

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

14-Output Clock Generator

AD9516-5

FEATURES

Low phase noise, phase-locked loop (PLL)
External VCO/VCXO to 2.4 GHz optional
1 differential or 2 single-ended reference inputs
Reference monitoring capability
Automatic revertive and manual reference
switchover/holdover modes
Accepts LVPECL, LVDS, or CMOS references to 250 MHz
Programmable delays in path to PFD
Digital or analog lock detect, selectable

Six 1.6 GHz LVPECL outputs, arranged in 3 groups

Each group shares a 1-to-32 divider with coarse phase delay

Additive output jitter: 225 fs rms

Channel-to-channel skew paired outputs of <10 ps

Four 800 MHz LVDS outputs, arranged in 2 groups

Each group has 2 cascaded 1-to-32 dividers with coarse phase delay

Additive output jitter: 275 fs rms

Fine delay adjust (Δt) on each LVDS output

Each LVDS output can be reconfigured as two 250 MHz

CMOS outputs

Automatic synchronization of all outputs on power-up Manual output synchronization available Available in 64-lead LFCSP

APPLICATIONS

Low jitter, low phase noise clock distribution
10/40/100 Gb/sec networking line cards, including SONET,
Synchronous Ethernet, OTU2/3/4
Forward error correction (G.710)
Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs
High performance wireless transceivers
ATE and high performance instrumentation

GENERAL DESCRIPTION

The AD9516-5¹ provides a multi-output clock distribution function with subpicosecond jitter performance, along with an on-chip PLL that can be used with an external VCO/VCXO of up to 2.4 GHz.

The AD9516-5 emphasizes low jitter and phase noise to maximize data converter performance, and it can benefit other applications with demanding phase noise and jitter requirements.

FUNCTIONAL BLOCK DIAGRAM

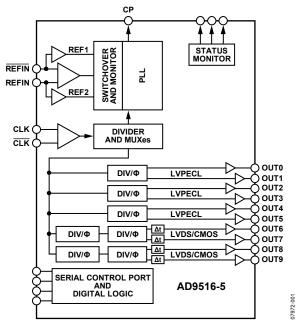


Figure 1.

The AD9516-5 features six LVPECL outputs (in three pairs) and four LVDS outputs (in two pairs). Each LVDS output can be reconfigured as two CMOS outputs. The LVPECL outputs operate to 1.6 GHz, the LVDS outputs operate to 800 MHz, and the CMOS outputs operate to 250 MHz.

Each pair of outputs has dividers that allow both the divide ratio and coarse delay (or phase) to be set. The range of division for the LVPECL outputs is 1 to 32. The LVDS/CMOS outputs allow a range of divisions up to a maximum of 1024.

The AD9516-5 is available in a 64-lead LFCSP and can be operated from a single 3.3 V supply. An external VCO, which requires an extended voltage range, can be accommodated by connecting the charge pump supply (V_{CP}) to 5.5 V. A separate LVPECL power supply can be from 2.375 V to 3.6 V (nominal).

The AD9516-5 is specified for operation over the industrial range of -40° C to $+85^{\circ}$ C.

For applications requiring an integrated EEPROM, or needing additional outputs, the AD9520-5 and AD9522-5 are available.

¹ AD9516 is used throughout the data sheet to refer to all members of the AD9516 family. However, when AD9516-5 is used, it refers to that specific member of the AD9516 family.

AD9516-5* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

· AD9516-5 Evaluation Board

DOCUMENTATION

Data Sheet

• AD9516-5: 14-Output Clock Generator Data Sheet

User Guides

- UG-075: AD9516-x, AD9517-x, and AD9518-x Evaluation Board User Guide
- UG-093: Evaluation Board User Guide for the Dual, Continuous Time Sigma-Delta Modulator

TOOLS AND SIMULATIONS

AD9516 IBIS Models

REFERENCE MATERIALS 🖵

Product Selection Guide

RF Source Booklet

DESIGN RESOURCES 🖵

- · AD9516-5 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD9516-5 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Functional Block Diagram	1
Revision History	3
Specifications	4
Power Supply Requirements	4
PLL Characteristics	4
Clock Inputs	6
Clock Outputs	6
Clock Output Additive Phase Noise (Distribution Only; VCO Divider Not Used)	7
Clock Output Absolute Time Jitter (Clock Generation Using External VCXO)	8
Clock Output Additive Time Jitter (VCO Divider Not Used)	8
Clock Output Additive Time Jitter (VCO Divider Used)	9
Delay Block Additive Time Jitter	9
Serial Control Port	0
PD, RESET, and SYNC Pins	10
LD, STATUS, and REFMON Pins	1
Power Dissipation1	1
Timing Characteristics	13
Absolute Maximum Ratings1	15
Thermal Resistance	15
ESD Caution	15
Pin Configuration and Function Descriptions 1	16

Typical Performance Characteristics
Terminology23
Detailed Block Diagram
Theory of Operation
Operational Configurations25
Lock Detect
Clock Distribution
Reset Modes
Power-Down Modes
Serial Control Port
Serial Control Port Pin Descriptions
General Operation of Serial Control Port44
Instruction Word (16 Bits)
MSB/LSB First Transfers
MSB/LSB First Transfers
MSB/LSB First Transfers 45 Thermal Performance 48 Register Maps 49 Register Map Overview 49 Register Map Descriptions 52 Applications Information 71 Frequency Planning Using the AD9516 71 Using the AD9516 Outputs for ADC Clock Applications 71
MSB/LSB First Transfers
MSB/LSB First Transfers

REVISION HISTORY

8/11—Rev. 0 to Rev. A	
Changes to Features, Applications, and General Description.	1
Changes to CPRSET Pin Resistor Parameter, Table 1	4
Change to P = 2 DM (2/3) Parameter, Table 2	5
Changes Test Conditions/Comments, Table 4	6
Moved Table 5 to End of Specifications and Renumbered	
Sequentially	13
Change to Shortest Delay Range Parameter,	
Test Conditions/Comments, Table 14	13
Moved Timing Diagrams	14
Change to Endnote, Table 16	15
Change to Caption, Figure 8	18
Change to Captions, Figure 20 and Figure 21	20
Moved Figure 23 and Figure 24	
Added Figure 31; Renumbered Sequentially	
Change to Mode 1—Clock Distribution or External VCO <	
1600 MHz Section	25
Changes to Mode 2 (High Frequency Clock Distribution)—	
CLK or External VCO > 1600 MHz; Change to Table 22	26
Change to Charge Pump (CP) Section	28
Changes to PLL Reference Inputs and Reference Switchover	
Sections	29
Changes to Prescaler Section and Table 24	

Changes to A and B Counters, Digital Lock Detect (DLD),
and Current Source Digital Lock Detect (CSDLD) Sections 31
Change to Holdover Section32
Changes to Automatic/Internal Holdover Mode34
Changes to Clock Distribution Section
Changes to Channel Dividers—LVDS/CMOS Outputs
Section
Change to the Instruction Word (16 Bits) Section45
Change to Figure 53
Changes to θ_{JA} and Ψ_{JT} Parameters, Table 4648
Changes to Register Address 0x003 and
Register Address 0x01C, Table 47
Changes to Register Address 0x003, Table 4852
Changes to Register Address 0x016, Bits[2:0], Table 49 54
Changes to Register Address 0x01C, Bits[4:3], Table 49 57
Changes to Register Address 0x191, Register Address 0x194,
and Register Address 0x197, Bit 5, Table 5366
Added Frequency Planning Using the AD9516 Section71
Changes to LVPECL Clock Distribution and LVDS Clock
Distribution Sections; Changes to Figure 59, Figure 60, and
Figure 61
1/00 D ' ' O T ' ' 177 '

SPECIFICATIONS

Typical is given for $V_S = V_{S_LVPECL} = 3.3 \text{ V} \pm 5\%$; $V_S \le V_{CP} \le 5.25 \text{ V}$; $T_A = 25^{\circ}\text{C}$; $R_{SET} = 4.12 \text{ k}\Omega$; $CP_{RSET} = 5.1 \text{ k}\Omega$, unless otherwise noted. Minimum and maximum values are given over full V_S and T_A (-40°C to $+85^{\circ}\text{C}$) variation.

