# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

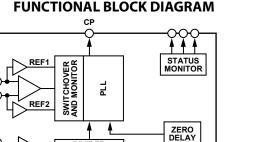




# 12 LVDS/24 CMOS Output Clock Generator

# AD9522-5

### **FEATURES**


Low phase noise, phase-locked loop (PLL) Supports external 3.3 V/5 V voltage controlled oscillator (VCO)/VCXO to 2.4 GHz 1 differential or 2 single-ended reference inputs Accepts CMOS, LVPECL, or LVDS references to 250 MHz Accepts 16.62 MHz to 33.3 MHz crystal for reference input **Optional reference clock doubler Reference monitoring capability** Revertive automatic and manual reference switchover/ holdover modes **Glitch-free switchover between references** Automatic recovery from holdover Digital or analog lock detect, selectable **Optional zero delay operation** Twelve 800 MHz LVDS outputs divided into 4 groups Each group of 3 has a 1-to-32 divider with phase delay Additive output jitter as low as 242 fs rms Channel-to-channel skew grouped outputs < 60 ps Each LVDS output can be configured as 2 CMOS outputs (for fout ≤ 250 MHz) Automatic synchronization of all outputs on power-up Manual synchronization of outputs as needed SPI- and I<sup>2</sup>C-compatible serial control port 64-lead LFCSP Nonvolatile EEPROM stores configuration settings

#### **APPLICATIONS**

Low jitter, low phase noise clock distribution Clock generation and translation for SONET, 10Ge, 10G FC, and other 10 Gbps protocols Forward error correction (G.710) Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs High performance wireless transceivers ATE and high performance instrumentation Broadband infrastructures

#### **GENERAL DESCRIPTION**

The AD9522-5<sup>1</sup> provides a multioutput clock distribution function with subpicosecond jitter performance, along with an on-chip PLL that can be used with an external VCO.



RFFIN

REFIN

CLM

#### DIVIDER AND MUXES LVDS/ CMOS OUTO DIV/Φ Ο Ουτι <u>΄</u> Ουτ2 Ουτι Ó OUT4 DIV/¢ ) ουτ5 Ουτε οιν/φ ʹʹϽΟυτ7 Ͻоυта Оола <u>)</u> опт10 DIV/Φ <u>)</u> ουτ11 SPI/I<sup>2</sup>C CONTROL PORT AND DIGITAL LOGIC FFPROM AD9522-5 07240-001

Figure 1.

The AD9522 serial interface supports both SPI and  $I^2C^*$  ports. An in-package EEPROM can be programmed through the serial interface and store user-defined register settings for power-up and chip reset.

The AD9522 features 12 LVDS outputs in four groups. Any of the 800 MHz LVDS outputs can be reconfigured as two 250 MHz CMOS outputs.

Each group of outputs has a divider that allows both the divide ratio (from 1 to 32) and the phase (coarse delay) to be set.

The AD9522 is available in a 64-lead LFCSP and can be operated from a single 3.3 V supply. The external VCO can have an operating voltage up to 5.5 V.

The AD9522 is specified for operation over the standard industrial range of  $-40^{\circ}$ C to  $+85^{\circ}$ C.

The AD9520-5 is an equivalent part to the AD9522-5 featuring LVPECL/CMOS drivers instead of LVDS/CMOS drivers.

<sup>1</sup>The AD9522 is used throughout this data sheet to refer to all the members of the AD9522 family. However, when AD9522-5 is used, it is referring to that specific member of the AD9522 family.

#### Rev. A

**Document Feedback** 

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2008-2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

# AD9522-5\* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

# COMPARABLE PARTS

View a parametric search of comparable parts.

