: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

FEATURES

1.6 GHz differential clock input
3 programmable dividers
Divide-by in range from 1 to 32
Phase select for coarse delay adjust
Three $\mathbf{8 0 0}$ MHz/250 MHz LVDS/CMOS clock outputs
Additive output jitter 300 fs rms
Time delays up to 11.6 ns
Device configured with 4-level logic pins
Space-saving, 32-lead LFCSP

APPLICATIONS

Low jitter, low phase noise clock distribution
Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs
High performance wireless transceivers
High performance instrumentation
Broadband infrastructure
ATE

GENERAL DESCRIPTION

The AD9513 features a three-output clock distribution IC in a design that emphasizes low jitter and phase noise to maximize data converter performance. Other applications with demanding phase noise and jitter requirements also benefit from this part.

There are three independent clock outputs that can be set to either LVDS or CMOS levels. These outputs operate to 800 MHz in LVDS mode and to 250 MHz in CMOS mode.

Each output has a programmable divider that can be set to divide by a selected set of integers ranging from 1 to 32 . The phase of one clock output relative to the other clock output can be set by means of a divider phase select function that serves as a coarse timing adjustment.

One of the outputs features a delay element with three selectable full-scale delay values ($1.8 \mathrm{~ns}, 6.0 \mathrm{~ns}$, and 11.6 ns), each with 16 steps of fine adjustment.

The AD9513 does not require an external controller for operation or setup. The device is programmed by means of 11 pins (S 0 to S 10) using 4-level logic. The programming pins are internally biased to $1 / 3 \mathrm{~V}_{\mathrm{s}}$. The VREF pin provides a level of $2 / 3 \mathrm{Vs}$. $\mathrm{V}_{\mathrm{s}}(3.3 \mathrm{~V})$ and GND $(0 \mathrm{~V})$ provide the other two logic levels.
The AD9513 is ideally suited for data converter clocking applications where maximum converter performance is achieved by encode signals with subpicosecond jitter.

The AD9513 is available in a 32 -lead LFCSP and operates from a single 3.3 V supply. The temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

AD9513* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- AD9513 Evaluation Board

DOCUMENTATION \square

Application Notes

- AN-0974: Multicarrier TD-SCMA Feasibility
- AN-501: Aperture Uncertainty and ADC System Performance
- AN-741: Little Known Characteristics of Phase Noise
- AN-756: Sampled Systems and the Effects of Clock Phase Noise and Jitter
- AN-769: Generating Multiple Clock Outputs from the AD9540
- AN-823: Direct Digital Synthesizers in Clocking Applications Time
- AN-837: DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance
- AN-873: Lock Detect on the ADF4xxx Family of PLL Synthesizers
- AN-927: Determining if a Spur is Related to the DDS/DAC or to Some Other Source (For Example, Switching Supplies)
- AN-939: Super-Nyquist Operation of the AD9912 Yields a High RF Output Signal

Data Sheet

- AD9513: 800 MHz Clock Distribution IC, Dividers, Delay Adjust, Three Outputs Data Sheet

TOOLS AND SIMULATIONS

- ADIsimCLK Design and Evaluation Software
- AD9513 IBIS Models

REFERENCE DESIGNS \square

- CN0109

REFERENCE MATERIALS

Press

- Analog Devices' Dual 14-bit A/D Converter Reduces Power and Size in Communications, Instrumentation, Test and Measurement Applications

Product Selection Guide

- RF Source Booklet

Technical Articles

- ADI Buys Korean Mobile TV Chip Maker
- Design A Clock-Distribution Strategy With Confidence
- Improved DDS Devices Enable Advanced Comm Systems
- Low-power direct digital synthesizer cores enable high level of integration
- Speedy A/Ds Demand Stable Clocks
- Understand the Effects of Clock Jitter and Phase Noise on Sampled Systems

DESIGN RESOURCES

- AD9513 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD9513 EngineerZone Discussions.

SAMPLE AND BUY \square

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Clock Input 3
Clock Outputs 3
Timing Characteristics 4
Clock Output Phase Noise 6
Clock Output Additive Time Jitter 8
SYNCB, VREF, and Setup Pins 9
Power 9
Timing Diagrams. 10
Absolute Maximum Ratings 11
Thermal Characteristics ${ }^{1}$ 11
Pin Configuration and Function Descriptions. 12
Terminology 13
Typical Performance Characteristics 14
Functional Description 17
Overall 17
CLK, CLKB—Differential Clock Input 17
Synchronization 17
REVISION HISTORY
1/2017—Rev. 0 to Rev. A
Changes to Figure 5 and Table 9 12
Deleted Figure 6; Renumbered Sequentially 12
Change to Table 14 19
Updated Outline Dimensions 26
Changes to Ordering Guide 26
Power-On SYNC 17
SYNCB 17
RSET Resistor 18
VREF 18
Setup Configuration 18
Divider Phase Offset 20
Delay Block 21
Outputs 21
Power Supply 22
Exposed Metal Paddle 22
Power Management 22
Applications 23
Using the AD9513 Outputs for ADC Clock Applications 23
LVDS Clock Distribution 23
CMOS Clock Distribution 23
Setup Pins (S0 to S10) 24
Power and Grounding Considerations and Power Supply Rejection 24
Phase Noise and Jitter Measurement Setups 25
Outline Dimensions 26
Ordering Guide 26

9/2005—Revision 0: Initial Version

AD9513

SPECIFICATIONS

Typical (typ) is given for $\mathrm{V}_{\mathrm{s}}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {SET }}=4.12 \mathrm{k} \Omega$, unless otherwise noted. Minimum (min) and maximum (max) values are given over full V_{S} and $\mathrm{T}_{\mathrm{A}}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ variation.