POWER SUPPLY REQUIREMENTS

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
Vs	3.135	3.3	3.465	V	$3.3 \text{ V} \pm 5\%$
V_{S_LVPECL}	2.375		VS	V	Nominally 2.5 V to 3.3 V \pm 5%
V_{CP}	Vs		5.25	V	Nominally 3.3 V to 5.0 V \pm 5%
RSET Pin Resistor		4.12		kΩ	Sets internal biasing currents; connect to ground
CPRSET Pin Resistor	2.7	5.1	10	kΩ	Sets internal CP current range, nominally 4.8 mA
					(CP_lsb = 600 μ A); actual current can be calculated by:
					CP_lsb = 3.06/CPRSET; connect to ground

PLL CHARACTERISTICS

Table 2.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
REFERENCE INPUTS					
Differential Mode (REFIN, REFIN)					Differential mode (can accommodate single-ended input by ac grounding undriven input)
Input Frequency	0		250	MHz	Frequencies below about 1 MHz should be dc-coupled; be careful to match V _{CM} (self-bias voltage)
Input Sensitivity		250		mV p-p	PLL figure of merit (FOM) increases with increasing slew rate; see Figure 13
Self-Bias Voltage, REFIN	1.35	1.60	1.75	V	Self-bias voltage of REFIN ¹
Self-Bias Voltage, REFIN	1.30	1.50	1.60	V	Self-bias voltage of REFIN ¹
Input Resistance, REFIN	4.0	4.8	5.9	kΩ	Self-biased ¹
Input Resistance, REFIN	4.4	5.3	6.4	kΩ	Self-biased ¹
Dual Single-Ended Mode (REF1, REF2)					Two single-ended CMOS-compatible inputs
Input Frequency (AC-Coupled)	20		250	MHz	Slew rate > 50 V/μs
Input Frequency (DC-Coupled)	0		250	MHz	Slew rate > 50 V/μs; CMOS levels
Input Sensitivity (AC-Coupled)		0.8		V p-p	Should not exceed V _S p-p
Input Logic High	2.0			٧	
Input Logic Low			0.8	V	
Input Current	-100		+100	μΑ	
Input Capacitance		2		рF	Each pin, REFIN/REFIN (REF1/REF2)
PHASE/FREQUENCY DETECTOR (PFD)					
PFD Input Frequency			100	MHz	Antibacklash pulse width = 1.3 ns, 2.9 ns
			45	MHz	Antibacklash pulse width = 6.0 ns
Antibacklash Pulse Width		1.3		ns	Register 0x017[1:0] = 01b
		2.9		ns	Register 0x017[1:0] = 00b; Register 0x017[1:0] = 11b
		6.0		ns	Register 0x017[1:0] = 10b
CHARGE PUMP (CP)					
I _{CP} Sink/Source					Programmable
High Value		4.8		mA	With $CP_{RSET} = 5.1 \text{ k}\Omega$
Low Value		0.60		mA	
Absolute Accuracy		2.5		%	$CP_V = V_{CP}/2$
CPRSET Range		2.7/10		kΩ	
Icp High Impedance Mode Leakage		1		nA	
Sink-and-Source Current Matching		2		%	$0.5 < CP_V < V_{CP} - 0.5 V$
I _{CP} vs. CP _V		1.5		%	$0.5 < CP_V < V_{CP} - 0.5 V$
I _{CP} vs. Temperature		2		%	$V_{CP} = VCP/2V$

Rev. A | Page 4 of 76

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
PRESCALER (PART OF N DIVIDER)					See the VCXO/VCO Feedback Divider N—P, A, B section
Prescaler Input Frequency					
P = 1 FD			300	MHz	
P = 2 FD			600	MHz	
P = 3 FD			900	MHz	
P = 2 DM (2/3)			200	MHz	
P = 4 DM (4/5)			1000	MHz	
P = 8 DM (8/9)			2400	MHz	
P = 16 DM (16/17)			3000	MHz	
P = 32 DM (32/33)			3000	MHz	
Prescaler Output Frequency			300	MHz	A, B counter input frequency (prescaler input frequency divided by P)
PLL DIVIDER DELAYS					Register 0x019: R, Bits[5:3]; N, Bits[2:0]; see Table 49
000		Off		ps	
001		330		ps	
010		440		ps	
011		550		ps	
100		660		ps	
101		770		ps	
110		880		ps	
111		990		ps	
NOISE CHARACTERISTICS				-	
In-Band Phase Noise of the Charge Pump/Phase Frequency Detector (In-Band Is Within the LBW of the PLL)					The PLL in-band phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log(N) (where N is the value of the N divider)
At 500 kHz PFD Frequency		-165		dBc/Hz	
At 1 MHz PFD Frequency		-162		dBc/Hz	
At 10 MHz PFD Frequency		-151		dBc/Hz	
At 50 MHz PFD Frequency		-143		dBc/Hz	
PLL Figure of Merit (FOM)		-220		dBc/Hz	Reference slew rate > 0.25 V/ns; FOM $+ 10$ log(f _{PFD}) is an approximation of the PFD/CP in-band phase noise (in the flat region) inside the PLL loop bandwidth; when running closed-loop, the phase noise, as observed at the VCO output, is increased by 20 log(N)
PLL DIGITAL LOCK DETECT WINDOW ²					Signal available at the LD, STATUS, and REFMON pins when selected by appropriate register settings
Required to Lock (Coincidence of Edges)					Selected by Register 0x017[1:0] and Register 0x018[4]
Low Range (ABP 1.3 ns, 2.9 ns)		3.5		ns	Register 0x017[1:0] = 00b, 01b, 11b; Register 0x018[4] = 1b
High Range (ABP 1.3 ns, 2.9 ns)		7.5		ns	Register 0x017[1:0] = 00b, 01b, 11b; Register 0x018[4] = 0b
High Range (ABP 6.0 ns)		3.5		ns	Register 0x017[1:0] = 10b; Register 0x018[4] = 0b
To Unlock After Lock (Hysteresis) ²					
Low Range (ABP 1.3 ns, 2.9 ns)		7		ns	Register 0x017[1:0] = 00b, 01b, 11b; Register 0x018[4] = 1b
High Range (ABP 1.3 ns, 2.9 ns)		15		ns	Register 0x017[1:0] = 00b, 01b, 11b; Register 0x018[4] = 0b
High Range (ABP 6.0 ns)		11		ns	Register 0x017[1:0] = 10b; Register 0x018[4] = 0b

¹ The REFIN and REFIN self-bias points are offset slightly to avoid chatter on an open input condition.
² For reliable operation of the digital lock detect, the period of the PFD frequency must be greater than the unlock-after-lock time.

