: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1.6 GHz Clock Distribution IC, Dividers, Delay Adjust, Two Outputs

Data Sheet

FEATURES

1.6 GHz differential clock input
 2 programmable dividers
 Divide-by in range from 1 to 32
 Phase select for coarse delay adjust
 1.6 GHz LVPECL clock output
 Additive output jitter 225 fs rms
 800 MHz/250 MHz LVDS/CMOS clock output
 Additive output jitter $\mathbf{3 0 0} \mathbf{f s} \mathbf{~ r m s} / \mathbf{2 9 0} \mathbf{f s} \mathbf{~ r m s}$
 Time delays up to 10 ns
 Device configured with 4-level logic pins
 Space-saving, 32-lead LFCSP

APPLICATIONS

Low jitter, low phase noise clock distribution
 Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs

High performance wireless transceivers
High performance instrumentation
Broadband infrastructure
ATE

GENERAL DESCRIPTION

The AD9515 features a two-output clock distribution IC in a design that emphasizes low jitter and phase noise to maximize data converter performance. Other applications with demanding phase noise and jitter requirements also benefit from this part.

There are two independent clock outputs. One output is LVPECL, while the other output can be set to either LVDS or CMOS levels. The LVPECL output operates to 1.6 GHz . The other output operates to 800 MHz in LVDS mode and to 250 MHz in CMOS mode.

Each output has a programmable divider that can be set to divide by a selected set of integers ranging from 1 to 32 . The phase of one clock output relative to the other clock output can be set by means of a divider phase select function that serves as a coarse timing adjustment.

FUNCTIONAL BLOCK DIAGRAM

The LVDS/CMOS output features a delay element with three selectable full-scale delay values ($1.5 \mathrm{~ns}, 5 \mathrm{~ns}$, and 10 ns), each with 16 steps of fine adjustment.

The AD9515 does not require an external controller for operation or setup. The device is programmed by means of 11 pins (S0 to S10) using 4-level logic. The programming pins are internally biased to $1 / 3 \mathrm{~V}_{\mathrm{S}}$. The VREF pin provides a level of $2 / 3 \mathrm{~V}_{\mathrm{s}} . \mathrm{V}_{\mathrm{S}}(3.3 \mathrm{~V})$ and $\mathrm{GND}(0 \mathrm{~V})$ provide the other two logic levels.

The AD9515 is ideally suited for data converter clocking applications where maximum converter performance is achieved by encode signals with subpicosecond jitter.

The AD9515 is available in a 32 -lead LFCSP and operates from a single 3.3 V supply. The temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD9515* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- AD9515 Evaluation Board

DOCUMENTATION \square

Application Notes

- AN-0974: Multicarrier TD-SCMA Feasibility
- AN-501: Aperture Uncertainty and ADC System Performance
- AN-741: Little Known Characteristics of Phase Noise
- AN-756: Sampled Systems and the Effects of Clock Phase Noise and Jitter
- AN-769: Generating Multiple Clock Outputs from the AD9540
- AN-823: Direct Digital Synthesizers in Clocking Applications Time
- AN-837: DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance
- AN-873: Lock Detect on the ADF4xxx Family of PLL Synthesizers
- AN-927: Determining if a Spur is Related to the DDS/DAC or to Some Other Source (For Example, Switching Supplies)
- AN-939: Super-Nyquist Operation of the AD9912 Yields a High RF Output Signal

Data Sheet

- AD9515: 1.6 GHz Clock Distribution IC, Dividers, Delay Adjust, Two Outputs Data Sheet

TOOLS AND SIMULATIONS

- ADIsimCLK Design and Evaluation Software
- AD9515 IBIS Models

REFERENCE DESIGNS \square

- CN0109

REFERENCE MATERIALS

Press

- Analog Devices' Dual 14-bit A/D Converter Reduces Power and Size in Communications, Instrumentation, Test and Measurement Applications

Product Selection Guide

- RF Source Booklet

Technical Articles

- ADI Buys Korean Mobile TV Chip Maker
- Design A Clock-Distribution Strategy With Confidence
- Improved DDS Devices Enable Advanced Comm Systems
- Low-power direct digital synthesizer cores enable high level of integration
- Speedy A/Ds Demand Stable Clocks
- Understand the Effects of Clock Jitter and Phase Noise on Sampled Systems

DESIGN RESOURCES

- AD9515 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD9515 EngineerZone Discussions.

SAMPLE AND BUY \square

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Clock Input. 3
Clock Outputs 3
Timing Characteristics 4
Clock Output Phase Noise 5
Clock Output Additive Time Jitter 8
SYNCB, VREF, and Setup Pins 9
Power. 10
Timing Diagrams 11
Absolute Maximum Ratings 12
Thermal Characteristics 12
ESD Caution 12
Pin Configuration and Function Descriptions. 13
Terminology 14
Typical Performance Characteristics 15
Functional Description 18
Overall. 18
CLK, CLKB—Differential Clock Input 18
REVISION HISTORY
4/12-Rev. 0 to Rev. A
Changes to Table 9 .13
Updated Outline Dimensions 28
Changes to Ordering Guide 28
Synchronization 18
$\mathrm{R}_{\text {set }}$ Resistor 19
VREF 19
Setup Configuration. 19
Programming 20
Divider Phase Offset 22
Delay Block 22
Outputs 23
Power Supply 23
Power Management 24
Applications 25
Using the AD9515 Outputs for ADC Clock Applications. 25
LVPECL Clock Distribution 25
LVDS Clock Distribution 26
CMOS Clock Distribution 26
Setup Pins (S0 to S10) 26
Power and Grounding Considerations and Power Supply Rejection 26
Phase Noise and Jitter Measurement Setups. 27
Outline Dimensions 28
Ordering Guide 28

SPECIFICATIONS

Typical (typ) is given for $\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=4.12 \mathrm{k} \Omega$, LVPECL swing $=790 \mathrm{mV}$, unless otherwise noted. Minimum (min) and maximum (max) values are given over full V_{S} and $\mathrm{T}_{\mathrm{A}}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ variation.

