathrm{~h}<5: 1>00000 \mathrm{~b}$
Full Scale	9.0	10.2	11.6	ns	$36 \mathrm{~h}<5: 1>11111 \mathrm{~b}$
Linearity, DNL		0.3		LSB	
Linearity, INL		0.6		LSB	
Delay Variation with Temperature					
Long Delay Range, $10 \mathrm{~ns}^{5}$					
Zero Scale		0.35		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Full Scale		-0.14		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Short Delay Range, $1 \mathrm{~ns}^{5}$					
Zero Scale		0.51		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Full Scale		0.67		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	

${ }^{1}$ The measurements are for CLK1. For CLK2, add approximately 25 ps .
${ }^{2}$ This is the difference between any two similar delay paths within a single device operating at the same voltage and temperature.
${ }^{3}$ This is the difference between any two similar delay paths across multiple devices operating at the same voltage and temperature. ${ }^{4}$ Incremental delay; does not include propagation delay.
${ }^{5}$ All delays between the zero scale and full scale can be estimated by linear interpolation.

CLOCK OUTPUT PHASE NOISE

Table 4.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK1-TO-LVPECL ADDITIVE PHASE NOISE					
CLK1 $=622.08 \mathrm{MHz}$, OUT $=622.08 \mathrm{MHz}$					Input slew rate $>1 \mathrm{~V} / \mathrm{ns}$
Divide Ratio $=1$					
@ 10 Hz Offset		-125		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUT $=155.52 \mathrm{MHz}$					
Divide Ratio $=4$					
@ 10 Hz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUT $=38.88 \mathrm{MHz}$					
Divide Ratio $=16$					
@ 10 Hz Offset		-135		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-166		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide Ratio = 8					
@ 10 Hz Offset		-131		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-142		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio $=2$					
@ 10 Hz Offset		-125		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-151		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-157		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=245.76 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide Ratio $=4$					
@ 10 Hz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-144		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-163		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-164		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	

AD9512

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK1-TO-LVDS ADDITIVE PHASE NOISE					
CLK1 $=622.08 \mathrm{MHz}$, OUT $=622.08 \mathrm{MHz}$					
Divide Ratio $=1$					
@ 10 Hz Offset		-100		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-110		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-129		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-135		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUT $=155.52 \mathrm{MHz}$					
Divide Ratio $=4$					
@ 10 Hz Offset		-112		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-122		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-142		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-152		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio $=2$					
@ 10 Hz Offset		-108		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUT $=122.88 \mathrm{MHz}$					
Divide Ratio $=4$					
@ 10 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-129		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-136		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-147		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=245.76 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio $=1$					
@ 10 Hz Offset		-108		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK1 $=245.76 \mathrm{MHz}$, OUT $=122.88 \mathrm{MHz}$					
Divide Ratio $=2$					
@ 10 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-127		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-137		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-147		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1-TO-CMOS ADDITIVE PHASE NOISE					
CLK1 $=245.76 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio $=1$					
@ 10 Hz Offset		-110		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-121		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-130		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-149		$\mathrm{dBc} / \mathrm{Hz}$	
> 10 MHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=245.76 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide Ratio $=4$					
@ 10 Hz Offset		-122		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-143		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-152		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-162		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=78.6432 \mathrm{MHz}$, OUT $=78.6432 \mathrm{MHz}$					
Divide Ratio = 1					
@ 10 Hz Offset		-122		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-150		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=78.6432 \mathrm{MHz}$, OUT $=39.3216 \mathrm{MHz}$					
Divide Ratio = 2					
@ 10 Hz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-136		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-146		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-162		$\mathrm{dBc} / \mathrm{Hz}$	

AD9512

CLOCK OUTPUT ADDITIVE TIME JITTER

Table 5.