## EVALUATION KITS

AD9522-5 Evaluation Board

# DOCUMENTATION

#### **Application Notes**

 AN-0983: Introduction to Zero-Delay Clock Timing Techniques

#### Data Sheet

 AD9522-5: 12 LVDS/24 CMOS Output Clock Generator Data Sheet

#### **User Guides**

Evaluation Software Documentation

# SOFTWARE AND SYSTEMS REQUIREMENTS

• Evaluation Software Tools

# TOOLS AND SIMULATIONS $\square$

- ADIsimCLK Design and Evaluation Software
- AD9522-x IBIS Models

### REFERENCE MATERIALS

#### **Product Selection Guide**

RF Source Booklet

## DESIGN RESOURCES

- AD9522-5 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

### DISCUSSIONS

View all AD9522-5 EngineerZone Discussions.

# SAMPLE AND BUY

Visit the product page to see pricing options.

# TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

# DOCUMENT FEEDBACK

Submit feedback for this data sheet.

# TABLE OF CONTENTS

| Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| General Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Functional Block Diagram 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Revision History 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Power Supply Requirements 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PLL Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Clock Inputs 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Clock Outputs 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Timing Characteristics9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Timing Diagrams9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Clock Output Additive Phase Noise (Distribution Only; VCO<br>Divider Not Used)10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Clock Output Absolute Time Jitter (Clock Generation Using<br>External VCXO)11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Clock Output Additive Time Jitter (VCO Divider Not Used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Clock Output Additive Time Jitter (VCO Divider Used) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Serial Control Port—SPI Mode12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\mathbf{C} = \mathbf{C} + $ |
| Serial Control Port—I <sup>2</sup> C Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Serial Control Port—I*C Mode 13   PD, SYNC, and RESET Pins 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PD, SYNC, and RESET Pins14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PD, SYNC, and RESET Pins 14   Serial Port Setup Pins: SP1, SP0 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PD, SYNC, and RESET Pins14Serial Port Setup Pins: SP1, SP014LD, STATUS, and REFMON Pins14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PD, SYNC, and RESET Pins14Serial Port Setup Pins: SP1, SP014LD, STATUS, and REFMON Pins14Power Dissipation15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PD, SYNC, and RESET Pins 14   Serial Port Setup Pins: SP1, SP0 14   LD, STATUS, and REFMON Pins 14   Power Dissipation 15   Absolute Maximum Ratings 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PD, SYNC, and RESET Pins 14   Serial Port Setup Pins: SP1, SP0 14   LD, STATUS, and REFMON Pins 14   Power Dissipation 15   Absolute Maximum Ratings 16   Thermal Resistance 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PD, SYNC, and RESET Pins14Serial Port Setup Pins: SP1, SP014LD, STATUS, and REFMON Pins14Power Dissipation15Absolute Maximum Ratings16Thermal Resistance16ESD Caution16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PD, SYNC, and RESET Pins14Serial Port Setup Pins: SP1, SP014LD, STATUS, and REFMON Pins14Power Dissipation15Absolute Maximum Ratings16Thermal Resistance16ESD Caution16Pin Configuration and Function Descriptions17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PD, SYNC, and RESET Pins14Serial Port Setup Pins: SP1, SP014LD, STATUS, and REFMON Pins14Power Dissipation15Absolute Maximum Ratings16Thermal Resistance16ESD Caution16Pin Configuration and Function Descriptions17Typical Performance Characteristics20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PD, SYNC, and RESET Pins14Serial Port Setup Pins: SP1, SP014LD, STATUS, and REFMON Pins14Power Dissipation15Absolute Maximum Ratings16Thermal Resistance16ESD Caution16Pin Configuration and Function Descriptions17Typical Performance Characteristics20Terminology24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PD, SYNC, and RESET Pins14Serial Port Setup Pins: SP1, SP014LD, STATUS, and REFMON Pins14Power Dissipation15Absolute Maximum Ratings16Thermal Resistance16ESD Caution16Pin Configuration and Function Descriptions17Typical Performance Characteristics20Terminology24Detailed Block Diagram25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PD, SYNC, and RESET Pins14Serial Port Setup Pins: SP1, SP014LD, STATUS, and REFMON Pins14Power Dissipation15Absolute Maximum Ratings16Thermal Resistance16ESD Caution16Pin Configuration and Function Descriptions17Typical Performance Characteristics20Terminology24Detailed Block Diagram25Theory of Operation26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PD, SYNC, and RESET Pins14Serial Port Setup Pins: SP1, SP014LD, STATUS, and REFMON Pins14Power Dissipation15Absolute Maximum Ratings16Thermal Resistance16ESD Caution16Pin Configuration and Function Descriptions17Typical Performance Characteristics20Terminology24Detailed Block Diagram25Theory of Operation26Operational Configurations26Mode 1: Clock Distribution or External VCO < 1600 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PD, SYNC, and RESET Pins14Serial Port Setup Pins: SP1, SP014LD, STATUS, and REFMON Pins14Power Dissipation15Absolute Maximum Ratings16Thermal Resistance16ESD Caution16Pin Configuration and Function Descriptions17Typical Performance Characteristics20Terminology24Detailed Block Diagram25Theory of Operation26Mode 1: Clock Distribution or External VCO < 1600 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PD, SYNC, and RESET Pins14Serial Port Setup Pins: SP1, SP014LD, STATUS, and REFMON Pins14Power Dissipation15Absolute Maximum Ratings16Thermal Resistance16ESD Caution16Pin Configuration and Function Descriptions17Typical Performance Characteristics20Terminology24Detailed Block Diagram25Theory of Operation26Operational Configurations26Mode 1: Clock Distribution or External VCO < 1600 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Charge Pump (CP)                                                                                                                                                                                                                                                                                                  | 30                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| PLL External Loop Filter                                                                                                                                                                                                                                                                                          |                                                                                                          |
| PLL Reference Inputs                                                                                                                                                                                                                                                                                              |                                                                                                          |