CLOCK INPUT

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLOCK INPUT (CLK)					
Input Frequency ${ }^{1}$	0		1.6	GHz	
Input Sensitivity ${ }^{1}$		150		mV p-p	
Input Common-Mode Voltage, $\mathrm{V}_{\text {CM }}$	1.5	1.6	1.7	V	Self-biased; enables ac coupling
Input Common-Mode Range, $\mathrm{V}_{\text {CMR }}$	1.3		1.8	V	With 200 mV p-p signal applied; dc-coupled
Input Sensitivity, Single-Ended		150		mV p-p	CLK ac-coupled; CLKB ac-bypassed to RF ground
Input Resistance	4.0	4.8	5.6	$k \Omega$	Self-biased
Input Capacitance		2		pF	

${ }^{1}$ A slew rate of $1 \mathrm{~V} / \mathrm{ns}$ is required to meet jitter, phase noise, and propagation delay specifications.

CLOCK OUTPUTS
Table 2.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
```LVPECL CLOCK OUTPUT (OUTO) Differential Output Frequency Output High Voltage ( \(\mathrm{V}_{\mathrm{OH}}\) ) Output Low Voltage ( \(\mathrm{V}_{\mathrm{OL}}\) ) Output Differential Voltage ( \(\mathrm{V}_{\mathrm{OD}}\) )```	$\begin{aligned} & 0 \\ & V_{s}-1.1 \\ & V_{s}-1.90 \\ & 640 \end{aligned}$	$\begin{aligned} & V_{S}-0.96 \\ & V_{S}-1.76 \\ & 790 \end{aligned}$	$\begin{aligned} & 1.6 \\ & V_{s}-0.82 \\ & V_{s}-1.52 \\ & 960 \end{aligned}$	$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{mV} \end{aligned}$	Termination $=50 \Omega$ to $\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}$
LVDS CLOCK OUTPUT   (OUT1) Differential   Output Frequency   Differential Output Voltage ( $\mathrm{V}_{\text {OD }}$ )   Delta $\mathrm{V}_{\mathrm{od}}$   Output Offset Voltage ( $\mathrm{V}_{\text {os }}$ )   Delta $\mathrm{V}_{\text {os }}$   Short-Circuit Current $\left(I_{S A} I_{S B}\right)$	$\begin{aligned} & 0 \\ & 250 \\ & 1.125 \end{aligned}$	$\begin{aligned} & 350 \\ & 1.23 \\ & 14 \end{aligned}$	$\begin{aligned} & 800 \\ & 450 \\ & 30 \\ & 1.375 \\ & 25 \\ & 24 \\ & \hline \end{aligned}$	MHz   mV   mV   V   mV   mA	Termination $=100 \Omega$ differential   Output shorted to GND
CMOS CLOCK OUTPUT   (OUT1) Single-Ended   Output Frequency   Output Voltage High ( $\mathrm{V}_{\mathrm{OH}}$ )   Output Voltage Low ( $\mathrm{V}_{\mathrm{OL}}$ )	$\begin{aligned} & 0 \\ & v_{s}-0.1 \end{aligned}$		250 0.1	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	Single-ended measurements; termination open Complementary output on (OUT1B)   With 5 pF load   @ 1 mA load   @ 1 mA load

## AD9515

## TIMING CHARACTERISTICS

CLK input slew rate $=1 \mathrm{~V} / \mathrm{ns}$ or greater.
Table 3.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL   Output Rise Time, $\mathrm{t}_{\mathrm{RP}}$ Output Fall Time, $\mathrm{t}_{\mathrm{FP}}$		$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Termination }=50 \Omega \text { to } V_{s}-2 \mathrm{~V} \\ & 20 \% \text { to } 80 \% \text {, measured differentially } \\ & 80 \% \text { to } 20 \% \text {, measured differentially } \\ & \hline \end{aligned}$
```PROPAGATION DELAY, tPECL Divide = 1 Divide = 2-32 Variation with Temperature```	$\begin{aligned} & 355 \\ & 395 \end{aligned}$	$\begin{aligned} & 480 \\ & 530 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 635 \\ & 710 \end{aligned}$	ps ps $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
OUTPUT SKEW, LVPECL OUTPUT LVPECL OUT Across Multiple Parts, $\mathrm{t}_{\text {SKP AB3 }}{ }^{1}$			125	ps	
LVDS Output Rise Time, t_{RL} Output Fall Time, t_{FL}		$\begin{aligned} & 200 \\ & 210 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	Termination $=100 \Omega$ differential 20% to 80%, measured differentially 80% to 20%, measured differentially
PROPAGATION DELAY, $\mathrm{t}_{\mathrm{LvDs}}$ CLK-TO-LVDS OUT OUT3 to OUT4 Divide $=1$ Divide $=2-32$ Variation with Temperature	$\begin{aligned} & 1.00 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.30 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.55 \\ & 1.60 \end{aligned}$	ns ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	Delay off on OUT4
OUTPUT SKEW, LVDS OUTPUT LVDS OUT Across Multiple Parts, $\mathrm{t}_{\text {skV_AB }}{ }^{1}$			230	ps	Delay off on OUT4
CMOS Output Rise Time, t_{RC} Output Fall Time, t_{FC}		$\begin{aligned} & 650 \\ & 650 \end{aligned}$	$\begin{aligned} & 865 \\ & 990 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	B outputs are inverted; termination $=$ open 20% to $80 \% ;$ C $_{\text {LOAD }}=3 \mathrm{pF}$ 80% to $20 \% ;$ C $_{\text {LOAD }}=3 \mathrm{pF}$
```PROPAGATION DELAY, t cmos, Divide = 1 Divide = 2-32 Variation with Temperature```	$\begin{aligned} & 1.10 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.50 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 1.80 \end{aligned}$	ns ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	Delay off on OUT4
OUTPUT SKEW, CMOS OUTPUT CMOS OUT Across Multiple Parts, $\mathrm{t}_{5 K \mathrm{C}}{ }^{A B}{ }^{1}$			300	ps	Delay off on OUT4
LVPECL-TO-LVDS OUT Output Delay, $\mathrm{t}_{\text {KP } _ \text {V }}$	700	970	1150	ps	Everything the same; different logic type LVPECL to LVDS on same part
LVPECL-TO-CMOS OUT Output Delay, $\mathrm{t}_{\text {KKP }}$	0.88	1.14	1.43	ns	Everything the same; different logic type LVPECL to CMOS on same part