CLOCK INPUTS

Table 3.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
CLOCK INPUTS (CLK, CLK)					Differential input
Input Frequency	O ¹		2.4	GHz	High frequency distribution (VCO divider enabled)
	01		1.6	GHz	Distribution only (VCO divider bypassed; this is the frequency range supported by the channel divider)
Input Sensitivity, Differential		150		mV p-p	Measured at 2.4 GHz; jitter performance is improved with slew rates > 1 V/ns
Input Level, Differential			2	V p-p	Larger voltage swings may turn on the protection diodes and may degrade jitter performance
Input Common-Mode Voltage, V_{CM}	1.3	1.57	1.8	V	Self-biased; enables ac coupling
Input Common-Mode Range, V _{CMR}	1.3		1.8	V	With 200 mV p-p signal applied; dc-coupled
Input Sensitivity, Single-Ended		150		mV p-p	CLK ac-coupled; CLK ac-bypassed to RF ground
Input Resistance	3.9	4.7	5.7	kΩ	Self-biased
Input Capacitance		2		pF	

 $^{^{\}rm 1}$ Below about 1 MHz, the input should be dc-coupled. Care should be taken to match $V_{\text{CM}}.$

CLOCK OUTPUTS

Table 4.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL CLOCK OUTPUTS					Termination = 50Ω to $V_{S_LVPECL} - 2 V$
OUT0, OUT1, OUT2, OUT3, OUT4, OUT5					Differential (OUT, OUT)
Output Frequency, Maximum	2400			MHz	Using direct to output; see Figure 20 for peak-to- peak differential amplitude
Output High Voltage (V _{OH})	V _{S_LVPECL} — 1.12	$V_{S_LVPECL} - 0.98$	$V_{S_LVPECL} - 0.84$	V	Measured at dc using the default amplitude setting; see Figure 20 for amplitude vs. frequency
Output Low Voltage (Vol)	V _{S_LVPECL} — 2.03	V _{S_LVPECL} - 1.77	$V_{S_LVPECL} - 1.49$	V	Measured at dc using the default amplitude setting; see Figure 20 for amplitude vs. frequency
Output Differential Voltage (Vob)	550	790	980	mV	V _{OH} – V _{OL} for each leg of a differential pair for default amplitude setting with driver not toggling; see Figure 20 for variation over frequency
LVDS CLOCK OUTPUTS					Differential termination 100 Ω at 3.5 mA
OUT6, OUT7, OUT8, OUT9					Differential (OUT, OUT)
Output Frequency, Maximum	800			MHz	The AD9516 outputs can toggle at higher frequencies, but the output amplitude may not meet the V_{0D} specification; see Figure 21
Differential Output Voltage (V∞)	247	360	454	mV	V _{OH} − V _{OL} measurement across a differential pair at the default amplitude setting with output driver not toggling; see Figure 21 for variation over frequency
Delta V₀p			25	mV	This is the absolute value of the difference between VoD when the normal output is high vs. when the complementary output is high
Output Offset Voltage (Vos)	1.125	1.24	1.375	V	$(V_{OH} + V_{OL})/2$ across a differential pair at the default amplitude setting with output driver not toggling
Delta V _{os}			25	mV	This is the absolute value of the difference between Vos when the normal output is high vs. when the complementary output is high
Short-Circuit Current (I _{SA} , I _{SB})		14	24	mA	Output shorted to GND
CMOS CLOCK OUTPUTS					
OUT6A, OUT6B, OUT7A, OUT7B, OUT8A, OUT8B, OUT9A, OUT9B					Single-ended; termination = 10 pF
Output Frequency			250	MHz	See Figure 22
Output Voltage High (V _{он})	$V_{S_LVPECL} - 0.1$			V	At 1 mA load
Output Voltage Low (V _{OL})			0.1	V	At 1 mA load

Rev. A | Page 6 of 76

CLOCK OUTPUT ADDITIVE PHASE NOISE (DISTRIBUTION ONLY; VCO DIVIDER NOT USED)

Table 5.

Parameter	Min Typ	Max	Unit	Test Conditions/Comments
CLK-TO-LVPECL ADDITIVE PHASE NOISE				Distribution section only; does not include PLL input
CLK = 1 GHz, Output = 1 GHz				slew rate > 1 V/ns
Divider = 1				
At 10 Hz Offset	-109		dBc/Hz	
At 100 Hz Offset	-118		dBc/Hz	
At 1 kHz Offset	-130		dBc/Hz	
At 10 kHz Offset	-139		dBc/Hz	
At 100 kHz Offset	-144		dBc/Hz	
At 1 MHz Offset	-146		dBc/Hz	
At 10 MHz Offset	-147		dBc/Hz	
At 100 MHz Offset	-149		dBc/Hz	
CLK = 1 GHz, Output = 200 MHz				Input slew rate > 1 V/ns
Divider = 5				
At 10 Hz Offset	-120		dBc/Hz	
At 100 Hz Offset	-126		dBc/Hz	
At 1 kHz Offset	-139		dBc/Hz	
At 10 kHz Offset	-150		dBc/Hz	
At 100 kHz Offset	-155		dBc/Hz	
At 1 MHz Offset	-157		dBc/Hz	
>10 MHz Offset	-157		dBc/Hz	
CLK-TO-LVDS ADDITIVE PHASE NOISE	157		GDC/TIZ	Distribution section only; does not include input slew
CLK = 1.6 GHz, Output = 800 MHz				rate > 1 V/ns
Divider = 2				14(C > 1 4/113
At 10 Hz Offset	-103		dBc/Hz	
At 100 Hz Offset	-103 -110		dBc/Hz	
At 1 kHz Offset	-110 -120		dBc/Hz	
At 1 kHz Offset At 10 kHz Offset	-120 -127		dBc/Hz	
At 100 kHz Offset	-127 -133		dBc/Hz	
At 1 MHz Offset	-133 -138		dBc/Hz	
At 10 MHz Offset	-136 -147		dBc/Hz	
At 100 MHz Offset				
	-149		dBc/Hz	la sout along maters 1 M/m a
CLK = 1.6 GHz, Output = 400 MHz				Input slew rate > 1 V/ns
Divider = 4			15 (1)	
At 10 Hz Offset	-114		dBc/Hz	
At 100 Hz Offset	-122		dBc/Hz	
At 1 kHz Offset	-132		dBc/Hz	
At 10 kHz Offset	-140		dBc/Hz	
At 100 kHz Offset	-146		dBc/Hz	
At 1 MHz Offset	-150		dBc/Hz	
>10 MHz Offset	-155		dBc/Hz	
CLK-TO-CMOS ADDITIVE PHASE NOISE				Distribution section only; does not include PLL input
CLK = 1 GHz, Output = 250 MHz				slew rate > 1 V/ns
Divider = 4				
At 10 Hz Offset	-110		dBc/Hz	
At 100 Hz Offset	-120		dBc/Hz	
At 1 kHz Offset	-127		dBc/Hz	
At 10 kHz Offset	-136		dBc/Hz	
At 100 kHz Offset	-144		dBc/Hz	
At 1 MHz Offset	-147		dBc/Hz	
>10 MHz Offset	-154		dBc/Hz	

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
CLK = 1 GHz, Output = 50 MHz					Input slew rate > 1 V/ns
Divider = 20					
At 10 Hz Offset		-124		dBc/Hz	
At 100 Hz Offset		-134		dBc/Hz	
At 1 kHz Offset		-142		dBc/Hz	
At 10 kHz Offset		-151		dBc/Hz	
At 100 kHz Offset		-157		dBc/Hz	
At 1 MHz Offset		-160		dBc/Hz	
>10 MHz Offset		-163		dBc/Hz	

CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING EXTERNAL VCXO)

Table 6.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL OUTPUT ABSOLUTE TIME JITTER					Application example based on a typical setup using an external 245.76 MHz VCXO (Toyocom TCO-2112); reference = 15.36 MHz; R = 1
LVPECL = 245.76 MHz; PLL LBW = 125 Hz		54		fs rms	Integration bandwidth = 200 kHz to 5 MHz
		77		fs rms	Integration bandwidth = 200 kHz to 10 MHz
		109		fs rms	Integration bandwidth = 12 kHz to 20 MHz
LVPECL = 122.88 MHz; PLL LBW = 125 Hz		79		fs rms	Integration bandwidth = 200 kHz to 5 MHz
		114		fs rms	Integration bandwidth = 200 kHz to 10 MHz
		163		fs rms	Integration bandwidth = 12 kHz to 20 MHz
LVPECL = 61.44 MHz; PLL LBW = 125 Hz		124		fs rms	Integration bandwidth = 200 kHz to 5 MHz
		176		fs rms	Integration bandwidth = 200 kHz to 10 MHz
		259		fs rms	Integration bandwidth = 12 kHz to 20 MHz

CLOCK OUTPUT ADDITIVE TIME JITTER (VCO DIVIDER NOT USED)

Table 7.

Parameter	Min	Тур Мах	Unit	Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER				Distribution section only; does not include PLL; uses rising edge of clock signal
CLK = 622.08 MHz; LVPECL = 622.08 MHz; Divider = 1		40	fs rms	Bandwidth = 12 kHz to 20 MHz
CLK = 622.08 MHz; LVPECL = 155.52 MHz; Divider = 4		80	fs rms	Bandwidth = 12 kHz to 20 MHz
CLK = 1.6 GHz; LVPECL = 100 MHz; Divider = 16		215	fs rms	Calculated from SNR of ADC method; DCC not used for even divides
CLK = 500 MHz; LVPECL = 100 MHz; Divider = 5		245	fs rms	Calculated from SNR of ADC method; DCC on
LVDS OUTPUT ADDITIVE TIME JITTER				Distribution section only; does not include PLL; uses rising edge of clock signal
CLK = 1.6 GHz; LVDS = 800 MHz; Divider = 2 (VCO Divider Not Used)		85	fs rms	Bandwidth = 12 kHz to 20 MHz
CLK = 1 GHz; LVDS = 200 MHz; Divider = 5		113	fs rms	Bandwidth = 12 kHz to 20 MHz
CLK = 1.6 GHz; LVDS = 100 MHz; Divider = 16		280	fs rms	Calculated from SNR of ADC method; DCC not used for even divides
CMOS OUTPUT ADDITIVE TIME JITTER				Distribution section only; does not include PLL; uses rising edge of clock signal
CLK = 1.6 GHz; CMOS = 100 MHz; Divider = 16		365	fs rms	Calculated from SNR of ADC method; DCC not used for even divides

CLOCK OUTPUT ADDITIVE TIME JITTER (VCO DIVIDER USED)

Table 8.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL; uses rising edge of clock signal
CLK = 2.4 GHz; VCO Div = 2; LVPECL = 100 MHz; Divider = 12; Duty-Cycle Correction = Off		210		fs rms	Calculated from SNR of ADC method
LVDS OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL; uses rising edge of clock signal
CLK = 2.4 GHz; VCO Div = 2; LVDS = 100 MHz; Divider = 12; Duty-Cycle Correction = Off		285		fs rms	Calculated from SNR of ADC method
CMOS OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL; uses rising edge of clock signal
CLK = 2.4 GHz; VCO Div = 2; CMOS = 100 MHz; Divider = 12; Duty-Cycle Correction = Off		350		fs rms	Calculated from SNR of ADC method

DELAY BLOCK ADDITIVE TIME JITTER

Table 9.

Table 7.	8.41				T . C 11:1 /C .
Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DELAY BLOCK ADDITIVE TIME JITTER ¹					Incremental additive jitter
100 MHz Output					
Delay (1600 μA, 0x1C) Fine Adjust 000000b		0.54		ps rms	
Delay (1600 μA, 0x1C) Fine Adjust 101111b		0.60		ps rms	
Delay (800 μA, 0x1C) Fine Adjust 000000b		0.65		ps rms	
Delay (800 μA, 0x1C) Fine Adjust 101111b		0.85		ps rms	
Delay (800 μA, 0x4C) Fine Adjust 000000b		0.79		ps rms	
Delay (800 μA, 0x4C) Fine Adjust 101111b		1.2		ps rms	
Delay (400 μA, 0x4C) Fine Adjust 000000b		1.2		ps rms	
Delay (400 μA, 0x4C) Fine Adjust 101111b		2.0		ps rms	
Delay (200 μA, 0x1C) Fine Adjust 000000b		1.3		ps rms	
Delay (200 μA, 0x1C) Fine Adjust 101111b		2.5		ps rms	
Delay (200 μA, 0x4C) Fine Adjust 000000b		1.9		ps rms	
Delay (200 μA, 0x4C) Fine Adjust 101111b		3.8		ps rms	

¹ This value is incremental; that is, it is in addition to the jitter of the LVDS or CMOS output without the delay. To estimate the total jitter, the LVDS or CMOS output jitter should be added to this value using the root sum of the squares (RSS) method.

SERIAL CONTROL PORT

Table 10.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
CS (INPUT)					CS has an internal 30 kΩ pull-up resistor
Input Logic 1 Voltage	2.0			V	
Input Logic 0 Voltage			8.0	V	
Input Logic 1 Current			3	μΑ	
Input Logic 0 Current		110		μΑ	
Input Capacitance		2		pF	
SCLK (INPUT)					SCLK has an internal 30 kΩ pull-down resistor
Input Logic 1 Voltage	2.0			V	
Input Logic 0 Voltage			8.0	V	
Input Logic 1 Current		110		μΑ	
Input Logic 0 Current			1	μΑ	
Input Capacitance		2		pF	
SDIO (WHEN INPUT)					
Input Logic 1 Voltage	2.0			V	
Input Logic 0 Voltage			8.0	V	
Input Logic 1 Current		10		nA	
Input Logic 0 Current		20		nA	
Input Capacitance		2		pF	
SDIO, SDO (OUTPUTS)					
Output Logic 1 Voltage	2.7			V	
Output Logic 0 Voltage			0.4	V	
TIMING					
Clock Rate (SCLK, 1/t _{SCLK})			25	MHz	
Pulse Width High, tнібн	16			ns	
Pulse Width Low, t _{LOW}	16			ns	
SDIO to SCLK Setup, t _{DS}	2			ns	
SCLK to SDIO Hold, t _{DH}	1.1			ns	
SCLK to Valid SDIO and SDO, t_{DV}			8	ns	
$\overline{\text{CS}}$ to SCLK Setup and Hold, t_s , t_H	2			ns	
CS Minimum Pulse Width High, tpwh	3			ns	

PD, **RESET**, AND **SYNC** PINS

Table 11.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
INPUT CHARACTERISTICS					Each of these pins has an internal 30 kΩ pull-up resistor
Logic 1 Voltage	2.0			V	
Logic 0 Voltage			0.8	V	
Logic 1 Current		110		μΑ	
Logic 0 Current			1	μΑ	
Capacitance		2		pF	
RESET TIMING					
Pulse Width Low	50			ns	
SYNC TIMING					
Pulse Width Low	1.5			High speed clock cycles	High speed clock is CLK input signal