CLOCK INPUT

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLOCK INPUT (CLK)					
Input Frequency	0		1.6	GHz	
Input Sensitivity ${ }^{1}$		150		mV p-p	
Input Common-Mode Voltage, $\mathrm{V}_{\text {cm }}$	1.5	1.6	1.7	V	Self-biased; enables ac coupling
Input Common-Mode Range, $\mathrm{V}_{\text {CMR }}$	1.3		1.8	V	With 200 mV p-p signal applied; dc-coupled
Input Sensitivity, Single-Ended		150		mV p-p	CLK ac-coupled; CLKB ac-bypassed to RF ground
Input Resistance	4.0	4.8	5.6	$\mathrm{k} \Omega$	Self-biased
Input Capacitance		2		pF	

${ }^{1}$ A slew rate of $1 \mathrm{~V} / \mathrm{ns}$ is required to meet jitter, phase noise, and propagation delay specifications.

CLOCK OUTPUTS

Table 2.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVDS CLOCK OUTPUT					Termination $=100 \Omega$ differential
Differential					
Output Frequency	0		800	MHz	
Differential Output Voltage (Vod)	250	350	450	mV	
Delta Vod			30	mV	
Output Offset Voltage (Vos)	1.125	1.23	1.375	V	
Delta Vos			25	mV	
Short-Circuit Current ($I_{\text {SA }}, I_{\text {S }}$)		14	24	mA	Output shorted to GND
CMOS CLOCK OUTPUT					Single-ended measurements; termination open
Single-Ended					Complementary output on (OUT1B)
Output Frequency	0		250	MHz	With 5 pF load
Output Voltage High ($\mathrm{V}_{\text {OH }}$)	$\mathrm{V}_{\mathrm{s}}-0.1$			V	@ 1 mA load
Output Voltage Low (VoL)			0.1	V	@ 1 mA load

AD9513

TIMING CHARACTERISTICS

CLK input slew rate $=1 \mathrm{~V} / \mathrm{ns}$ or greater.
Table 3.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVDS Output Rise Time, t_{RL} Output Fall Time, t_{f}		$\begin{aligned} & 200 \\ & 210 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	Termination $=100 \Omega$ differential 20% to 80%, measured differentially 80% to 20%, measured differentially
```PROPAGATION DELAY, tıvos, CLK-TO-LVDS OUT OUT0, OUT1, OUT2 Divide \(=1\) Divide \(=2-32\) Variation with Temperature OUT2 Divide \(=1\) Divide \(=2-32\) Variation with Temperature```	$\begin{aligned} & 1.03 \\ & 1.09 \\ & \\ & 1.07 \\ & 1.13 \end{aligned}$	$\begin{aligned} & 1.29 \\ & 1.35 \\ & 0.9 \\ & \\ & 1.35 \\ & 1.41 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.62 \\ & 1.68 \\ & \\ & 1.69 \\ & 1.75 \end{aligned}$	ns   ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$   ns   ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	Delay off on OUT2
OUTPUT SKEW, LVDS OUTPUTS   OUT0 to OUT1 on Same Part, tskv ${ }^{1}$   OUT0 to OUT2 on Same Part, tskv ${ }^{1}$   All LVDS OUTs Across Multiple Parts, tskv_AB 2   Same LVDS OUTs Across Multiple Parts, $\mathrm{t}_{\text {skV_AB }}{ }^{2}$	$\begin{aligned} & -135 \\ & -205 \end{aligned}$	$\begin{aligned} & -20 \\ & -65 \end{aligned}$	$\begin{aligned} & +125 \\ & +90 \\ & 375 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	Delay off on OUT2
CMOS   Output Rise Time, $\mathrm{t}_{\mathrm{RC}}$ Output Fall Time, $\mathrm{t}_{\mathrm{Fc}}$		$\begin{aligned} & 650 \\ & 650 \end{aligned}$		$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	B outputs are inverted; termination $=$ open $20 \%$ to $80 \%$; CLOAD $=3 \mathrm{pF}$   $80 \%$ to $20 \%$; CLOAD $=3 \mathrm{pF}$
```PROPAGATION DELAY, tcmos, CLK-TO-CMOS OUT OUTO, OUT1 Divide = 1 Divide \(=2-32\) Variation with Temperature OUT2 Divide \(=1\) Divide \(=2-32\) Variation with Temperature```	$\begin{aligned} & 1.14 \\ & 1.19 \\ & \\ & 1.20 \\ & 1.24 \end{aligned}$	$\begin{aligned} & 1.46 \\ & 1.51 \\ & 1 \\ & 1.53 \\ & 1.57 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.89 \\ & 1.94 \\ & \\ & 1.97 \\ & 2.01 \end{aligned}$	ns   ns   $\mathrm{ps} /{ }^{\circ} \mathrm{C}$   ns   ns   $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	Delay off on OUT2
OUTPUT SKEW, CMOS OUTPUTS All CMOS OUTs on Same Part, tskc ${ }^{1}$ All CMOS OUTs Across Multiple Parts, $\mathrm{t}_{\text {skc_A } B^{2}}$ Same CMOS OUTs Across Multiple Parts, $\mathrm{t}_{\text {sKc_A }}{ }^{2}$	-230		$\begin{aligned} & +135 \\ & 415 \\ & 330 \end{aligned}$	$\begin{aligned} & \text { ps } \\ & \text { ps } \\ & \text { ps } \end{aligned}$	Delay off on OUT2
LVDS-TO-CMOS OUT Output Skew, tskv_c			510	ps	Everything the same; different logic type LVDS to CMOS on same part
DELAY ADJUST (OUT2; LVDS AND CMOS) $S 0=1 / 3$ Zero-Scale Delay Time ${ }^{3}$ Zero-Scale Variation with Temperature Full-Scale Time Delay ${ }^{3}$ Full-Scale Variation with Temperature $S 0=2 / 3$ Zero-Scale Delay Time ${ }^{3}$ Zero-Scale Variation with Temperature Full-Scale Time Delay ${ }^{3}$ Full-Scale Variation with Temperature		0.35 0.20 1.8 -0.38 0.48 0.31 6.0 -1.3		ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	

Parameter	Min	Typ	Max	Unit
S0 $=1$		Test Conditions/Comments		
Zero-Scale Delay Time ${ }^{3}$				
Zero-Scale Variation with Temperature		0.59		ns
Full-Scale Time Delay				
Full-Scale Variation with Temperature		11.6		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$
Linearity, DNL	-5	ns		
Linearity, INL		0.2	$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	

${ }^{1}$ This is the difference between any two similar delay paths within a single device operating at the same voltage and temperature.
${ }^{2}$ This is the difference between any two similar delay paths across multiple devices operating at the same voltage and temperature.
${ }^{3}$ Incremental delay; does not include propagation delay.