Parameter	Min Typ	Max	Unit	Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER				
$\begin{aligned} & \text { CLK1 }=622.08 \mathrm{MHz} \\ & \text { Any LVPECL (OUT0 to OUT2) }=622.08 \mathrm{MHz} \\ & \text { Divide Ratio }=1 \end{aligned}$	40		fs rms	$\mathrm{BW}=12 \mathrm{kHz}-20 \mathrm{MHz}$ (OC-12)
$\begin{aligned} & \text { CLK1 }=622.08 \mathrm{MHz} \\ & \text { Any LVPECL (OUT0 to OUT2) }=155.52 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \end{aligned}$	55		fs rms	$\mathrm{BW}=12 \mathrm{kHz}-20 \mathrm{MHz}(\mathrm{OC}-3)$
$\text { CLK1 }=400 \mathrm{MHz}$ Any LVPECL (OUTO to OUT2) $=100 \mathrm{MHz}$ Divide Ratio $=4$	215		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { Any LVPECL (OUT0 to OUT2) }=100 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \\ & \text { Other LVPECL }=100 \mathrm{MHz} \\ & \text { Both LVDS (OUT3, OUT4) }=100 \mathrm{MHz} \end{aligned}$	215		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { Any LVPECL (OUT0 to OUT2) }=100 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \\ & \text { Other LVPECL }=50 \mathrm{MHz} \\ & \text { Both LVDS (OUT3, OUT4) }=50 \mathrm{MHz} \end{aligned}$	222		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { Any LVPECL (OUT0 to OUT2) }=100 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \\ & \text { Other LVPECL }=50 \mathrm{MHz} \\ & \text { Both CMOS (OUT3, OUT4) }=50 \mathrm{MHz} \text { (B Outputs Off) } \end{aligned}$	225		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{in}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { Any LVPECL (OUT0 to OUT2) }=100 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \\ & \text { Other LVPECL }=50 \mathrm{MHz} \\ & \text { Both CMOS (OUT3, OUT4) }=50 \mathrm{MHz} \text { (B Outputs On) } \end{aligned}$	225		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)
LVDS OUTPUT ADDITIVE TIME JITTER				
$\text { CLK1 }=400 \mathrm{MHz}$ $\begin{aligned} & \text { LVDS }(\text { OUT3 })=100 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \end{aligned}$	264		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
$\text { CLK1 }=400 \mathrm{MHz}$ $\begin{aligned} & \text { LVDS }(\text { OUT4 })=100 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \end{aligned}$	319		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { LVDS (OUT3) }=100 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \\ & \text { LVDS (OUT4) }=50 \mathrm{MHz} \\ & \text { All LVPECL }=50 \mathrm{MHz} \end{aligned}$	395		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)

Parameter	Min Typ	Max	Unit	Test Conditions/Comments
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { LVDS (OUT4) }=100 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \\ & \text { LVDS (OUT3) }=50 \mathrm{MHz} \\ & \text { All LVPECL }=50 \mathrm{MHz} \\ & \hline \end{aligned}$	395		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$ Interferer(s) Interferer(s)
```CLK1 = 400 MHz LVDS (OUT3) = 100 MHz Divide Ratio = 4 CMOS (OUT4) = 50 MHz (B Outputs Off) All LVPECL = 50 MHz```	367		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{in}}=170 \mathrm{MHz}$   Interferer(s)   Interferer(s)
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { LVDS (OUT4) }=100 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \\ & \text { CMOS (OUT3) }=50 \mathrm{MHz} \text { (B Outputs Off) } \\ & \text { All LVPECL }=50 \mathrm{MHz} \end{aligned}$	367		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$   Interferer(s)   Interferer(s)
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { LVDS (OUT3) }=100 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \\ & \text { CMOS (OUT4) }=50 \mathrm{MHz}(\text { B Outputs On }) \\ & \text { All LVPECL }=50 \mathrm{MHz} \end{aligned}$	548		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{c}}=100 \mathrm{MHz}$ with $\mathrm{AlN}_{\mathrm{IN}}=170 \mathrm{MHz}$   Interferer(s)   Interferer(s)
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { LVDS (OUT4) }=100 \mathrm{MHz} \\ & \text { Divide Ratio }=4 \\ & \text { CMOS (OUT3) }=50 \mathrm{MHz} \text { (B Outputs On) } \\ & \text { All LVPECL }=50 \mathrm{MHz} \end{aligned}$	548		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$   Interferer(s)   Interferer(s)