DELAY ADJUST (OUT2; LVDS AND CMOS) $S 0=1 / 3$   Zero Scale Delay Time ${ }^{2}$   Zero Scale Variation with Temperature   Full Scale Time Delay ${ }^{2}$   Full Scale Variation with Temperature $S 0=2 / 3$   Zero Scale Delay Time ${ }^{2}$   Zero Scale Variation with Temperature   Full Scale Time Delay ${ }^{2}$   Full Scale Variation with Temperature		0.34 0.20 1.7 -0.38 0.45 0.31 5.9 -1.3		ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	


Parameter	Min	Typ	Max	Unit
S0 $=1$				Test Conditions/Comments
Zero Scale Delay Time ${ }^{2}$				
Zero Scale Variation with Temperature		0.56		ns
Full Scale Time Delay ${ }^{2}$		0.47		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$
Full Scale Variation with Temperature		11.4		ns
Linearity, DNL	-5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Linearity, INL	0.2		LSB	

${ }^{1}$ This is the difference between any two similar delay paths across multiple devices operating at the same voltage and temperature.
${ }^{2}$ Incremental delay; does not include propagation delay.

## CLOCK OUTPUT PHASE NOISE

CLK input slew rate $=1 \mathrm{~V} / \mathrm{ns}$ or greater.
Table 4.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK-TO-LVPECL ADDITIVE PHASE NOISE					
CLK $=622.08 \mathrm{MHz}, \mathrm{OUT}=622.08 \mathrm{MHz}$					
Divide $=1$					
@ 10 Hz Offset		-125		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=622.08 \mathrm{MHz}$, OUT $=155.52 \mathrm{MHz}$					
Divide $=4$					
@ 10 Hz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=622.08 \mathrm{MHz}$, OUT $=38.88 \mathrm{MHz}$					
Divide $=16$					
@ 10 Hz Offset		-135		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-166		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=491.52 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide $=8$					
@ 10 Hz Offset		-131		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-142		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	


Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK $=491.52 \mathrm{MHz}, \mathrm{OUT}=245.76 \mathrm{MHz}$					
Divide $=2$					
@ 10 Hz Offset		-125		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-151		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-157		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=245.76 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide $=4$					
@ 10 Hz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-144		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-163		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-164		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
CLK-TO-LVDS ADDITIVE PHASE NOISE					
CLK $=622.08 \mathrm{MHz}$, OUT $=622.08 \mathrm{MHz}$					
Divide $=1$					
@ 10 Hz Offset		-100		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-110		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-129		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-135		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=622.08 \mathrm{MHz}, \mathrm{OUT}=155.52 \mathrm{MHz} \quad \square$					
Divide $=4$					
@ 10 Hz Offset		-112		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-122		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-142		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-152		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
$\mathrm{CLK}=491.52 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide = 2					
@ 10 Hz Offset		-108		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	


Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK $=491.52 \mathrm{MHz}$, OUT $=122.88 \mathrm{MHz}$					
Divide $=4$					
@ 10 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-129		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-136		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-147		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=245.76 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide $=1$					
@ 10 Hz Offset		-108		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=245.76 \mathrm{MHz}, \mathrm{OUT}=122.88 \mathrm{MHz}$					
Divide $=2$					
@ 10 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-127		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-137		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-147		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK-TO-CMOS ADDITIVE PHASE NOISE					
CLK $=245.76 \mathrm{MHz}, \mathrm{OUT}=245.76 \mathrm{MHz}$					
Divide = 1					
@ 10 Hz Offset		-110		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-121		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-130		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-149		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=245.76 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide $=4$					
@ 10 Hz Offset		-125		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-143		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-152		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-162		$\mathrm{dBc} / \mathrm{Hz}$	


Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK $=78.6432 \mathrm{MHz}$, OUT $=78.6432 \mathrm{MHz}$					
Divide $=1$					
@ 10 Hz Offset		-122		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-150		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
CLK $=78.6432 \mathrm{MHz}$, OUT $=39.3216 \mathrm{MHz}$					
Divide $=2$					
@ 10 Hz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-136		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-146		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-162		$\mathrm{dBc} / \mathrm{Hz}$	

## CLOCK OUTPUT ADDITIVE TIME JITTER

Table 5.


Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CMOS OUTPUT ADDITIVE TIME JITTER $\begin{aligned} & \text { CLK }=400 \mathrm{MHz} \\ & \quad \text { CMOS }(\text { OUT1 })=100 \mathrm{MHz} \\ & \text { Divide }=4 \end{aligned}$		290		fs rms	Delay off Calculated from SNR of ADC method
$\begin{aligned} & \text { CLK }=400 \mathrm{MHz} \\ & \quad \text { CMOS }(\text { OUT1 })=100 \mathrm{MHz} \\ & \text { Divide }=4 \\ & \text { LVPECL }(\text { OUT0 })=50 \mathrm{MHz} \end{aligned}$		315		fs rms	Calculated from SNR of ADC method   Interferer
DELAY BLOCK ADDITIVE TIME JITTER ${ }^{1}$   Delay FS $=1.5 \mathrm{~ns}$ Fine Adj. 00000   Delay FS $=1.5$ ns Fine Adj. 11111   Delay FS $=5$ ns Fine Adj. 00000   Delay FS = 5 ns Fine Adj. 11111   Delay FS $=10$ ns Fine Adj. 00000   Delay FS = 10 ns Fine Adj. 11111		$\begin{aligned} & 0.71 \\ & 1.2 \\ & 1.3 \\ & 2.7 \\ & 2.0 \\ & 2.8 \end{aligned}$		ps rms ps rms ps rms ps rms ps rms ps rms	100 MHz output; incremental additive jitter ${ }^{1}$

${ }^{1}$ This value is incremental. That is, it is in addition to the jitter of the LVDS or CMOS output without the delay. To estimate the total jitter, the LVDS or CMOS output jitter should be added to this value using the root sum of the squares (RSS) method.

## SYNCB, VREF, AND SETUP PINS

Table 6.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
SYNCB					
Logic High	2.7			V	
Logic Low			0.40	V	
Capacitance		2		pF	
VREF					
Output Voltage	$0.62 \mathrm{~V}_{\text {S }}$		$0.76 \mathrm{~V}_{\text {S }}$	V	Minimum - maximum from 0 mA to 1 mA load
S0 TO S10					
Levels					
0			$0.1 \mathrm{~V}_{\mathrm{s}}$	V	
1/3	$0.2 \mathrm{~V}_{5}$		$0.45 \mathrm{~V}_{5}$	V	
2/3	$0.55 \mathrm{~V}_{\text {s }}$		$0.8 \mathrm{~V}_{\mathrm{s}}$	V	
1	$0.9 \mathrm{~V}_{\text {S }}$			V	

POWER
Table 7.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
POWER-ON SYNCHRONIZATION ${ }^{1}$   $\mathrm{V}_{\mathrm{S}}$ Transit Time from 2.2 V to 3.1 V			35	ms	See the Power-On SYNC section.
POWER DISSIPATION	$\begin{aligned} & 215 \\ & 300 \\ & 330 \end{aligned}$	$\begin{aligned} & 285 \\ & 370 \\ & 405 \end{aligned}$	$\begin{aligned} & 380 \\ & 465 \\ & 510 \end{aligned}$	mW   mW   mW	Both outputs on. LVPECL (divide = 2), LVDS (divide = 2). No clock. Does not include power dissipated in external resistors.   Both outputs on. LVPECL (divide = 2), CMOS (divide = 2); at 62.5 MHz out ( 5 pF load).   Both outputs on. LVPECL, CMOS (divide = 2);   at 125 MHz out ( 5 pF load).
POWER DELTA   Divider $($ Divide $=2$ to Divide $=1)$   LVPECL Output   LVDS Output   CMOS Output (Static)   CMOS Output (@ 62.5 MHz )   CMOS Output (@ 125 MHz )   Delay Block	$\begin{gathered} 15 \\ 65 \\ 20 \\ 30 \\ 80 \\ 110 \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ 90 \\ 50 \\ 40 \\ 110 \\ 150 \\ 45 \end{gathered}$	$\begin{gathered} 45 \\ 125 \\ 85 \\ 50 \\ 140 \\ 190 \\ 65 \end{gathered}$	mW   mW   mW   mW   mW   mW   mW	For each divider. No clock.   For each output. No clock.   No clock.   No clock.   Single-ended. At 62.5 MHz out with 5 pF load.   Single-ended. At 125 MHz out with 5 pF load.   Off to 1.5 ns fs, delay word $=60$; output clocking at 62.5 MHz .

${ }^{1}$ This is the rise time of the $V_{S}$ supply that is required to ensure that a synchronization of the outputs occurs on power-up. The critical factor is the time it takes the $V_{S}$ to transition the range from 2.2 V to 3.1 V . If the rise time is too slow, the outputs will not be synchronized.

## Data Sheet

## TIMING DIAGRAMS



Figure 2. CLK/CLKB to Clock Output Timing, Divide $=1$ Mode


Figure 3. LVPECL Timing, Differential


Figure 4. LVDS Timing, Differential


Figure 5. CMOS Timing, Single-Ended, 3 pF Load

## ABSOLUTE MAXIMUM RATINGS

Table 8.

Parameter or Pin	With   Respect   to	Min	Max	Unit
VS	GND	-0.3	+3.6	V
RSET	GND	-0.3	$\mathrm{~V}_{\mathrm{S}}+0.3$	V
CLK, CLKB	GND	-0.3	$\mathrm{~V}_{\mathrm{S}}+0.3$	V
CLK	CLKB	-1.2	+1.2	V
OUT0, OUT0B, OUT1, OUT1B	GND	-0.3	$\mathrm{~V}_{\mathrm{S}}+0.3$	V
Junction Temperature ${ }^{1}$			150	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(10 \mathrm{sec})$			300	${ }^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
THERMAL CHARACTERISTICS ${ }^{2}$
Thermal Resistance

32-Lead LFCSP ${ }^{3}$<br>$\theta_{\text {IA }}=36.6^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ See Thermal Characteristics for $\theta_{\mathrm{JA}}$.
${ }^{2}$ Thermal impedance measurements were taken on a 4-layer board in still air in accordance with EIA/JESD51-7.
${ }^{3}$ The external pad of this package must be soldered to adequate copper land on board.

## ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 6. 32-Lead LFCSP Pin Configuration


Figure 7. Exposed Paddle

Note that the exposed paddle on this package is an electrical connection as well as a thermal enhancement. For the device to function properly, the paddle must be soldered to a PCB land that functions as both a heat dissipation path as well as an electrical ground (analog).

Table 9. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,4,17,20,21,24,26,29,30$	VS	Power Supply (3.3 V).
2	CLK	Clock Input.
3	CLKB	Complementary Clock Input. Used in conjunction with CLK.
5	SYNCB	Used to Synchronize the Outputs; Active Low Signal.
6	VREF	Provides 2/3 V ${ }_{5}$ Reference Voltage for Use with Programming Pins S0 to S10.