CLOCK OUTPUT PHASE NOISE

Table 4.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK-TO-LVDS ADDITIVE PHASE NOISE					
CLK $=622.08 \mathrm{MHz}$, OUT $=622.08 \mathrm{MHz}$					
Divide Ratio = 1					
At 10 Hz Offset		-100		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-110		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-129		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-135		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
>10 MHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=622.08 \mathrm{MHz}, \mathrm{OUT}=155.52 \mathrm{MHz}$					
Divide Ratio $=4$					
At 10 Hz Offset		-112		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-122		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-142		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-152		$\mathrm{dBc} / \mathrm{Hz}$	
> 10 MHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=491.52 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio $=2$					
At 10 Hz Offset		-108		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=491.52 \mathrm{MHz}$, OUT $=122.88 \mathrm{MHz}$					
Divide Ratio $=4$					
At 10 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-129		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-136		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-147		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=245.76 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio $=1$					
At 10 Hz Offset		-108		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK $=245.76 \mathrm{MHz}, \mathrm{OUT}=122.88 \mathrm{MHz}$					
Divide Ratio $=2$					
At 10 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-127		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-137		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-147		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK-TO-CMOS ADDITIVE PHASE NOISE					
CLK $=245.76 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio $=1$					
At 10 Hz Offset		-110		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-121		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-130		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-149		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=245.76 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide Ratio $=4$					
At 10 Hz Offset		-125		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-143		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-152		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-162		$\mathrm{dBc} / \mathrm{Hz}$	
$\mathrm{CLK}=78.6432 \mathrm{MHz}$, OUT $=78.6432 \mathrm{MHz}$					
Divide Ratio $=1$					
At 10 Hz Offset		-122		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-150		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 MHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=78.6432 \mathrm{MHz}$, OUT $=39.3216 \mathrm{MHz}$					
Divide Ratio $=2$					
At 10 Hz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 Hz Offset		-136		$\mathrm{dBc} / \mathrm{Hz}$	
At 1 kHz Offset		-146		$\mathrm{dBc} / \mathrm{Hz}$	
At 10 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
At 100 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-162		$\mathrm{dBc} / \mathrm{Hz}$	

CLOCK OUTPUT ADDITIVE TIME JITTER

Table 5.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DELAY BLOCK ADDITIVE TIME JITTER ${ }^{1}$					100 MHz output; incremental additive jitter ${ }^{1}$
Delay FS $=1.8 \mathrm{~ns}$ Fine Adj. 00000		0.71		ps rms	
Delay FS $=1.8 \mathrm{~ns}$ Fine Adj. 11111		1.2		ps rms	
Delay FS $=6.0$ ns Fine Adj. 00000		1.3		ps rms	
Delay FS $=6.0$ ns Fine Adj. 11111		2.7		ps rms	
Delay FS $=11.6$ ns Fine Adj. 00000		2.0		ps rms	
Delay FS $=11.6$ ns Fine Adj. 11111		2.8		ps rms	

${ }^{1}$ This value is incremental. That is, it is in addition to the jitter of the LVDS or CMOS output without the delay. To estimate the total jitter, the LVDS or CMOS output jitter should be added to this value using the root sum of the squares (RSS) method.

SYNCB, VREF, AND SETUP PINS

Table 6.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
SYNCB					
Logic High	2.7			V	
Logic Low			0.40	V	
Capacitance		2		pF	
VREF					
Output Voltage	$0.62 \cdot V_{s}$		$0.76 \cdot V_{s}$	V	Minimum - maximum from 0 mA to 1 mA load
S0 TO S10					
Levels					
0			0.1.V. V_{5}	V	
1/3	0.2.V $\mathrm{V}_{\text {s }}$		$0.45 \cdot \mathrm{~V}_{\mathrm{s}}$	V	
$2 / 3$	$0.55 \cdot \mathrm{~V}_{5}$		0.8.Vs	V	
1	0.9.V V			V	

POWER

Table 7.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
POWER-ON SYNCHRONIZATION ${ }^{1}$ V_{s} Transit Time from 2.2 V to 3.1 V			35	ms	See the Power-On SYNC section.
POWER DISSIPATION	$\begin{aligned} & 175 \\ & 240 \\ & 320 \end{aligned}$	$\begin{aligned} & \hline 325 \\ & 460 \\ & 605 \end{aligned}$	$\begin{aligned} & 575 \\ & 615 \\ & 840 \end{aligned}$	mW mW mW	All three outputs on. LVDS (divide = 2). No clock. Does not include power dissipated in external resistors. All three outputs on. CMOS (divide $=2$); 62.5 MHz out (5 pF load). All three outputs on. CMOS (divide $=2$); 125 MHz out (5 pF load).
POWER DELTA Divider (Divide $=2$ to Divide $=1$) LVDS Output CMOS Output (Static) CMOS Output (@ 62.5 MHz) CMOS Output (@ 125 MHz) Delay Block	$\begin{aligned} & 15 \\ & 20 \\ & 30 \\ & 65 \\ & 70 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 40 \\ & 110 \\ & 145 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 85 \\ & 50 \\ & 155 \\ & 220 \\ & 65 \\ & \hline \end{aligned}$	mW mW mW mW mW mW	For each divider. No clock. No clock. No clock. Single-ended. At 62.5 MHz out with 5 pF load. Single-ended. At 125 MHz out with 5 pF load. Off to 1.8 ns fs , delay word $=60$; output clocking at 62.5 MHz .