CMOS OUTPUT ADDITIVE TIME JITTER				
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { Both CMOS (OUT3, OUT4) }=100 \mathrm{MHz}(\text { B Output On }) \\ & \text { Divide Ratio }=4 \end{aligned}$	275		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { CMOS (OUT3) }=100 \mathrm{MHz}(\text { B Output On }) \\ & \text { Divide Ratio }=4 \\ & \text { All LVPECL }=50 \mathrm{MHz} \\ & \text { LVDS (OUT4) }=50 \mathrm{MHz} \end{aligned}$	400		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{AlN}_{\mathrm{IN}}=170 \mathrm{MHz}$   Interferer(s)   Interferer(s)
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { CMOS (OUT3) }=100 \mathrm{MHz} \text { (B Output On) } \\ & \text { Divide Ratio }=4 \\ & \text { All LVPECL }=50 \mathrm{MHz} \\ & \text { CMOS (OUT4) }=50 \mathrm{MHz} \text { (B Output Off) } \end{aligned}$	374		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$   Interferer(s)   Interferer(s)
$\begin{aligned} & \text { CLK1 }=400 \mathrm{MHz} \\ & \text { CMOS (OUT3) }=100 \mathrm{MHz} \text { (B Output On) } \\ & \text { Divide Ratio }=4 \\ & \text { All LVPECL }=50 \mathrm{MHz} \\ & \text { CMOS (OUT4) }=50 \mathrm{MHz} \text { (B Output On) } \end{aligned}$	555		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$   Interferer(s)   Interferer(s)

## AD9512

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DELAY BLOCK ADDITIVE TIME JITTER ${ }^{1}$					Incremental additive jitter ${ }^{1}$
100 MHz Output					
Delay FS $=1 \mathrm{~ns}(1600 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adj. 00000		0.61		ps	
Delay FS $=1 \mathrm{~ns}(1600 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adj. 11111		0.73		ps	
Delay FS $=2 \mathrm{~ns}(800 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adj. 00000		0.71		ps	
Delay FS $=2 \mathrm{~ns}(800 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adj. 11111		1.2		ps	
Delay FS $=3 \mathrm{~ns}(800 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adj. 00000		0.86		ps	
Delay FS $=3 \mathrm{~ns}(800 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adj. 11111		1.8		ps	
Delay FS $=4 \mathrm{~ns}(400 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adj. 00000		1.2		ps	
Delay FS $=4 \mathrm{~ns}(400 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adj. 11111		2.1		ps	
Delay FS $=5 \mathrm{~ns}(200 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adj. 00000		1.3		ps	
Delay FS $=5 \mathrm{~ns}(200 \mu \mathrm{~A}, 1 \mathrm{C})$ Fine Adj. 11111		2.7		ps	
Delay FS $=11 \mathrm{~ns}(200 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adj. 00000		2.0		ps	
Delay FS $=11 \mathrm{~ns}(200 \mu \mathrm{~A}, 4 \mathrm{C})$ Fine Adj. 00100		2.8		ps	

${ }^{1}$ This value is incremental. That is, it is in addition to the jitter of the LVDS or CMOS output without the delay. To estimate the total jitter, the LVDS or CMOS output jitter should be added to this value using the root sum of the squares (RSS) method.

## SERIAL CONTROL PORT

Table 6.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CSB, SCLK (INPUTS)					CSB and SCLK have $30 \mathrm{k} \Omega$ internal pull-down resistors
Input Logic 1 Voltage	2.0			V	
Input Logic 0 Voltage			0.8	V	
Input Logic 1 Current		110		$\mu \mathrm{A}$	
Input Logic 0 Current			1	$\mu \mathrm{A}$	
Input Capacitance		2		pF	
SDIO (WHEN INPUT)					
Input Logic 1 Voltage	2.0			V	
Input Logic 0 Voltage			0.8	V	
Input Logic 1 Current		10		nA	
Input Logic 0 Current		10		$n A$	
Input Capacitance		2		pF	
SDIO, SDO (OUTPUTS)					
Output Logic 1 Voltage	2.7			V	
Output Logic 0 Voltage			0.4	V	
TIMING					
Clock Rate (SCLK, 1/tscık)			25	MHz	
Pulse Width High, tpwh	16			ns	
Pulse Width Low, tpw	16			ns	
SDIO to SCLK Setup, tds	2			ns	
SCLK to SDIO Hold, $\mathrm{toh}^{\text {d }}$	1			ns	
SCLK to Valid SDIO and SDO, tov	6			ns	
CSB to SCLK Setup and Hold, $\mathrm{ts}^{\text {, }}$, ${ }_{H}$	2			ns	
CSB Minimum Pulse Width High, tpwh	3			ns	

## AD9512

## FUNCTION PIN

Table 7.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
INPUT CHARACTERISTICS					The FUNCTION pin has a $30 \mathrm{k} \Omega$ internal pull-down resistor. This pin should normally be held high. Do not leave NC.