$25,16,15,14,13,12,11,10,9$,	S0 to S10	Programming Pins. These pins determine the operation of the AD9515; 4-state logic.
8,7		
18	OUT1B	Complementary LVDS/Inverted CMOS Output. Includes a delay block.
19	OUT1	LVDS/CMOS Output. Includes a delay block.
22	OUTOB	Complementary LVPECL Output.
23	OUT0	LVPECL Output.
27,28	DNC	Do Not Connect.
31, Exposed Paddle	GND	Ground. The exposed paddle on the back of the chip is also GND.
32	RSET	Current Sets Resistor to Ground. Nominal value = 4.12 k $\Omega$.

## TERMINOLOGY

## Phase Jitter and Phase Noise

An ideal sine wave can be thought of as having a continuous and even progression of phase with time from 0 to 360 degrees for each cycle. Actual signals, however, display a certain amount of variation from ideal phase progression over time. This phenomenon is called phase jitter. Although there are many causes that can contribute to phase jitter, one major component is due to random noise that is characterized statistically as being Gaussian (normal) in distribution.

This phase jitter leads to a spreading out of the energy of the sine wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are $\mathrm{dBc} / \mathrm{Hz}$ at a given offset in frequency from the sine wave (carrier). The value is a ratio (expressed in dB ) of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement, the offset from the carrier frequency is also given.

It is also meaningful to integrate the total power contained within some interval of offset frequencies (for example, 10 kHz to 10 MHz ). This is called the integrated phase noise over that frequency offset interval and can be readily related to the time jitter due to the phase noise within that offset frequency interval.

Phase noise has a detrimental effect on the performance of ADCs, DACs, and RF mixers. It lowers the achievable dynamic range of the converters and mixers, although they are affected in somewhat different ways.

## Time Jitter

Phase noise is a frequency domain phenomenon. In the time domain, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings is seen to vary. For a square wave, the time jitter is seen as a displacement of the edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Since these variations are random in nature, the time jitter is specified in units of seconds root mean square (rms) or 1 sigma of the Gaussian distribution.
Time jitter that occurs on a sampling clock for a DAC or an ADC decreases the SNR and dynamic range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.

## Additive Phase Noise

It is the amount of phase noise that is attributable to the device or subsystem being measured. The phase noise of any external oscillators or clock sources has been subtracted. This makes it possible to predict the degree to which the device affects the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contribute their own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise.

## Additive Time Jitter

It is the amount of time jitter that is attributable to the device or subsystem being measured. The time jitter of any external oscillators or clock sources has been subtracted. This makes it possible to predict the degree to which the device will affect the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contribute their own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.

## Data Sheet

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 8. Power vs. Frequency-LVPECL, LVDS

Figure 9. CLK Smith Chart (Evaluation Board)



Figure 10. Power vs. Frequency—LVPECL, CMOS


Figure 11. LVPECL Differential Output @ 1600 MHz


Figure 12. LVDS Differential Output @ 800 MHz


Figure 13. CMOS Single-Ended Output @ 250 MHz with 10 pF Load


Figure 14. LVPECL Differential Output Swing vs. Frequency


Figure 15. LVDS Differential Output Swing vs. Frequency


Figure 16. CMOS Single-Ended Output Swing vs. Frequency and Load


Figure 17. Additive Phase Noise—LVPECL, Divide $=1,245.76 \mathrm{MHz}$


Figure 18. Additive Phase Noise—LVDS, Divide $=1,245.76 \mathrm{MHz}$


Figure 19. Additive Phase Noise—CMOS, Divide $=1,245.76 \mathrm{MHz}$


Figure 20. Additive Phase Noise—LVPECL, Divide $=1,622.08 \mathrm{MHz}$


Figure 21. Additive Phase Noise—LVDS, Divide $=2,122.88 \mathrm{MHz}$


Figure 22. Additive Phase Noise—CMOS, Divide $=4,61.44 \mathrm{MHz}$

## FUNCTIONAL DESCRIPTION

## OVERALL

The AD9515 provides for the distribution of its input clock on one or both of its outputs. OUT0 is an LVPECL output. OUT1 can be set to either LVDS or CMOS logic levels. Each output has its own divider that can be set for a divide ratio selected from a list of integer values from 1 (bypassed) to 32.

OUT1 includes an analog delay block that can be set to add an additional delay of $1.5 \mathrm{~ns}, 5 \mathrm{~ns}$, or 10 ns full scale, each with 16 levels of fine adjustment.

## CLK, CLKB—DIFFERENTIAL CLOCK INPUT

The CLK and CLKB pins are differential clock input pins. This input works up to 1600 MHz . The jitter performance is degraded by a slew rate below $1 \mathrm{~V} / \mathrm{ns}$. The input level should be between approximately 150 mV p-p to no more than 2 V p-p. Anything greater can result in turning on the protection diodes on the input pins.