${ }^{1}$ This is the rise time of the V_{S} supply that is required to ensure that a synchronization of the outputs occurs on power-up. The critical factor is the time it takes the V_{S} to transition the range from 2.2 V to 3.1 V . If the rise time is too slow, the outputs are not synchronized.

AD9513

TIMING DIAGRAMS

Figure 2. CLK/CLKB to Clock Output Timing, DIV = 1 Mode

Figure 4. CMOS Timing, Single-Ended, 3 pF Load

AD9513

ABSOLUTE MAXIMUM RATINGS

Table 8.

	With Respect to	Min	Max	Unit
Parameter or Pin	GND	-0.3	+3.6	V
RSET	GND	-0.3	$\mathrm{~V}_{s}+0.3$	V
CLK	GND	-0.3	$\mathrm{~V}_{s}+0.3$	V
CLK	CLKB	-1.2	+1.2	V
OUT0, OUT1, OUT2	GND	-0.3	$\mathrm{~V}_{\mathrm{s}}+0.3$	V
FUNCTION	GND	-0.3	$\mathrm{~V}_{s}+0.3$	V
STATUS	GND	-0.3	$\mathrm{~V}_{\mathrm{s}}+0.3$	V
Junction Temperature ${ }^{1}$			150	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(10 \mathrm{sec})$			300	${ }^{\circ} \mathrm{C}$

[^0]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL CHARACTERISTICS ${ }^{1}$
Thermal Resistance ${ }^{2}$
32-Lead LFCSP
$\theta_{\text {IA }}=36.6^{\circ} \mathrm{C} / \mathrm{W}$
${ }^{1}$ Thermal impedance measurements were taken on a 4-layer board in still air in accordance with EIA/JESD51-7.
${ }^{2}$ The external pad of this package must be soldered to adequate copper land on board.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. EXPOSED PADDLE. THE EXPOSED PADDLE ON THIS PACKAGE IS AN ELECTRICAL CONNECTION

AS WELL AS A THERMAL ENHANCEMENT. FOR THE DEVICE TO FUNCTION PROPERLY, THE PADDLE
MUST BE SOLDERED TO A PCB LAND THAT FUNCTIONS AS BOTH A HEAT DISSIPATION PATH
AS WELL AS AN ELECTRICAL GROUND.
Figure 5. 32-Lead LFCSP Pin Configuration
Table 9. Pin Function Descriptions

Pin No.	Mnemonic	Description
$\begin{aligned} & 1,4,17,20,21, \\ & 24,26,29,30 \end{aligned}$	VS	Power Supply (3.3 V).
2	CLK	Clock Input.
3	CLKB	Complementary Clock Input.
5	SYNCB	Used to Synchronize Outputs.
6	VREF	Provides $2 / 3 \mathrm{~V}_{\mathrm{s}}$ for use as one of the four logic levels on S0 to S10.
7 to16, 25	S10 to S1, S0	Setup Select Pins. These are 4 -state logic. The logic levels are $\mathrm{V}_{s}, G N D, 1 / 3 \mathrm{~V}_{s}$, and $2 / 3 \mathrm{~V}_{\mathrm{s}}$. The VREF pin provides $2 / 3 \mathrm{~V}_{s}$. Each pin is internally biased to $1 / 3 \mathrm{~V}_{s}$ so that a pin requiring that logic level should be left NC (no connection).
18	OUT2B	Complementary LVDS/Inverted CMOS Output.
19	OUT2	LVDS/CMOS Output.
22	OUT1B	Complementary LVDS/Inverted CMOS Output.
23	OUT1	LVDS/CMOS Output.
27	OUTOB	Complementary LVDS/Inverted CMOS Output.
28	OUT0	LVDS/CMOS Output.
31	GND	Ground. The exposed paddle on the back of the chip is also GND.
32	RSET	Current Set Resistor to Ground. Nominal value $=4.12 \mathrm{k} \Omega$.
	EPAD	Exposed Paddle. The exposed paddle on this package is an electrical connection as well as a thermal enhancement. For the device to function properly, the paddle must be soldered to a PCB land that functions as both a heat dissipation path as well as an electrical ground.

TERMINOLOGY

Phase Jitter and Phase Noise

An ideal sine wave can be thought of as having a continuous and even progression of phase with time from 0 to 360 degrees for each cycle. Actual signals, however, display a certain amount of variation from ideal phase progression over time. This phenomenon is called phase jitter. Although there are many causes that can contribute to phase jitter, one major component is due to random noise that is characterized statistically as being Gaussian (normal) in distribution.

This phase jitter leads to a spreading out of the energy of the sine wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are $\mathrm{dBc} / \mathrm{Hz}$ at a given offset in frequency from the sine wave (carrier). The value is a ratio (expressed in dB) of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement, the offset from the carrier frequency is also given.
It is also meaningful to integrate the total power contained within some interval of offset frequencies (for example, 10 kHz to 10 MHz). This is called the integrated phase noise over that frequency offset interval and can be readily related to the time jitter due to the phase noise within that offset frequency interval.

Phase noise has a detrimental effect on the performance of ADCs, DACs, and RF mixers. It lowers the achievable dynamic range of the converters and mixers, although they are affected in somewhat different ways.

Time Jitter

Phase noise is a frequency domain phenomenon. In the time domain, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings is seen to vary. For a square wave, the time jitter is seen as a displacement of the edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Since these variations are random in nature, the time jitter is specified in units of seconds root mean square (rms) or 1 sigma of the Gaussian distribution.
Time jitter that occurs on a sampling clock for a DAC or an ADC decreases the SNR and dynamic range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.

Additive Phase Noise

It is the amount of phase noise that is attributable to the device or subsystem being measured. The phase noise of any external oscillators or clock sources has been subtracted. This makes it possible to predict the degree to which the device as the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contribute their own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise.