LD, STATUS, AND REFMON PINS

Table 12.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
OUTPUT CHARACTERISTICS					When selected as a digital output (CMOS); there are other modes in which these pins are not CMOS digital outputs; see Table 49: Register 0x017, Register 0x01A, and Register 0x01B
Output Voltage High, V _{OH}	2.7			V	
Output Voltage Low, Vol			0.4	V	
MAXIMUM TOGGLE RATE		100		MHz	Applies when mux is set to any divider or counter output or PFD up/down pulse; also applies in analog lock detect mode; usually debug mode only; beware that spurs may couple to output when any of these pins are toggling
ANALOG LOCK DETECT					
Capacitance		3		pF	On-chip capacitance; used to calculate RC time constant for analog lock detect readback; use a pull-up resistor
REF1, REF2, AND CLK FREQUENCY STATUS MONITOR					
Normal Range	1.02			MHz	Frequency above which the monitor always indicates the presence of the reference
Extended Range	8			kHz	Frequency above which the monitor always indicates the presence of the reference
LD PIN COMPARATOR					
Trip Point		1.6		٧	
Hysteresis		260		mV	

POWER DISSIPATION

Table 13.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
POWER DISSIPATION, CHIP					The values in this table include all power supplies, unless otherwise noted; the power deltas for individual drivers are at dc; see Figure 7, Figure 8, and Figure 9 for power dissipation vs. output frequency
Power-On Default		1.0	1.2	W	No clock; no programming; default register values; does not include power dissipated in external resistors; this configuration has the following blocks already powered up: VCO divider, six channel dividers, three LVPECL drivers, and two LVDS drivers
Full Operation; CMOS Outputs at 225 MHz		1.5	2.1	W	f _{CLK} = 2.25 GHz; VCO divider = 2; all channel dividers on; six LVPECL outputs at 562.5 MHz; eight CMOS outputs (10 pF load) at 225 MHz; all four fine delay blocks on, maximum current; does not include power dissipated in external resistors
Full Operation; LVDS Outputs at 225 MHz		1.5	2.1	W	f _{CLK} = 2.25 GHz; VCO divider = 2; all channel dividers on; six LVPECL outputs at 562.5 MHz; four LVDS outputs at 225 MHz; all four fine delay blocks on: maximum current; does not include power dissipated in external resistors
PD Power-Down		75	185	mW	PD pin pulled low; does not include power dissipated in terminations
PD Power-Down, Maximum Sleep		31		mW	PD pin pulled low; PLL power-down, Register 0x010[1:0] = 01b; SYNC power-down, Register 0x230[2] = 1b; REF for distribution power-down, Register 0x230[1] = 1b
V _{CP} Supply		4	4.8	mW	PLL operating; typical closed-loop configuration (this number is included in all other power measurements)
AD9516 Core		220		mW	AD9516 core only, all drivers off, PLL off, VCO divider off, and delay blocks off; the power consumption of the configuration of the user can be derived from this number and the power deltas that follow

Parameter	Min	Min Typ Max Unit		Unit	Test Conditions/Comments
POWER DELTAS, INDIVIDUAL FUNCTIONS					Power delta when a function is enabled/disabled
VCO Divider		30		mW	VCO divider bypassed
REFIN (Differential)		20		mW	All references off to differential reference enabled
REF1, REF2 (Single-Ended)		4		mW	All references off to REF1 or REF2 enabled; differential reference not enabled
PLL		75		mW	PLL off to PLL on, normal operation; no reference enabled
Channel Divider		30		mW	Divider bypassed to divide-by-2 to divide-by-32
LVPECL Channel (Divider Plus Output Driver)	120		mW	No LVPECL output on to one LVPECL output on (that is, enabling OUT0 with OUT1 off; Divider 0 enabled), independent of frequency	
LVPECL Driver	90		mW	Second LVPECL output turned on, same channel (that is, enabling OUT0 with OUT1 already on)	
LVDS Channel (Divider Plus Output Driver)		140		mW	No LVDS output on to one LVDS output on (that is, enabling OUT8 with OUT9 off with Divider 4.1 enabled and Divider 4.2 bypassed); see Figure 8 for dependence on output frequency
LVDS Driver		50		mW	Second LVDS output turned on, same channel (that is, enabling OUT8 with OUT9 already on)
CMOS Channel (Divider Plus Output Driver)	100		mW	Static; no CMOS output on to one CMOS output on (that is, enabling OUT8A starting with OUT8 and OUT9 off); see Figure 9 for variation over output frequency	
CMOS Driver (Second in Pair)	0		mW	Static; second CMOS output, same pair, turned on (that is, enabling OUT8A with OUT8B already on)	
CMOS Driver (First in Second Pair)	30		mW	Static; first output, second pair, turned on (that is, enabling OUT9A with OUT9B off and OUT8A and OUT8B already on)	
Fine Delay Block		50		mW	Delay block off to delay block enabled; maximum current setting

TIMING CHARACTERISTICS

Table 14.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL					Termination = 50Ω to $V_{S_LVPECL} - 2 V$; default amplitude setting (810 mV)
Output Rise Time, t _{RP}		70	180	ps	20% to 80%, measured differentially
Output Fall Time, t _{FP}		70	180	ps	80% to 20%, measured differentially
PROPAGATION DELAY, t _{PECL} , CLK-TO-LVPECL OUTPUT					,
High Frequency Clock Distribution Configuration	835	995	1180	ps	See Figure 34
Clock Distribution Configuration	773	933	1090	ps	See Figure 33
Variation with Temperature		0.8		ps/°C	
OUTPUT SKEW, LVPECL OUTPUTS ¹				i i	
LVPECL Outputs That Share the Same Divider		5	15	ps	
LVPECL Outputs on Different Dividers		13	40	ps	
All LVPECL Outputs Across Multiple Parts			220	ps	
LVDS				i i	Termination = 100Ω differential; 3.5 mA setting
Output Rise Time, t _{RL}		170	350	ps	20% to 80%, measured differentially ²
Output Fall Time, t _{FL}		160	350	ps	20% to 80%, measured differentially ²
PROPAGATION DELAY, t _{LVDS} , CLK-TO-LVDS OUTPUT					Delay off on all outputs
OUT6, OUT7, OUT8, OUT9					
For All Divide Values	1.4	1.8	2.1	ns	
Variation with Temperature		1.25		ps/°C	
OUTPUT SKEW, LVDS OUTPUTS ¹					Delay off on all outputs
LVDS Outputs That Share the Same Divider		6	62	ps	
LVDS Outputs on Different Dividers		25	150	ps	
All LVDS Outputs Across Multiple Parts			430	ps	
CMOS					Termination = open
Output Rise Time, t _{RC}		495	1000	ps	20% to 80%; C _{LOAD} = 10 pF
Output Fall Time, t _{FC}		475	985	ps .	80% to 20%; C _{LOAD} = 10 pF
PROPAGATION DELAY, t _{CMOS} , CLK-TO-CMOS OUTPUT				·	Fine delay off
For All Divide Values	1.6	2.1	2.6	ns	,
Variation with Temperature		2.6		ps/°C	
OUTPUT SKEW, CMOS OUTPUTS ¹				·	Fine delay off
CMOS Outputs That Share the Same Divider		4	66	ps	,
All CMOS Outputs on Different Dividers		28	180	ps .	
All CMOS Outputs Across Multiple Parts			675	ps	
DELAY ADJUST ³					LVDS and CMOS
Shortest Delay Range⁴					Register 0x0A1 (0x0A4, 0x0A7, 0x0AA), Bits[5:0] = 101111b
Zero Scale	50	315	680	ps	Register 0x0A2 (0x0A5, 0x0A8, 0x0AB), Bits[5:0] = 000000b
Full Scale	540	880	1180	ps	Register 0x0A2 (0x0A5, 0x0A8, 0x0AB), Bits[5:0] = 101111b
Longest Delay Range⁴					Register 0x0A1 (0x0A4, 0x0A7, 0x0AA) Bits[5:0] = 000000b
Zero Scale	200	570	950	ps	Register 0x0A2 (0x0A5, 0x0A8, 0x0AB), Bits[5:0] = 000000b
Quarter Scale	1.72	2.31	2.89	ns	Register 0x0A2 (0x0A5, 0x0A8, 0x0AB), Bits[5:0] = 001100b
Full Scale	5.7	8.0	10.1	ns	Register 0x0A2 (0x0A5, 0x0A8, 0x0AB), Bits[5:0] = 101111b
Delay Variation with Temperature					
Short Delay Range⁵					
Zero Scale		0.23		ps/°C	
Full Scale		-0.02		ps/°C	
Long Delay Range⁵					
Zero Scale		0.3		ps/°C	
Full Scale		0.24		ps/°C	