See Figure 23 for the CLK equivalent input circuit. This input is fully differential and self-biased. The signal should be ac-coupled using capacitors. If a single-ended input must be used, this can be accommodated by ac coupling to one side of the differential input only. The other side of the input should be bypassed to a quiet ac ground by a capacitor.


Figure 23. Clock Input Equivalent Circuit

## SYNCHRONIZATION

## Power-On SYNC

A power-on sync (POS) is issued when the $\mathrm{V}_{\text {s }}$ power supply is turned on to ensure that the outputs start in synchronization. The power-on sync works only if the $\mathrm{V}_{\mathrm{s}}$ power supply transitions the region from 2.2 V to 3.1 V within 35 ms . The POS can occur up to 65 ms after $\mathrm{V}_{\mathrm{s}}$ crosses 2.2 V . Only outputs which are not divide $=1$ are synchronized.


Figure 24. Power-On Sync Timing

## SYNCB

If the setup configuration of the AD9515 is changed during operation, the outputs can become unsynchronized. The outputs can be re-synchronized to each other at any time. Synchronization occurs when the SYNCB pin is pulled low and released. The clock outputs (except where divide $=1$ ) are forced into a fixed state (determined by the divide and phase settings) and held there in a static condition, until the SYNCB pin is returned to high. Upon release of the SYNCB pin, after four cycles of the clock signal at CLK, all outputs continue clocking in synchronicity (except where divide $=1$ ).

When divide $=1$ for an output, that output is not affected by SYNCB.


Figure 25. SYNCB Timing with Clock Present


Figure 26. SYNCB Timing with No Clock Present
The outputs of the AD9515 can be synchronized by using the SYNCB pin. Synchronization aligns the phases of the clock outputs, respecting any phase offset that has been set on an output's divider.


Figure 27. SYNCB Equivalent Input Circuit

Synchronization is initiated by pulling the SYNCB pin low for a minimum of 5 ns . The input clock does not have to be present at the time the command is issued. The synchronization occurs after four input clock cycles.

The synchronization applies to clock outputs:

- that are not turned OFF
- $\quad$ where the divider is not divide $=1$ (divider bypassed)

An output with its divider set to divide = 1 (divider bypassed) is always synchronized with the input clock, with a propagation delay.

The SYNCB pin must be pulled up for normal operation. Do not let the SYNCB pin float.

## R $_{\text {SET }}$ RESISTOR

The internal bias currents of the AD9515 are set by the $\mathrm{R}_{\text {SET }}$ resistor. This resistor should be as close as possible to the value given as a condition in the Specifications section $\left(\mathrm{R}_{\text {SET }}=4.12 \mathrm{k} \Omega\right)$. This is a standard $1 \%$ resistor value and should be readily obtainable. The bias currents set by this resistor determine the logic levels and operating conditions of the internal blocks of the AD9515. The performance figures given in the Specifications section assume that this resistor value is used for $\mathrm{R}_{\text {set }}$.

## VREF

The VREF pin provides a voltage level of $2 / 3 \mathrm{~V}$. This voltage is one of the four logic levels used by the setup pins ( S 0 to S 10 ). These pins set the operation of the AD9515. The VREF pin provides sufficient drive capability to drive as many of the setup pins as necessary, up to all on a single part. The VREF pin should be used for no other purpose.

## SETUP CONFIGURATION

The specific operation of the AD9515 is set by the logic levels applied to the setup pins (S10 to S0). These pins use four-state logic. The logic levels used are $V_{S}$ and GND, plus $1 / 3 \mathrm{~V}_{S}$ and $2 / 3 \mathrm{Vs}$. The $1 / 3 \mathrm{~V}$ s level is provided by the internal self-biasing on each of the setup pins ( S 10 to S 0 ). This is the level seen by a setup pin that is left not connected (NC). The $2 / 3 \mathrm{~V}$ s level is
provided by the VREF pin. All setup pins requiring the $2 / 3 \mathrm{~V}$ s level must be tied to the VREF pin.


Figure 28. Setup Pin (S0 to S10) Equivalent Circuit
The AD9515 operation is determined by the combination of logic levels present at the setup pins. The setup configurations for the AD9515 are shown in Table 10 to Table 15. The four logic levels are referred to as $0,1 / 3,2 / 3$, and 1 . These numbers represent the fraction of the $V_{S}$ voltage that defines the logic levels. See the setup pin thresholds in Table 6.

The meaning of some of the setup pins depends on the logic level set on other pins. For example, the effect of the S9/S10 pair of pins depends on the state of S8. S8 selects whether the phase value selected by $\mathrm{S} 9 / \mathrm{S} 10$ affects either OUT0 or OUT1. In addition, if OUT1 is selected to have its phase controlled, the effect further depends on the state of $S 0$. If $S=0$, the delay block for OUT1 is bypassed, and the logic levels on S9/S10 set the phase value of the OUT1 divider. However, if $S 0 \neq 0$, then the full-scale delay for OUT1 is set by the logic level on S 0 , and S9/S10 set the delay block fine delay (fraction of full scale).

Additionally, if a nonzero phase value is selected by $\mathrm{S} 2 / \mathrm{S} 3 / \mathrm{S} 4$ (for OUT0) or S5/S6/S7 (for OUT1), this phase overrides the phase value selected by S9/S10. This allows a phase delay to be selected on OUT0 while also selecting a time delay on OUT1.