Additive Time Jitter

It is the amount of time jitter that is attributable to the device or subsystem being measured. The time jitter of any external oscillators or clock sources has been subtracted. This makes it possible to predict the degree to which the device will affect the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contribute their own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Power vs. Frequency—LVDS

Figure 7. CLK Smith Chart (Evaluation Board)

Figure 8. Power vs. Frequency-CMOS

Figure 9. LVDS Differential Output at 800 MHz

Figure 10. CMOS Single-Ended Output at 250 MHz with 10 pF Load

Figure 11. LVDS Differential Output Swing vs. Frequency

Figure 12. CMOS Single-Ended Output Swing vs. Frequency and Load

Figure 13. Additive Phase Noise—LVDS DIV 1, 245.76 MHz

Figure 14. Additive Phase Noise—CMOS DIV 1, 245.76 MHz

Figure 15. Additive Phase Noise—LVDS DIV2, 122.88 MHz

Figure 16. Additive Phase Noise—CMOS DIV4, 61.44 MHz

FUNCTIONAL DESCRIPTION

OVERALL

The AD9513 provides for the distribution of its input clock on up to three outputs. Each output can be set to either LVDS or CMOS logic levels. Each output has its own divider that can be set for a divide ratio selected from a list of integer values from 1 (bypassed) to 32.
OUT2 includes an analog delay block that can be set to add an additional delay of $1.8 \mathrm{~ns}, 6.0 \mathrm{~ns}$, or 11.6 ns full scale, each with 16 levels of fine adjustment.

CLK, CLKB—DIFFERENTIAL CLOCK INPUT

The CLK and CLKB pins are differential clock input pins. This input works up to 1600 MHz . The jitter performance is degraded by a slew rate below $1 \mathrm{~V} / \mathrm{ns}$. The input level should be between approximately 150 mV p-p to no more than 2 V p-p. Anything greater can result in turning on the protection diodes on the input pins.

See Figure 17 for the CLK equivalent input circuit. This input is fully differential and self-biased. The signal should be accoupled using capacitors. If a single-ended input must be used, this can be accommodated by ac coupling to one side of the differential input only. The other side of the input should be bypassed to a quiet ac ground by a capacitor.

Figure 17. Clock Input Equivalent Circuit

SYNCHRONIZATION

Power-On SYNC

A power-on sync (POS) is issued when the V_{s} power supply is turned on to ensure that the outputs start in synchronization. The power-on sync works only if the V_{s} power supply transitions the region from 2.2 V to 3.1 V within 35 ms . The POS can occur up to 65 ms after V_{s} crosses 2.2 V . Only outputs which are not divide $=1$ are synchronized.

Figure 18. Power-On Sync Timing

SYNCB

If the setup configuration of the AD9513 is changed during operation, the outputs can become unsynchronized. The outputs can be resynchronized to each other at any time. Synchronization occurs when the SYNCB pin is pulled low and released. The clock outputs (except where divide $=1$) are forced into a fixed state (determined by the divide and phase settings) and held there in a static condition, until the SYNCB pin is returned to high. Upon release of the SYNCB pin, after four cycles of the clock signal at CLK, all outputs continue clocking in synchronicity (except where divide $=1$).
When divide $=1$ for an output, that output is not affected by SYNCB.

Figure 19. SYNCB Timing with Clock Present

Figure 20. SYNCB Timing with No Clock Present
The outputs of the AD9513 can be synchronized by using the SYNCB pin. Synchronization aligns the phases of the clock outputs, respecting any phase offset that has been set on an output's divider.

Figure 21. SYNCB Equivalent Input Circuit

Synchronization is initiated by pulling the SYNCB pin low for a minimum of 5 ns . The input clock does not have to be present at the time the command is issued. The synchronization occurs after four input clock cycles.
The synchronization applies to clock outputs

- that are not turned OFF
- \quad where the divider is not divide $=1$ (divider bypassed)

An output with its divider set to divide = 1 (divider bypassed) is always synchronized with the input clock, with a propagation delay.
The SYNCB pin must be pulled up for normal operation. Do not let the SYNCB pin float.

RSET RESISTOR

The internal bias currents of the AD9513 are set by the $\mathrm{R}_{\text {SET }}$ resistor. This resistor should be as close as possible to the value given as a condition in the Specifications section ($\mathrm{R}_{\text {SET }}=4.12 \mathrm{k} \Omega$). This is a standard 1% resistor value and should be readily obtainable. The bias currents set by this resistor determine the logic levels and operating conditions of the internal blocks of the AD9513. The performance figures given in the Specifications section assume that this resistor value is used for $\mathrm{R}_{\text {SET }}$.

VREF

The VREF pin provides a voltage level of $2 / 3 \mathrm{~V}$ s. This voltage is one of the four logic levels used by the setup pins (S0 to S10). These pins set the operation of the AD9513. The VREF pin provides sufficient drive capability to drive as many of the setup pins as necessary, up to all on a single part. The VREF pin should be used for no other purpose.

SETUP CONFIGURATION

The specific operation of the AD9513 is set by the logic levels applied to the setup pins (S10 to S0). These pins use four-state logic. The logic levels used are V_{s} and GND, plus $1 / 3 \mathrm{~V}_{s}$ and $2 / 3 \mathrm{Vs}$. The $1 / 3 \mathrm{Vs}$ level is provided by the internal self-biasing on each of the setup pins (S 10 to S 0). This is the level seen by a setup pin that is left not connected (NC). The $2 / 3 \mathrm{~V}$ s level is provided by the VREF pin. All setup pins requiring the $2 / 3 \mathrm{~V}_{\mathrm{S}}$ level must be tied to the VREF pin.

Figure 22. Setup Pin (S0 to S10) Equivalent Circuit

The AD9513 operation is determined by the combination of logic levels present at the setup pins. The setup configurations for the AD9513 are shown in Table 11 to Table 16. The four logic levels are referred to as $0,1 / 3,2 / 3$, and 1 . These numbers represent the fraction of the V_{s} voltage that defines the logic levels. See the setup pin thresholds in Table 6.