¹ This is the difference between any two similar delay paths while operating at the same voltage and temperature.

² Corresponding CMOS drivers set to OUTxA for noninverting and OUTxB for inverting; x = 6, 7, 8, or 9.

³ The maximum delay that can be used is a little less than one-half the period of the clock. A longer delay disables the output.

⁴ Incremental delay; does not include propagation delay.

⁵ All delays between zero scale and full scale can be estimated by linear interpolation.

Timing Diagrams

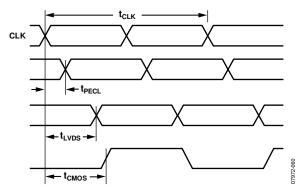


Figure 2. CLK/\overline{CLK} to Clock Output Timing, Divider = 1

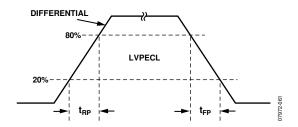


Figure 3. LVPECL Timing, Differential

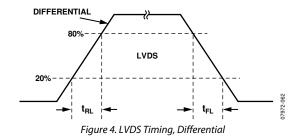


Figure 5. CMOS Timing, Single-Ended, 10 pF Load

ABSOLUTE MAXIMUM RATINGS

Table 15.

Parameter	Rating
VS, VS_LVPECL to GND	-0.3 V to +3.6 V
VCP to GND	-0.3 V to +5.8 V
REFIN, REFIN to GND	-0.3 V to VS + 0.3 V
REFIN to REFIN	-3.3 V to +3.3 V
RSET to GND	-0.3 V to VS + 0.3 V
CPRSET to GND	-0.3 V to VS + 0.3 V
CLK, CLK to GND	-0.3 V to $VS + 0.3 V$
CLK to CLK	-1.2 V to +1.2 V
SCLK, SDIO, SDO, CS to GND	-0.3 V to VS + 0.3 V
OUT0, OUT0, OUT1, OUT1, OUT2, OUT2, OUT3, OUT3, OUT4, OUT4, OUT5, OUT6, OUT6, OUT7, OUT7, OUT8, OUT9, OUT9 to GND	-0.3 V to VS + 0.3 V
SYNC to GND	-0.3 V to VS + 0.3 V
REFMON, STATUS, LD to GND	-0.3 V to $VS + 0.3 V$
Temperature	
Junction Temperature ¹	150°C
Storage Temperature Range	−65°C to +150°C
Lead Temperature (10 sec)	300°C

¹ See Table 16 for θ_{JA} .

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Table 16.

Package Type ¹	θ _{JA}	Unit
64-Lead LFCSP (CP-64-4)	22	°C/W

¹ Thermal impedance measurements were taken on a 4-layer board in still air in accordance with EIA/JESD51-2.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

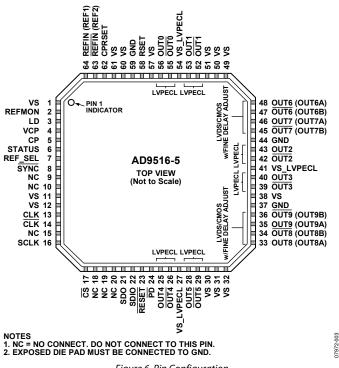


Figure 6. Pin Configuration

Table 17. Pin Function Descriptions

	1			
Pin No.	Input/ Output	Pin Type	Mnemonic	Description
1, 11, 12, 30, 31, 32, 38, 49, 50, 51, 57, 60, 61	I	Power	VS	3.3 V Power Pins.
2	0	3.3 V CMOS	REFMON	Reference Monitor (Output). This pin has multiple selectable outputs; see Table 49, Register 0x01B.
3	0	3.3 V CMOS	LD	Lock Detect (Output). This pin has multiple selectable outputs; see Table 49, Register 0x01A.
4	1	Power	VCP	Power Supply for Charge Pump (CP); $VS \le VCP \le 5.25 V$.
5	0	Loop filter	СР	Charge Pump (Output). This pin connects to an external loop filter. This pin can be left unconnected if the PLL is not used.
6	0	3.3 V CMOS	STATUS	Status (Output). This pin has multiple selectable outputs; see Table 49, Register 0x017.
7	1	3.3 V CMOS	REF_SEL	Reference Select. Selects REF1 (low) or REF2 (high). This pin has an internal 30 k Ω pull-down resistor.
8	I	3.3 V CMOS	SYNC	Manual Synchronizations and Manual Holdover. This pin initiates a manual synchronization and is also used for manual holdover. Active low. This pin has an internal 30 k Ω pull-up resistor.
9, 10, 15, 18, 19, 20	N/A	NC	NC	No Connection. These pins can be left floating.
13	1	Differential clock input	CLK	Along with $\overline{\text{CLK}}$, this is the differential input for the clock distribution section.
14	I	Differential clock input	CLK	Along with CLK, this is the differential input for the clock distribution section. If a single-ended input is connected to the CLK pin, connect a 0.1 µF bypass capacitor from CLK to ground.