S1 selects the logic level of each output. OUT0 is LVPECL. The LVPECL output differential voltage ( $\mathrm{V}_{\mathrm{od}}$ ) can be selected from two levels: 400 mV or 780 mV . OUT1 can be set to either LVDS or CMOS levels.

OUT0 can be turned off (powered down) by setting S2/S3/S4 to $0 / 1 / 0$. OUT1 can be turned off by setting S5/S6/S7 to $0 / 1 / 0$.

Do not set S2/S3/S4/S5/S6/S7 to 1/1/1/1/1/1.

## PROGRAMMING

Table 10. S0-OUT1 Delay Full Scale

S0	Delay		
0	Bypassed		
$1 / 3$	1.5 ns		
$2 / 3$	5 ns		
1	10 ns		
Table 11. S1-Output Logic Configuration			
S1	OUT0	OUT1	
0	LVPECL 790 mV	LVDS	
$1 / 3$	LVPECL 400 mV	LVDS	
$2 / 3$	LVPECL 790 mV	CMOS	
1	LVPECL 400 mV	CMOS	

Table 12. S2, S3, and S4-OUT0

S2	S3	S4	OUTO   Divide (Duty Cycle ${ }^{\mathbf{1}}$ )	OUTO   Phase
0	0	0	1	0
$1 / 3$	0	0	$2(50 \%)$	0
$2 / 3$	0	0	$3(33 \%)$	0
1	0	0	$4(50 \%)$	0
0	$1 / 3$	0	$5(40 \%)$	0
$1 / 3$	$1 / 3$	0	$6(50 \%)$	0
$2 / 3$	$1 / 3$	0	$7(43 \%)$	0
1	$1 / 3$	0	$8(50 \%)$	0
0	$2 / 3$	0	$9(44 \%)$	0
$1 / 3$	$2 / 3$	0	$10(50 \%)$	0
$2 / 3$	$2 / 3$	0	$11(45 \%)$	0
1	$2 / 3$	0	$12(50 \%)$	0
0	1	0	OUT0 OFF	
$1 / 3$	1	0	$14(50 \%)$	0
$2 / 3$	1	0	$15(47 \%)$	0
1	1	0	$16(50 \%)$	0
0	0	$1 / 3$	$17(47 \%)$	0
$1 / 3$	0	$1 / 3$	$18(50 \%)$	0
$2 / 3$	0	$1 / 3$	$19(47 \%)$	0
1	0	$1 / 3$	$20(50 \%)$	0
0	$1 / 3$	$1 / 3$	$21(48 \%)$	0
$1 / 3$	$1 / 3$	$1 / 3$	$22(50 \%)$	0
$2 / 3$	$1 / 3$	$1 / 3$	$23(48 \%)$	0
1	$1 / 3$	$1 / 3$	$24(50 \%)$	0
0	$2 / 3$	$1 / 3$	$25(48 \%)$	0


S2	S3	S4	OUTO   Divide (Duty Cycle ${ }^{1}$ )	OUTO Phase
1/3	2/3	1/3	26 (50\%)	0
2/3	2/3	1/3	27 (48\%)	0
1	2/3	1/3	28 (50\%)	0
0	1	1/3	29 (48\%)	0
1/3	1	1/3	30 (50\%)	0
2/3	1	1/3	31 (48\%)	0
1	1	1/3	32 (50\%)	0
0	0	2/3	2 (50\%)	1
1/3	0	2/3	4 (50\%)	1
2/3	0	2/3	4 (50\%)	2
1	0	2/3	4 (50\%)	3
0	1/3	2/3	8 (50\%)	1
1/3	1/3	2/3	8 (50\%)	2
2/3	1/3	2/3	8 (50\%)	3
1	1/3	2/3	8 (50\%)	4
0	2/3	2/3	8 (50\%)	5
1/3	2/3	2/3	8 (50\%)	6
2/3	2/3	2/3	8 (50\%)	7
1	2/3	2/3	16 (50\%)	1
0	1	2/3	16 (50\%)	2
1/3	1	2/3	16 (50\%)	3
2/3	1	2/3	16 (50\%)	4
1	1	2/3	16 (50\%)	5
0	0	1	16 (50\%)	6
1/3	0	1	16 (50\%)	7
2/3	0	1	16 (50\%)	8
1	0	1	16 (50\%)	9
0	1/3	1	16 (50\%)	10
1/3	1/3	1	16 (50\%)	11
2/3	1/3	1	16 (50\%)	12
1	1/3	1	16 (50\%)	13
0	2/3	1	16 (50\%)	14
1/3	2/3	1	16 (50\%)	15
2/3	2/3	1	32 (50\%)	1
1	2/3	1	32 (50\%)	2
0	1	1	32 (50\%)	3
1/3	1	1	32 (50\%)	4
2/3	1	1	32 (50\%)	5
1	1	1	Do not use	

Table 13. S5, S6, and S7-OUT1

S5	S6	S7	OUT1   Divide (Duty Cycle ${ }^{1}$ )	OUT1   Phase
0	0	0	1	0
1/3	0	0	2 (50\%)	0
2/3	0	0	3 (33\%)	0
1	0	0	4 (50\%)	0
0	1/3	0	5 (40\%)	0
1/3	1/3	0	6 (50\%)	0
2/3	1/3	0	7 (43\%)	0
1	1/3	0	8 (50\%)	0
0	2/3	0	9 (44\%)	0
1/3	2/3	0	10 (50\%)	0
2/3	2/3	0	11 (45\%)	0
1	2/3	0	12 (50\%)	0
0	1	0	OUT1 OFF	
1/3	1	0	14 (50\%)	0
2/3	1	0	15 (47\%)	0
1	1	0	16 (50\%)	0
0	0	1/3	17 (47\%)	0
1/3	0	1/3	18 (50\%)	0
2/3	0	1/3	19 (47\%)	0
1	0	1/3	20 (50\%)	0
0	1/3	1/3	21 (48\%)	0
1/3	1/3	1/3	22 (50\%)	0
2/3	1/3	1/3	23 (48\%)	0
1	1/3	1/3	24 (50\%)	0
0	2/3	1/3	25 (48\%)	0
1/3	2/3	1/3	26 (50\%)	0
2/3	2/3	1/3	27 (48\%)	0
1	2/3	1/3	28 (50\%)	0
0	1	1/3	29 (48\%)	0
1/3	1	1/3	30 (50\%)	0
2/3	1	1/3	31 (48\%)	0
1	1	1/3	32 (50\%)	0
0	0	2/3	2 (50\%)	1
1/3	0	2/3	4 (50\%)	1
2/3	0	2/3	4 (50\%)	2
1	0	2/3	4 (50\%)	3
0	1/3	2/3	8 (50\%)	1
1/3	1/3	2/3	8 (50\%)	2
2/3	1/3	2/3	8 (50\%)	3
1	1/3	2/3	8 (50\%)	4
0	2/3	2/3	8 (50\%)	5
1/3	2/3	2/3	8 (50\%)	6
2/3	2/3	2/3	8 (50\%)	7
1	2/3	2/3	16 (50\%)	1
0	1	2/3	16 (50\%)	2
1/3	1	2/3	16 (50\%)	3
2/3	1	2/3	16 (50\%)	4
1	1	2/3	16 (50\%)	5
0	0	1	16 (50\%)	6


S5	S6	S7	OUT1   Divide (Duty Cycle ${ }^{1}$ )	OUT1   Phase
1/3	0	1	16 (50\%)	7
2/3	0	1	16 (50\%)	8
1	0	1	16 (50\%)	9
0	1/3	1	16 (50\%)	10
1/3	1/3	1	16 (50\%)	11
2/3	1/3	1	16 (50\%)	12
1	1/3	1	16 (50\%)	13
0	2/3	1	16 (50\%)	14
1/3	2/3	1	16 (50\%)	15
2/3	2/3	1	32 (50\%)	1
1	2/3	1	32 (50\%)	2
0	1	1	32 (50\%)	3
1/3	1	1	32 (50\%)	4
2/3	1	1	32 (50\%)	5
1	1	1	Do not use	

Table 14. S8-OUT0/OUT1 Phase (Delay) Select (Used with S9 to S10)

$\mathbf{S 8}$	OUT0	OUT1 (Delay if $\mathbf{S 0} \neq \mathbf{0}$ )
0	No Phase	Phase (Delay)
$1 / 3$	Phase	No Phase
$2 / 3$	No Phase	Phase (Delay) (Start High)
1	Phase (Start High)	No Phase

Table 15. S9 and S10

		OUT0 or OUT1 Phase   (Depends on S8)	OUT1 Delay (S0 $\neq \mathbf{0}$ )   (Depends on S8)
S9	S10	Phase 1	Fine Delay
0	0	0	0
$1 / 3$	0	1	$1 / 16$
$2 / 3$	0	2	$1 / 8$
1	0	3	$3 / 16$
0	$1 / 3$	4	$1 / 4$
$1 / 3$	$1 / 3$	5	$5 / 16$
$2 / 3$	$1 / 3$	6	$3 / 8$
1	$1 / 3$	7	$7 / 16$
0	$2 / 3$	8	$1 / 2$
$1 / 3$	$2 / 3$	9	$9 / 16$
$2 / 3$	$2 / 3$	10	$5 / 8$
1	$2 / 3$	11	$11 / 16$
0	1	12	$3 / 4$
$1 / 3$	1	13	$13 / 16$
$2 / 3$	1	14	$7 / 8$
1	1	15	$15 / 16$

${ }^{1}$ A phase > 0 in Table 12 or overrides the phase in Table 15.

## DIVIDER PHASE OFFSET

The phase offset of OUT0 and OUT1 can be selected (see Table 12 to Table 15). This allows the relative phase of OUT0 and OUT1 to be set.

After a SYNC operation (see the Synchronization section), the phase offset word of each divider determines the number of input clock (CLK) cycles to wait before initiating a clock output edge. By giving each divider a different phase offset, output-tooutput delays can be set in increments of the fast clock period, $\mathrm{t}_{\text {CLK }}$.

Figure 29 shows four cases, each with the divider set to divide $=4$. By incrementing the phase offset from 0 to 3 , the output is offset from the initial edge by a multiple of $\mathrm{t}_{\text {CLK }}$.


Figure 29. Phase Offset—Divider Set for Divide $=4$, Phase Set from 0 to 2