The meaning of some of the pin settings is changed by the settings of other pins. For example, S0 determines whether S3, and S 4 sets OUT2 delay $(\mathrm{S} 0 \neq 0)$ or OUT2 phase $(\mathrm{S} 0=0)$.
S2 indicates which outputs are in use, as shown in Table 10. This allows the same pins (S5 and S6, S7 and S8) to determine the settings for two different outputs, depending on which outputs are in use.

Table 10. S2 Indicates Which Outputs Are in Use

S2	Outputs
0	OUT2 Off
$1 / 3$	All Outputs On
$2 / 3$	OUT0 Off
1	OUT1 Off

The fine delay values set by S3 and S4 (when the delay is being used, $S 0 \neq 0$) are fractions of the full-scale delay. Note that the longest setting is $15 / 16$ of full scale. The full-scale delay times are given in Table 3. To determine the actual delay, take the fraction corresponding to the fine delay setting and multiply by the full-scale value set by Table 3 corresponding to the S 0 value and add the LVDS or CMOS propagation delay time (see Table 3). The full-scale delay times shown in Table 11, and referred to elsewhere, are nominal time values.
The value at S 2 also determines whether S 5 and S 6 set OUT2 divide $(\mathrm{S} 2 \neq 0)$ or OUT1 phase $(\mathrm{S} 2=0)$. In addition, S 2 determines whether S7 and S8 set OUT1 divide ($\mathrm{S} 2 \neq 1$) or OUT2 phase ($\mathrm{S} 2=1$ and $\mathrm{S} 0 \neq 0$). In addition, the value of S 2 determines whether S 9 and S 10 set OUT0 divide $(\mathrm{S} 2 \neq 2 / 3)$ or OUT2 divide ($\mathrm{S} 2=2 / 3$).

Table 11. Output Delay Full Scale

S0	Delay
0	Bypass
$1 / 3$	1.8 ns
$2 / 3$	6.0 ns
1	11.6 ns

AD9513

Table 12. Output Logic Configuration

S1	S2	OUT0	OUT1	OUT2
0	0	OFF	LVDS	OFF
$1 / 3$	0	CMOS	CMOS	OFF
$2 / 3$	0	LVDS	LVDS	OFF
1	0	LVDS	CMOS	OFF
0	$1 / 3$	CMOS	CMOS	CMOS
$1 / 3$	$1 / 3$	LVDS	LVDS	LVDS
$2 / 3$	$1 / 3$	LVDS	LVDS	CMOS
1	$1 / 3$	CMOS	CMOS	LVDS
0	$2 / 3$	OFF	OFF	OFF
$1 / 3$	$2 / 3$	OFF	OFF	LVDS
$2 / 3$	$2 / 3$	OFF	OFF	CMOS
1	$2 / 3$	OFF	CMOS	OFF
0	1	LVDS	OFF	CMOS
$1 / 3$	1	CMOS	OFF	LVDS
$2 / 3$	1	LVDS	OFF	LVDS
1	1	CMOS	OFF	CMOS

Table 13. OUT2 Delay or Phase

S3	S4	OUT2 Delay $(\mathbf{S O} \neq \mathbf{0})$	OUT2 Phase (S0 $=\mathbf{0})$
0	0	0	0
$1 / 3$	0	$1 / 16$	1
$2 / 3$	0	$1 / 8$	2
1	0	$3 / 16$	3
0	$1 / 3$	$1 / 4$	4
$1 / 3$	$1 / 3$	$5 / 16$	5
$2 / 3$	$1 / 3$	$3 / 8$	6
1	$1 / 3$	$7 / 16$	7
0	$2 / 3$	$1 / 2$	8
$1 / 3$	$2 / 3$	$9 / 16$	9
$2 / 3$	$2 / 3$	$5 / 8$	10
1	$2 / 3$	$11 / 16$	11
0	1	$3 / 4$	12
$1 / 3$	1	$13 / 16$	13
$2 / 3$	1	$7 / 8$	14
1	1	$15 / 16$	15

Table 14. OUT2 Divide or OUT1 Phase

S5	S6	OUT2 Divide (Duty Cycle ${ }^{\mathbf{1}}$) (S2 $\neq \mathbf{0}$ or 2/3)	OUT1 Phase (S2 = 0)
0	0	1	0
$1 / 3$	0	$2(50 \%)$	1
$2 / 3$	0	$3(33 \%)$	2
1	0	$4(50 \%)$	3
0	$1 / 3$	$5(40 \%)$	4
$1 / 3$	$1 / 3$	$6(50 \%)$	5
$2 / 3$	$1 / 3$	$8(50 \%)$	6
1	$1 / 3$	$9(44 \%)$	7
0	$2 / 3$	$10(50 \%)$	8
$1 / 3$	$2 / 3$	$12(50 \%)$	9
$2 / 3$	$2 / 3$	$15(47 \%)$	10
1	$2 / 3$	$16(50 \%)$	11
0	1	$18(50 \%)$	12
$1 / 3$	1	$24(50 \%)$	13
$2 / 3$	1	$30(50 \%)$	14
1	1	$32(50 \%)$	15

${ }^{1}$ Duty cycle is the clock signal high time divided by the total period.

Table 15. OUT1 Divide or OUT2 Phase

S7	S8	OUT1 Divide (Duty Cycle' $\mathbf{)}$ $(\mathbf{S 2} \neq \mathbf{1})$	OUT2 Phase $(\mathbf{S 2}=\mathbf{1}$ and S0 $\neq \mathbf{0})$
0	0	1	0
$1 / 3$	0	$2(50 \%)$	1
$2 / 3$	0	$3(33 \%)$	2
1	0	$4(50 \%)$	3
0	$1 / 3$	$5(40 \%)$	4
$1 / 3$	$1 / 3$	$6(50 \%)$	5
$2 / 3$	$1 / 3$	$8(50 \%)$	6
1	$1 / 3$	$9(44 \%)$	7
0	$2 / 3$	$10(50 \%)$	8
$1 / 3$	$2 / 3$	$12(50 \%)$	9
$2 / 3$	$2 / 3$	$15(47 \%)$	10
1	$2 / 3$	$16(50 \%)$	11
0	1	$18(50 \%)$	12
$1 / 3$	1	$24(50 \%)$	13
$2 / 3$	1	$30(50 \%)$	14
1	1	$32(50 \%)$	15
Duty cycle is the clock signal high time divided by the total period.			