Pin No.	Input/ Output	Pin Type	Mnemonic	Description
16	1	3.3 V CMOS	SCLK	Serial Control Port Data Clock Signal.
17	1	3.3 V CMOS	<u>cs</u>	Serial Control Port Chip Select; Active Low. This pin has an internal 30 k Ω pull-up resistor.
21	0	3.3 V CMOS	SDO	Serial Control Port Unidirectional Serial Data Output.
22	I/O	3.3 V CMOS	SDIO	Serial Control Port Bidirectional Serial Data Input/Output.
23	1	3.3 V CMOS	RESET	Chip Reset; Active Low. This pin has an internal 30 $k\Omega$ pull-up resistor.
24	1	3.3 V CMOS	PD	Chip Power-Down; Active Low. This pin has an internal 30 k Ω pull-up resistor.
25	0	LVPECL	OUT4	LVPECL Output; One Side of a Differential LVPECL Output.
26	0	LVPECL	OUT4	LVPECL Output; One Side of a Differential LVPECL Output.
27, 41, 54	1	Power	VS_LVPECL	Extended Voltage 2.5 V to 3.3 V LVPECL Power Pins.
28	0	LVPECL	OUT5	LVPECL Output; One Side of a Differential LVPECL Output.
29	0	LVPECL	OUT5	LVPECL Output; One Side of a Differential LVPECL Output.
33	0	LVDS or CMOS	OUT8 (OUT8A)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.
34	0	LVDS or CMOS	OUT8 (OUT8B)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.
35	0	LVDS or CMOS	OUT9 (OUT9A)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.
36	0	LVDS or CMOS	OUT9 (OUT9B)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.
37, 44, 59, EPAD	1	GND	GND	Ground Pins, Including External Paddle (EPAD). The external die paddle on the bottom of the package must be connected to ground for proper operation.
39	0	LVPECL	OUT3	LVPECL Output; One Side of a Differential LVPECL Output.
40	0	LVPECL	OUT3	LVPECL Output; One Side of a Differential LVPECL Output.
42	0	LVPECL	OUT2	LVPECL Output; One Side of a Differential LVPECL Output.
43	0	LVPECL	OUT2	LVPECL Output; One Side of a Differential LVPECL Output.
45	0	LVDS or CMOS	OUT7 (OUT7B)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.
46	0	LVDS or CMOS	OUT7 (OUT7A)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.
47	0	LVDS or CMOS	OUT6 (OUT6B)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.
48	0	LVDS or CMOS	OUT6 (OUT6A)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.
52	0	LVPECL	OUT1	LVPECL Output; One Side of a Differential LVPECL Output.
53	0	LVPECL	OUT1	LVPECL Output; One Side of a Differential LVPECL Output.
55	0	LVPECL	OUT0	LVPECL Output; One Side of a Differential LVPECL Output.
56	0	LVPECL	OUT0	LVPECL Output; One Side of a Differential LVPECL Output.
58	0	Current set resistor	RSET	A resistor connected to this pin sets internal bias currents. Nominal value = $4.12 \text{ k}\Omega$.
62	0	Current set resistor	CPRSET	A resistor connected to this pin sets the CP current range. Nominal value = 5.1 k Ω . This resistor can be omitted if the PLL is not used.
63	I	Reference input	REFIN (REF2)	Along with REFIN, this pin is the differential input for the PLL reference. Alternatively, this pin is a single-ended input for REF2. This pin can be left unconnected when the PLL is not used.
64	I	Reference input	REFIN (REF1)	Along with REFIN, this pin is the differential input for the PLL reference. Alternatively, this pin is a single-ended input for REF1. This pin can be left unconnected when the PLL is not used.

TYPICAL PERFORMANCE CHARACTERISTICS

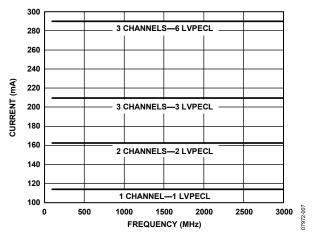


Figure 7. Current vs. Frequency, Direct to Output, LVPECL Outputs

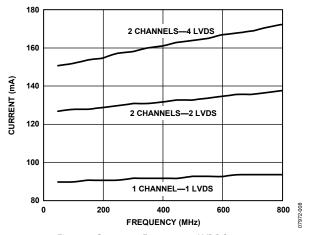


Figure 8. Current vs. Frequency—LVDS Outputs (Includes Clock Distribution Current Draw)

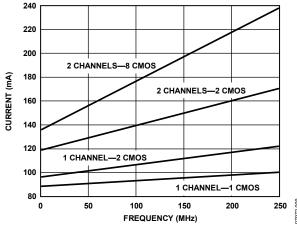


Figure 9. Current vs. Frequency—CMOS Outputs with 10 pF Load

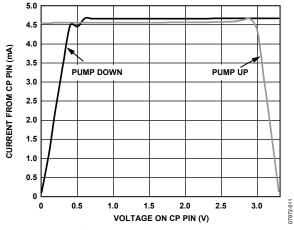


Figure 10. Charge Pump Characteristics at VCP = 3.3 V

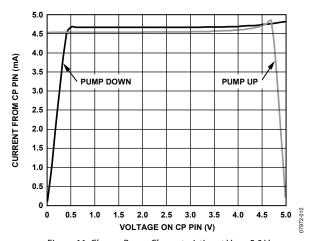


Figure 11. Charge Pump Characteristics at $V_{CP} = 5.0 \text{ V}$

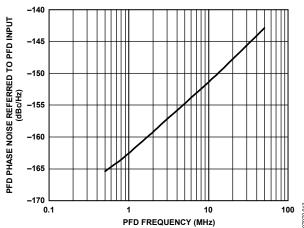


Figure 12. PFD Phase Noise Referred to PFD Input vs. PFD Frequency

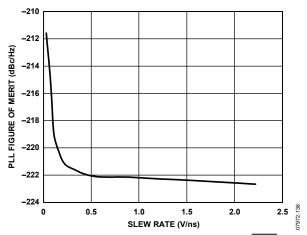


Figure 13. PLL Figure of Merit vs. Slew Rate at REFIN/REFIN

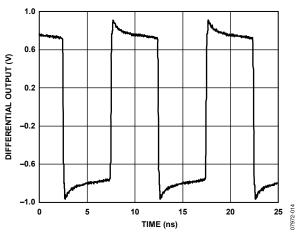


Figure 14. LVPECL Output (Differential) at 100 MHz

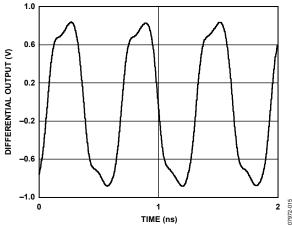


Figure 15. LVPECL Output (Differential) at 1600 MHz

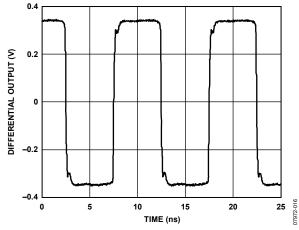


Figure 16. LVDS Output (Differential) at 100 MHz

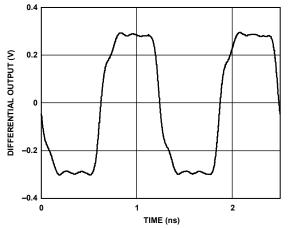


Figure 17. LVDS Output (Differential) at 800 MHz

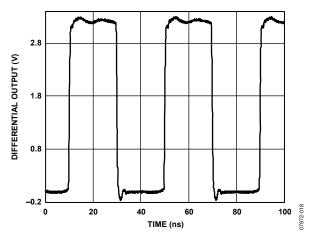


Figure 18. CMOS Output at 25 MHz

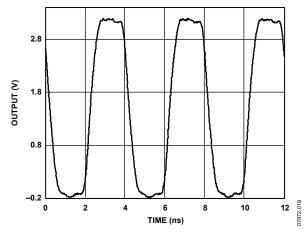


Figure 19. CMOS Output at 250 MHz

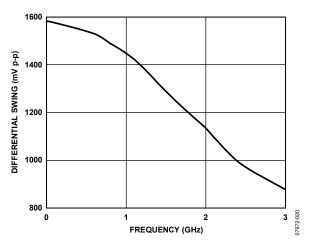


Figure 20. LVPECL Differential Swing vs. Frequency (Using a Differential Probe Across the Output Pair)