Logic 1 Voltage	2.0			V	
Logic 0 Voltage			0.8	V	
Logic 1 Current		110		$\mu \mathrm{A}$	
Logic 0 Current			1	$\mu \mathrm{A}$	
Capacitance		2		pF	
RESET TIMING					
Pulse Width Low	50			ns	
SYNC TIMING					
Pulse Width Low	1.5			High speed clock cycles	High speed clock is CLK1 or CLK2, whichever is being used for distribution.

## SYNC STATUS PIN

Table 8.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
OUTPUT CHARACTERISTICS					
$\quad$ Output Voltage High $\left(\mathrm{VOH}_{\mathrm{OH}}\right)$	2.7			V	
Output Voltage Low (VoL)			0.4	V	

## AD9512

POWER
Table 9.


## TIMING DIAGRAMS



Figure 2. CLK1/CLK1B to Clock Output Timing, DIV = 1 Mode


Figure 3. LVPECL Timing, Differential


Figure 4. LVDS Timing, Differential


Figure 5. CMOS Timing, Single-Ended, 3 pF Load

## ABSOLUTE MAXIMUM RATINGS

Table 10.

Parameter or Pin	With   Respect   to	Min	Max	Unit
VS	GND	-0.3	+3.6	V
DSYNC/DSYNCB	GND	-0.3	$\mathrm{~V}_{s}+0.3$	V
RSET	GND	-0.3	$\mathrm{~V}_{s}+0.3$	V
CLK1, CLK1B, CLK2, CLK2B	GND	-0.3	$\mathrm{~V}_{\mathrm{s}}+0.3$	V
CLK1	CLK1B	-1.2	+1.2	V
CLK2	CLK2B	-1.2	+1.2	V
SCLK, SDIO, SDO, CSB	GND	-0.3	$\mathrm{~V}_{s}+0.3$	V
OUT0, OUT1,	GND	-0.3	$\mathrm{~V}_{s}+0.3$	V
OUT2, OUT3, OUT4				
FUNCTION	GND	-0.3	$\mathrm{~V}_{s}+0.3$	V
SYNC STATUS	GND	-0.3	$\mathrm{~V}_{\mathrm{s}}+0.3$	V
Junction Temperature			150	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature (10 sec)			300	${ }^{\circ} \mathrm{C}$

## ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 6. 48-Lead LFCSP Pin Configuration

Note that the exposed paddle on this package is an electrical connection as well as a thermal enhancement. For the device to function properly, the paddle must be attached to ground, GND.

## AD9512

Table 11. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	DSYNC	Detect Sync. Used for multichip synchronization.
2	DSYNCB	Detect Sync Complement. Used for multichip synchronization.
$3,4,6,9,18$,	VS	Power Supply (3.3 V).
$22,23,25,28$,		
$29,32,33,36$,		
$39,40,44,47,48$		
5	DNC	Do Not Connect.
7	CLK2	Clock Input.
8	CLK2B	Complementary Clock Input. Used in conjunction with CLK2.
10	CLK1	Clock Input.
11	CLK1B	Complementary Clock Input. Used in conjunction with CLK1.
12	FUNCTION	Multipurpose Input. Can be programmed as a reset (RESETB), sync (SYNCB), or power-down (PDB) pin.
13	STATUS	Output Used to Monitor the Status of Multichip Synchronization.
14	SCLK	Serial Data Clock.
15	SDIO	Serial Data I/O.
16	SDO	Serial Data Output.
17	CSB	Serial Port Chip Select.
$19,24,37$,	GND	Ground.