Table 16. OUT0 Divide or OUT2 Divide

S9	S10	OUTO Divide (Duty Cycle ${ }^{1}$) $S 2 \neq 2 / 3$	OUT2 Divide (Duty Cycle ${ }^{1}$) $S 2=2 / 3$
0	0	1	7 (43\%)
1/3	0	2 (50\%)	11 (45\%)
2/3	0	3 (33\%)	13 (46\%)
1	0	4 (50\%)	14 (50\%)
0	1/3	5 (40\%)	17 (47\%)
1/3	1/3	6 (50\%)	19 (47\%)
2/3	1/3	8 (50\%)	20 (50\%)
1	1/3	9 (44\%)	21 (48\%)
0	2/3	10 (50\%)	22 (50\%)
1/3	2/3	12 (50\%)	23 (48\%)
2/3	2/3	15 (47\%)	25 (48\%)
1	2/3	16 (50\%)	26 (50\%)
0	1	18 (50\%)	27 (48\%)
1/3	1	24 (50\%)	28 (50\%)
2/3	1	30 (50\%)	29 (48\%)
1	1	32 (50\%)	31 (48\%)

DIVIDER PHASE OFFSET

The phase offset of OUT1 and OUT2 can be selected (see Table 13 to Table 15). This allows the relative phase of the outputs to be set.
After a SYNC operation (see the Synchronization section), the phase offset word of each divider determines the number of input clock (CLK) cycles to wait before initiating a clock output edge. By giving each divider a different phase offset, output-tooutput delays can be set in increments of the fast clock period, tcik.

Figure 23 shows four cases, each with the divider set to divide $=4$. By incrementing the phase offset from 0 to 3 , the output is offset from the initial edge by a multiple of tcle.

Figure 23. Phase Offset—Divider Set for Divide $=4$, Phase Set from 0 to 2

For example:

$$
\begin{aligned}
& \mathrm{CLK}=491.52 \mathrm{MHz} \\
& \mathrm{t}_{\text {CLK }}=1 / 491.52=2.0345 \mathrm{~ns}
\end{aligned}
$$

For Divide $=4$:
Phase Offset $0=0 \mathrm{~ns}$
Phase Offset $1=2.0345 \mathrm{~ns}$
Phase Offset $2=4.069 \mathrm{~ns}$
Phase Offset $3=6.104 \mathrm{~ns}$
The outputs can also be described as:
Phase Offset $0=0^{\circ}$
Phase Offset $1=90^{\circ}$
Phase Offset $2=180^{\circ}$
Phase Offset $3=270^{\circ}$
Setting the phase offset to Phase $=4$ results in the same relative phase as Phase $=0^{\circ}$ or 360°.

The resolution of the phase offset is set by the fast clock period ($\mathrm{t}_{\mathrm{cLk}}$) at CLK. The maximum unique phase offset is less than the divide ratio, up to a phase offset of 15 .
Phase offsets can be related to degrees by calculating the phase step for a particular divide ratio:
Phase Step $=360^{\circ} /$ Divide Ratio
Using some of the same examples:
Divide $=4$
Phase Step $=360^{\circ} / 4=90^{\circ}$
Unique Phase Offsets in Degrees Are Phase $=0^{\circ}, 90^{\circ}$, $180^{\circ}, 270^{\circ}$

Divide $=9$
Phase Step $=360^{\circ} / 9=40^{\circ}$
Unique Phase Offsets in Degrees Are Phase $=0^{\circ}, 40^{\circ}, 80^{\circ}$, $120^{\circ}, 160^{\circ}, 200^{\circ}, 240^{\circ}, 280^{\circ}, 320^{\circ}$

DELAY BLOCK

OUT2 includes an analog delay element that gives variable time delays $(\Delta \mathrm{T})$ in the clock signal passing through that output. clock input

The amount of delay that can be used is determined by the output frequency. The amount of delay is limited to less than one-half cycle of the clock period. For example, for a 10 MHz clock, the delay can extend to the full 11.6 ns maximum. However, for a 100 MHz clock, the maximum delay is less than 5 ns (or half of the period).
The AD9513 allows for the selection of three full-scale delays, $1.8 \mathrm{~ns}, 6.0 \mathrm{~ns}$, and 11.6 ns , set by delay full-scale (see Table 11). Each of these full-scale delays can be scaled by 16 fine adjustment values, which are set by the delay word (see Table 13).

The delay block adds some jitter to the output. This means that the delay function should be used primarily for clocking digital chips, such as FPGA, ASIC, DUC, and DDC, rather than for supplying a sample clock for data converters. The jitter is higher for longer full scales because the delay block uses a ramp and trip points to create the variable delay. A longer ramp means more noise has a chance of being introduced.

When the delay block is OFF (bypassed), it is also powered down.

OUTPUTS

Each of the three AD9513 outputs can be selected either as LVDS differential outputs or as pairs of CMOS single-ended outputs. If selected as CMOS, the OUT is a noninverted, singleended output, and OUTB is an inverted, single-ended output.

Figure 25. LVDS Output Simplified Equivalent Circuit

Figure 26. CMOS Equivalent Output Circuit

POWER SUPPLY

The AD9513 requires a $3.3 \mathrm{~V} \pm 5 \%$ power supply for V_{s}. The tables in the Specifications section give the performance expected from the AD9513 with the power supply voltage within this range. In no case should the absolute maximum range of -0.3 V to +3.6 V , with respect to GND, be exceeded on Pin VS.