For example:

$$
\begin{aligned}
& \mathrm{CLK}=491.52 \mathrm{MHz} \\
& \mathrm{t}_{\mathrm{CLK}}=1 / 491.52=2.0345 \mathrm{~ns}
\end{aligned}
$$

For Divide = 4:
Phase Offset $0=0$ ns
Phase Offset $1=2.0345 \mathrm{~ns}$
Phase Offset $2=4.069 \mathrm{~ns}$
Phase Offset $3=6.104 \mathrm{~ns}$
The outputs can also be described as:
Phase Offset $0=0^{\circ}$
Phase Offset $1=90^{\circ}$
Phase Offset $2=180^{\circ}$
Phase Offset $3=270^{\circ}$
Setting the phase offset to Phase $=4$ results in the same relative phase as Phase $=0^{\circ}$ or $360^{\circ}$.

The resolution of the phase offset is set by the fast clock period $\left(\mathrm{t}_{\mathrm{CLK}}\right)$ at CLK. The maximum unique phase offset is less than the divide ratio, up to a phase offset of 15 .

Phase offsets can be related to degrees by calculating the phase step for a particular divide ratio:

$$
\text { Phase Step }=360^{\circ} / \text { Divide Ratio }
$$

Using some of the same examples:

$$
\begin{aligned}
& \text { Divide }=4 \\
& \text { Phase Step }=360^{\circ} / 4=90^{\circ} \\
& \text { Unique Phase Offsets in Degrees Are Phase }=0^{\circ}, 90^{\circ} \text {, } \\
& \quad 180^{\circ}, 270^{\circ} \\
& \text { Divide }=9 \\
& \text { Phase Step }=360^{\circ} / 9=40^{\circ} \\
& \text { Unique Phase Offsets in Degrees Are Phase }=0^{\circ}, 40^{\circ}, 80^{\circ} \text {, } \\
& 120^{\circ}, 160^{\circ}, 200^{\circ}, 240^{\circ}, 280^{\circ}, 320^{\circ}
\end{aligned}
$$

## DELAY BLOCK

OUT1 includes an analog delay element that gives variable time delays $(\Delta \mathrm{T})$ in the clock signal passing through that output.


The amount of delay that can be used is determined by the output frequency. The amount of delay is limited to less than one-half cycle of the clock period. For example, for a 10 MHz clock, the delay can extend to the full 10 ns maximum. However, for a 100 MHz clock, the maximum delay is less than 5 ns (or half of the period).

The AD9515 allows for the selection of three full-scale delays, $1.5 \mathrm{~ns}, 5 \mathrm{~ns}$, and 10 ns , set by delay full scale (see Table 10). Each of these full-scale delays can be scaled by 16 fine adjustment values, which are set by the delay word (see Table 14 and Table 15).

The delay block adds some jitter to the output. This means that the delay function should be used primarily for clocking digital chips, such as FPGA, ASIC, DUC, and DDC, rather than for supplying a sample clock for data converters. The jitter is higher for longer full scales because the delay block uses a ramp and trip points to create the variable delay. A longer ramp means more noise has a chance of being introduced.

When the delay block is OFF (bypassed), it is also powered down.

## OUTPUTS

The AD9515 offers three different output level choices: LVPECL, LVDS, and CMOS. OUT0/OUT0B offers an LVPECL differential output. The LVPECL differential voltage swing $\left(\mathrm{V}_{\mathrm{OD}}\right)$ can be selected as either 400 mV or 790 mV (see Table 11).

OUT1/OUT1B can be selected as either an LVDS differential output or a pair of CMOS single-ended outputs. If selected as CMOS, OUT1 is a noninverted, single-ended output, and OUT1B is an inverted, single-ended output.


Figure 31. LVPECL Output Simplified Equivalent Circuit


Figure 32. LVDS Output Simplified Equivalent Circuit


Figure 33. CMOS Equivalent Output Circuit

## POWER SUPPLY

The AD9515 requires a $3.3 \mathrm{~V} \pm 5 \%$ power supply for $\mathrm{V}_{\mathrm{S}}$. The tables in the Specifications section give the performance expected from the AD9515 with the power supply voltage within this range. In no case should the absolute maximum range of -0.3 V to +3.6 V , with respect to GND, be exceeded on Pin VS.

Good engineering practice should be followed in the layout of power supply traces and the ground plane of the PCB. The power supply should be bypassed on the PCB with adequate capacitance ( $>10 \mu \mathrm{~F}$ ). The AD9515 should be bypassed with adequate capacitors $(0.1 \mu \mathrm{~F})$ at all power pins as close as possible to the part. The layout of the AD9515 evaluation board (AD9515/PCB) is a good example.

## Exposed Metal Paddle

The exposed metal paddle on the AD9515 package is an electrical connection, as well as a thermal enhancement. For the device to function properly, the paddle must be properly attached to ground (GND).

The exposed paddle of the AD9515 package must be soldered down. The AD9515 must dissipate heat through its exposed paddle. The PCB acts as a heat sink for the AD9515. The PCB attachment must provide a good thermal path to a larger heat dissipation area, such as a ground plane on the PCB. This requires a grid of vias from the top layer down to the ground plane (see Figure 34). The AD9515 evaluation board (AD9515/PCB) provides a good example of how the part should be attached to the PCB.


## POWER MANAGEMENT

In some cases, the AD9515 can be configured to use less power by turning off functions that are not being used.

The power-saving options include the following:

- $\quad$ A divider is powered down when set to divide $=1$ (bypassed).
- Adjustable delay block on OUT1 is powered down when in off mode ( $\mathrm{S} 0=0$ ).
- An unneeded output can be powered down (see Table 12 and Table 13). This also powers down the divider for that output.