$38,43,46$		
20	OUT2B	Complementary LVPECL Output.
21	OUT2	LVPECL Output.
26	OUT1B	Complementary LVPECL Output.
27	OUT1	LVPECL Output.
30	OUT4B	Complementary LVDS/Inverted CMOS Output. OUT4 includes a delay block.
31	OUT4	LVDS/CMOS Output. OUT4 includes a delay block.
34	OUT3B	Complementary LVDS/Inverted CMOS Output.
35	OUT3	LVDS/CMOS Output.
41	OUTOB	Complementary LVPECL Output.
42	OUT0	LVPECL Output.
45	RSET	Current Set Resistor to Ground. Nominal value = 4.12 k $\Omega$.

Note that the exposed paddle on this package is an electrical connection as well as a thermal enhancement. For the device to function properly, the paddle must be attached to ground, GND.

## TERMINOLOGY

## Phase Jitter and Phase Noise

An ideal sine wave can be thought of as having a continuous and even progression of phase with time from 0 degrees to 360 degrees for each cycle. Actual signals, however, display a certain amount of variation from ideal phase progression over time. This phenomenon is called phase jitter. Although many causes can contribute to phase jitter, one major cause is random noise, which is characterized statistically as being Gaussian (normal) in distribution.

This phase jitter leads to a spreading out of the energy of the sine wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are $\mathrm{dBc} / \mathrm{Hz}$ at a given offset in frequency from the sine wave (carrier). The value is a ratio (expressed in dB ) of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement, the offset from the carrier frequency is also given.

It is meaningful to integrate the total power contained within some interval of offset frequencies (for example, 10 kHz to 10 MHz ). This is called the integrated phase noise over that frequency offset interval and can be readily related to the time jitter due to the phase noise within that offset frequency interval.

Phase noise has a detrimental effect on the performance of ADCs, DACs, and RF mixers. It lowers the achievable dynamic range of the converters and mixers, although they are affected in somewhat different ways.

## Time Jitter

Phase noise is a frequency domain phenomenon. In the time domain, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings is seen to vary. In a square wave, the time jitter is seen as a displacement of the edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Since these variations are random in nature, the time jitter is specified in units of seconds root mean square (rms) or 1 sigma of the Gaussian distribution.

Time jitter that occurs on a sampling clock for a DAC or an ADC decreases the SNR and dynamic range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.

## Additive Phase Noise

It is the amount of phase noise that is attributable to the device or subsystem being measured. The phase noise of any external oscillators or clock sources has been subtracted. This makes it possible to predict the degree to which the device impacts the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contribute their own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise.

## Additive Time Jitter

It is the amount of time jitter that is attributable to the device or subsystem being measured. The time jitter of any external oscillators or clock sources has been subtracted. This makes it possible to predict the degree to which the device will impact the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contribute their own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.

## AD9512

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 7. Power vs. Frequency-LVPECL, LVDS


Figure 8. CLK1 Smith Chart (Evaluation Board)


Figure 9. Power vs. Frequency—LVPECL, CMOS


Figure 10. CLK2 Smith Chart (Evaluation Board)


Figure 11. LVPECL Differential Output @ 800 MHz


Figure 12. LVDS Differential Output @ 800 MHz


Figure 13. CMOS Single-Ended Output @ 250 MHz with 10 pF Load


Figure 14. LVPECL Differential Output Swing vs. Frequency


Figure 15. LVDS Differential Output Swing vs. Frequency


Figure 16. CMOS Single-Ended Output Swing vs. Frequency and Load


Figure 17. Additive Phase Noise—LVPECL DIV1, 245.76 MHz Distribution Section Only


Figure 18. Additive Phase Noise—LVDS DIV1, 245.76 MHz


Figure 19. Additive Phase Noise-CMOS DIV1, 245.76 MHz


Figure 20. Additive Phase Noise—LVPECL DIV1, 622.08 MHz


Figure 21. Additive Phase Noise—LVDS DIV2, 122.88 MHz


Figure 22. Additive Phase Noise-CMOS DIV4, 61.44 MHz


Figure 23. Functional Block Diagram Showing Maximum Frequencies

## AD9512

## FUNCTIONAL DESCRIPTION

## OVERALL

Figure 23 shows a block diagram of the AD9512. The AD9512 accepts inputs on either of two clock inputs (CLK1 or CLK2). This clock can be divided by any integer value from 1 to 32 . The duty cycle and relative phase of the outputs can be selected. There are three LVPECL outputs (OUT0, OUT1, OUT2) and two outputs that can be either LVDS or CMOS level outputs (OUT3, OUT4). OUT4 can also make use of a variable delay block.