Good engineering practice should be followed in the layout of power supply traces and the ground plane of the PCB. The power supply should be bypassed on the PCB with adequate capacitance ($>10 \mu \mathrm{~F}$). The AD9513 should be bypassed with adequate capacitors $(0.1 \mu \mathrm{~F})$ at all power pins as close as possible to the part. The layout of the AD9513 evaluation board (AD9513/PCB) is a good example.

Exposed Metal Paddle

The exposed metal paddle on the AD9513 package is an electrical connection, as well as a thermal enhancement. For the device to function properly, the paddle must be properly attached to ground (GND).

The exposed paddle of the AD9513 package must be soldered down. The AD9513 must dissipate heat through its exposed paddle. The PCB acts as a heat sink for the AD9513. The PCB attachment must provide a good thermal path to a larger heat dissipation area, such as a ground plane on the PCB. This requires a grid of vias from the top layer down to the ground plane (see Figure 27).The AD9513 evaluation board (AD9513/PCB)provides a good example of how the part should be attached to the PCB.

POWER MANAGEMENT

In some cases, the AD9513 can be configured to use less power by turning off functions that are not being used.

The power-saving options include the following:

- A divider is powered down when set to divide $=1$ (bypassed).
- Adjustable delay block on OUT2 is powered down when in off mode ($\mathrm{SO}=0$).
- An unneeded output can be powered down (see Table 12). This also powers down the divider for that output.

APPLICATIONS INFORMATION

USING THE AD9513 OUTPUTS FOR ADC CLOCK APPLICATIONS

Any high speed, analog-to-digital converter (ADC) is extremely sensitive to the quality of the sampling clock provided by the user. An ADC can be thought of as a sampling mixer; any noise, distortion, or timing jitter on the clock is combined with the desired signal at the A/D output. Clock integrity requirements scale with the analog input frequency and resolution, with higher analog input frequency applications at ≥ 14-bit resolution being the most stringent. The theoretical SNR of an ADC is limited by the ADC resolution and the jitter on the sampling clock. Considering an ideal ADC of infinite resolution where the step size and quantization error can be ignored, the available SNR can be expressed approximately by

$$
S N R=20 \times \log \left[\frac{1}{2 \pi f t_{j}}\right]
$$

where f is the highest analog frequency being digitized.
t_{j} is the rms jitter on the sampling clock.
Figure 28 shows the required sampling clock jitter as a function of the analog frequency and effective number of bits (ENOB).

Figure 28. ENOB and SNR vs. Analog Input Frequency
See Application Note AN-756 and Application Note AN-501 at www.analog.com.

Many high performance ADCs feature differential clock inputs to simplify the task of providing the required low jitter clock on a noisy PCB. (Distributing a single-ended clock on a noisy PCB can result in coupled noise on the sample clock. Differential distribution has inherent common-mode rejection that can provide superior clock performance in a noisy environment.) The AD9513 features LVDS outputs that provide differential clock outputs, which enable clock solutions that maximize converter SNR performance. The input requirements of the ADC (differential or single-ended, logic level, termination)
should be considered when selecting the best clocking/ converter solution.

LVDS CLOCK DISTRIBUTION

The AD9513 provides three clock outputs that are selectable as either CMOS or LVDS levels. LVDS uses a current mode output stage. The current is 3.5 mA , which yields 350 mV output swing across a 100Ω resistor. The LVDS outputs meet or exceed all ANSI/TIA/EIA-644 specifications.
A recommended termination circuit for the LVDS outputs is shown in Figure 29.

Figure 29. LVDS Output Termination
See Application Note AN-586 at www.analog.com for more information on LVDS.

CMOS CLOCK DISTRIBUTION

The AD9513 provides three outputs that are selectable as either CMOS or LVDS levels. When selected as CMOS, an output provides for driving devices requiring CMOS level logic at their clock inputs.
Whenever single-ended CMOS clocking is used, some of the following general guidelines should be used.

Point-to-point nets should be designed such that a driver has one receiver only on the net, if possible. This allows for simple termination schemes and minimizes ringing due to possible mismatched impedances on the net. Series termination at the source is generally required to provide transmission line matching and/or to reduce current transients at the driver. The value of the resistor is dependent on the board design and timing requirements (typically 10Ω to 100Ω is used). CMOS outputs are also limited in terms of the capacitive load or trace length that they can drive. Typically, trace lengths less than 3 inches are recommended to preserve signal rise/fall times and preserve signal integrity.

Figure 30. Series Termination of CMOS Output
Termination at the far end of the PCB trace is a second option. The CMOS outputs of the AD9513 do not supply enough current to provide a full voltage swing with a low impedance resistive, far-end termination, as shown in Figure 31.

The far-end termination network should match the PCB trace impedance and provide the desired switching point. The reduced signal swing may still meet receiver input requirements in some applications. This can be useful when driving long trace lengths on less critical nets.

Figure 31. CMOS Output with Far-End Termination
Because of the limitations of single-ended CMOS clocking, consider using differential outputs when driving high speed signals over long traces. The AD9513 offers LVDS outputs that are better suited for driving long traces where the inherent noise immunity of differential signaling provides superior performance for clocking converters.

SETUP PINS (S0 TO S10)

The setup pins that require a logic level of $1 / 3 \mathrm{~V}_{\mathrm{s}}$ (internal selfbias) should be tied together and bypassed to ground via a capacitor.
The setup pins that require a logic level of $2 / 3 \mathrm{~V}_{\mathrm{S}}$ should be tied together, along with the VREF pin, and bypassed to ground via a capacitor.

POWER AND GROUNDING CONSIDERATIONS AND POWER SUPPLY REJECTION

Many applications seek high speed and performance under less than ideal operating conditions. In these application circuits, the implementation and construction of the PCB is as important as the circuit design. Proper RF techniques must be used for device selection, placement, and routing, as well as power supply bypassing and grounding to ensure optimum performance.

[^0]: ${ }^{1}$ See Thermal Characteristics for θ_{A}.