| Reference Switchover                                                                                                                                                                                                                                                                                              |                                                                                                          |
| Reference Divider R                                                                                                                                                                                                                                                                                               |                                                                                                          |
| VCO/VCXO Feedback Divider N: P, A, B                                                                                                                                                                                                                                                                              |                                                                                                          |
| Digital Lock Detect (DLD)                                                                                                                                                                                                                                                                                         |                                                                                                          |
| Analog Lock Detect (ALD)                                                                                                                                                                                                                                                                                          |                                                                                                          |
| Current Source Digital Lock Detect (CSDLD)                                                                                                                                                                                                                                                                        |                                                                                                          |
| External VCXO/VCO Clock Input (CLK/CLK)                                                                                                                                                                                                                                                                           |                                                                                                          |
| Holdover                                                                                                                                                                                                                                                                                                          |                                                                                                          |
| External/Manual Holdover Mode                                                                                                                                                                                                                                                                                     |                                                                                                          |
| Automatic/Internal Holdover Mode                                                                                                                                                                                                                                                                                  | 35                                                                                                       |
| Frequency Status Monitors                                                                                                                                                                                                                                                                                         |                                                                                                          |
| Zero Delay Operation                                                                                                                                                                                                                                                                                              |                                                                                                          |
| Clock Distribution                                                                                                                                                                                                                                                                                                |                                                                                                          |
| Operation Modes                                                                                                                                                                                                                                                                                                   |                                                                                                          |
| Clock Frequency Division                                                                                                                                                                                                                                                                                          |                                                                                                          |
| VCO Divider                                                                                                                                                                                                                                                                                                       | 39                                                                                                       |
|                                                                                                                                                                                                                                                                                                                   | 20                                                                                                       |
| Channel Dividers                                                                                                                                                                                                                                                                                                  |                                                                                                          |