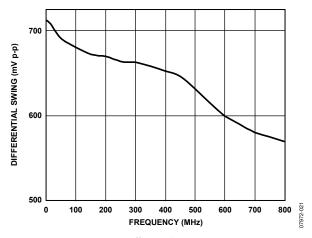


Figure 21. LVDS Differential Swing vs. Frequency (Using a Differential Probe Across the Output Pair)

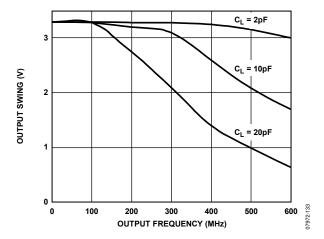


Figure 22. CMOS Output Swing vs. Frequency and Capacitive Load

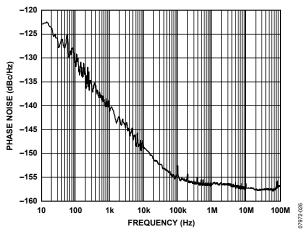


Figure 23. Phase Noise (Additive) LVPECL at 245.76 MHz, Divide-by-1

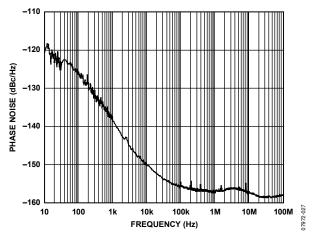


Figure 24. Phase Noise (Additive) LVPECL at 200 MHz, Divide-by-5

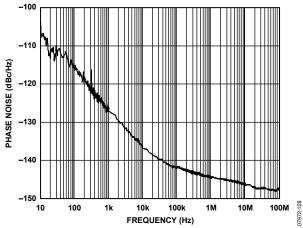


Figure 25. Phase Noise (Additive) LVPECL at 1600 MHz, Divide-by-1

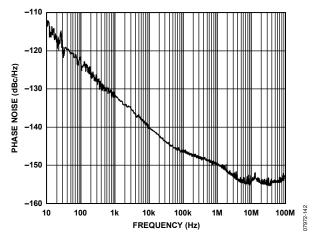


Figure 26. Phase Noise (Additive) LVDS at 200 MHz, Divide-by-1

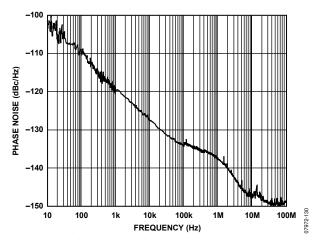


Figure 27. Phase Noise (Additive) LVDS at 800 MHz, Divide-by-2

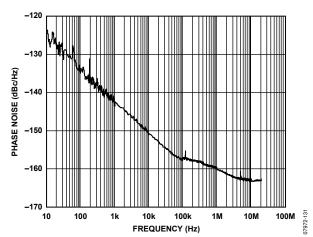


Figure 28. Phase Noise (Additive) CMOS at 50 MHz, Divide-by-20

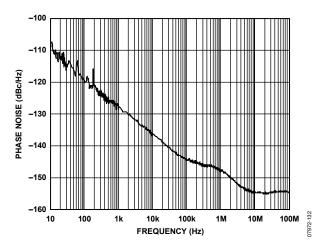


Figure 29. Phase Noise (Additive) CMOS at 250 MHz, Divide-by-4

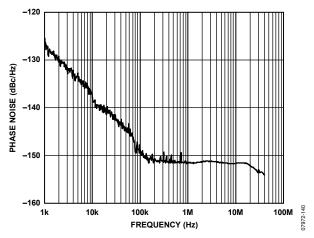


Figure 30. Phase Noise (Absolute), External VCXO (Toyocom TCO-2112) at 245.76 MHz; PFD = 15.36 MHz; LBW = 250 Hz; LVPECL Output = 245.76 MHz

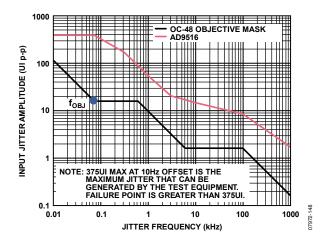


Figure 31. GR-253 Jitter Tolerance Plot

TERMINOLOGY

Phase Jitter and Phase Noise

An ideal sine wave can be thought of as having a continuous and even progression of phase with time from 0° to 360° for each cycle. Actual signals, however, display a certain amount of variation from ideal phase progression over time. This phenomenon is called phase jitter. Although many causes can contribute to phase jitter, one major cause is random noise, which is characterized statistically as being Gaussian (normal) in distribution.

This phase jitter leads to a spreading out of the energy of the sine wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are dBc/Hz at a given offset in frequency from the sine wave (carrier). The value is a ratio (expressed in decibels, dB) of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement, the offset from the carrier frequency is also given.

It is meaningful to integrate the total power contained within some interval of offset frequencies (for example, 10 kHz to 10 MHz). This is called the integrated phase noise over that frequency offset interval and can be readily related to the time jitter due to the phase noise within that offset frequency interval.

Phase noise has a detrimental effect on the performance of ADCs, DACs, and RF mixers. It lowers the achievable dynamic range of the converters and mixers, although they are affected in somewhat different ways.

Time Jitter

Phase noise is a frequency domain phenomenon. In the time domain, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings varies. In a square wave, the time jitter is a displacement of the edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Because these variations are random in nature, the time jitter is specified in units of seconds root mean square (rms) or 1 sigma of the Gaussian distribution.

Time jitter that occurs on a sampling clock for a DAC or an ADC decreases the signal-to-noise ratio (SNR) and dynamic range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.

Additive Phase Noise

Additive phase noise is the amount of phase noise that is attributable to the device or subsystem being measured. The phase noise of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contributes its own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise. When there are multiple contributors to phase noise, the total is the square root of the sum of squares of the individual contributors.

Additive Time Jitter

Additive time jitter is the amount of time jitter that is attributable to the device or subsystem being measured. The time jitter of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contributes its own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.

DETAILED BLOCK DIAGRAM

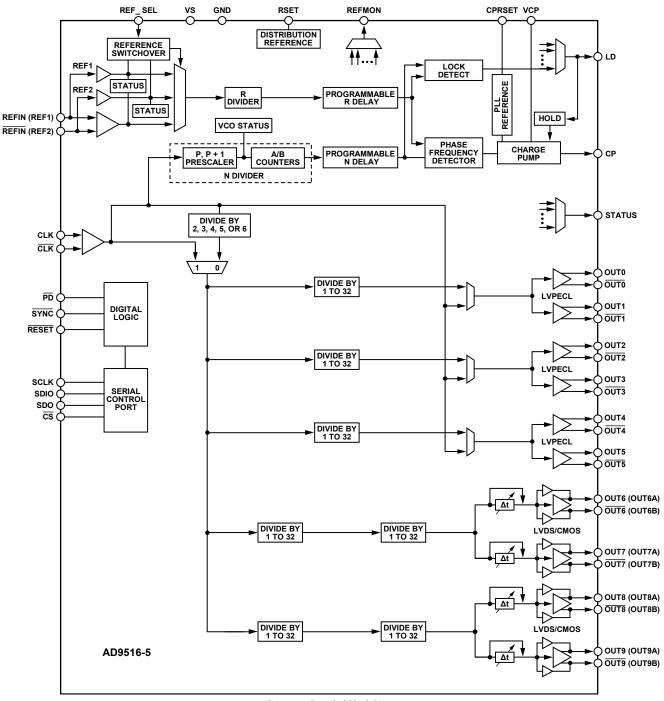


Figure 32. Detailed Block Diagram