The AD9512 provides clock distribution function only; there is no clock clean-up. The jitter of the input clock signal is passed along directly to the distribution section and can dominate at the clock outputs.

See Figure 24 for the equivalent circuit of CLK1 and CLK2.


Figure 24. CLK1, CLK2 Equivalent Input Circuit

## FUNCTION PIN

The FUNCTION pin (Pin 12) has three functions that are selected by the value in Register $58 \mathrm{~h}<6: 5>$. There is an internal $30 \mathrm{k} \Omega$ pull-down resistor on this pin.

## RESETB: 58h<6:5> = 00b (Default)

In its default mode, the FUNCTION pin acts as RESETB, which generates an asynchronous reset or hard reset when pulled low. The resulting reset writes the default values into the serial control port buffer registers as well as loading them into the chip control registers. The AD9512 immediately resumes operation according to the default values. When the pin is taken high again, an asynchronous sync is issued (see the SYNCB: $58 h<6: 5>=01 b$ section).

## SYNCB: $58 h<6: 5>=016$

The FUNCTION pin can be used to cause a synchronization or alignment of phase among the various clock outputs. The synchronization applies only to clock outputs that:

- are not powered down
- the divider is not masked $($ no sync $=0)$
- $\quad$ are not bypassed $($ bypass $=0)$

SYNCB is level and rising edge sensitive. When SYNCB is low, the set of affected outputs are held in a predetermined state, defined by each divider's start high bit. On a rising edge, the dividers begin after a predefined number of fast clock cycles (fast clock is the selected clock input, CLK1 or CLK2) as determined by the values in the divider's phase offset bits.

The SYNCB application of the FUNCTION pin is always active, regardless of whether the pin is also assigned to perform reset or power-down. When the SYNCB function is selected, the FUNCTION pin does not act as either RESETB or PDB.

## PDB: $58 h<6: 5>=11 b$

The FUNCTION pin can also be programmed to work as an asynchronous full power-down, PDB. Even in this full powerdown mode, there is still some residual $\mathrm{V}_{s}$ current because some on-chip references continue to operate. In PDB mode, the FUNCTION pin is active low. The chip remains in a powerdown state until PDB is returned to logic high. The chip returns to the settings programmed prior to the power-down.

See the Chip Power-Down or Sleep Mode-PDB section for more details on what occurs during a PDB initiated power-down.

## DSYNC AND DSYNCB PINS

The DSYNC and DSYNCB pins (Pin 1 and Pin 2) are used when the AD9512 is used in a multichip synchronized configuration (see the Multichip Synchronization section).

## CLOCK INPUTS

Two clock inputs (CLK1, CLK2) are available for use on the AD9512. CLK1 and CLK2 can accept inputs up to 1600 MHz . See Figure 24 for the CLK1 and CLK2 equivalent input circuit.

The clock inputs are fully differential and self-biased. The signal should be ac-coupled using capacitors. If a single-ended input must be used, this can be accommodated by ac coupling to one side of the differential input only. The other side of the input should be bypassed to a quiet ac ground by a capacitor.

The unselected clock input (either CLK1 or CLK2) should be powered down to eliminate any possibility of unwanted crosstalk between the selected clock input and the unselected clock input.


[^0]:    One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