| Synchronizing the Outputs—SYNC Function                                                                                                                                                                                                                                                                           |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                   | 41                                                                                                       |
| Synchronizing the Outputs—SYNC Function                                                                                                                                                                                                                                                                           | 41<br>42                                                                                                 |
| Synchronizing the Outputs—SYNC Function                                                                                                                                                                                                                                                                           | 41<br>42<br>43                                                                                           |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers<br>CMOS Output Drivers                                                                                                                                                                                                                             | 41<br>42<br>43<br>43                                                                                     |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers<br>CMOS Output Drivers<br>Reset Modes                                                                                                                                                                                                              | 41<br>42<br>43<br>43<br>43<br>43                                                                         |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers<br>CMOS Output Drivers<br>Reset Modes<br>Power-On Reset                                                                                                                                                                                            | 41<br>42<br>43<br>43<br>43<br>43<br>43<br>43                                                             |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers<br>CMOS Output Drivers<br>Reset Modes<br>Power-On Reset<br>Hardware Reset via the RESET Pin                                                                                                                                                        | 41<br>42<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>n = 0 via                                          |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers<br>CMOS Output Drivers<br>Reset Modes<br>Power-On Reset<br>Hardware Reset via the RESET Pin<br>Soft Reset via the Serial Port<br>Soft Reset to Settings in EEPROM when EEPROM Pin                                                                  | 41<br>42<br>43<br>43<br>43<br>43<br>43<br>43<br>n = 0 via<br>43                                          |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers<br>CMOS Output Drivers<br>Reset Modes<br>Power-On Reset<br>Hardware Reset via the RESET Pin<br>Soft Reset via the Serial Port<br>Soft Reset to Settings in EEPROM when EEPROM Pin<br>the Serial Port                                               | 41<br>42<br>43<br>43<br>43<br>43<br>43<br>43<br>n = 0 via<br>43<br>43                                    |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers<br>CMOS Output Drivers<br>Reset Modes<br>Power-On Reset<br>Hardware Reset via the RESET Pin<br>Soft Reset via the Serial Port<br>Soft Reset to Settings in EEPROM when EEPROM Pin<br>the Serial Port<br>Power-Down Modes                           | 41<br>42<br>43<br>43<br>43<br>43<br>43<br>43<br>n = 0 via<br>43<br>43<br>43<br>43                        |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers<br>CMOS Output Drivers<br>Reset Modes<br>Power-On Reset<br>Hardware Reset via the RESET Pin<br>Soft Reset via the Serial Port<br>Soft Reset to Settings in EEPROM when EEPROM Pin<br>the Serial Port<br>Power-Down Modes<br>Chip Power-Down via PD | 41<br>42<br>43<br>43<br>43<br>43<br>43<br>43<br>n = 0 via<br>43<br>43<br>43<br>43<br>44                  |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers                                                                                                                                                                                                                                                    | 41<br>42<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>n = 0 via<br>43<br>43<br>43<br>43<br>44<br>44      |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers                                                                                                                                                                                                                                                    | 41<br>42<br>43<br>43<br>43<br>43<br>43<br>43<br>10<br>43<br>43<br>43<br>43<br>43<br>43<br>44<br>44<br>44 |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers                                                                                                                                                                                                                                                    | $\begin{array}{c} 41 \\ 42 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43$                                    |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers                                                                                                                                                                                                                                                    | 41<br>42<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>44<br>44             |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers                                                                                                                                                                                                                                                    | $\begin{array}{c} 41 \\ 42 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43$                                    |
| Synchronizing the Outputs—SYNC Function<br>LVDS Output Drivers                                                                                                                                                                                                                                                    | $\begin{array}{c} 41 \\ 42 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43$                                    |

| 9522-5 |
|--------|
| 9522-5 |

| Data Transfer Format                      | 47 |
|-------------------------------------------|----|
| I <sup>2</sup> C Serial Port Timing       | 47 |
| SPI Serial Port Operation                 | 48 |
| Pin Descriptions                          | 48 |
| SPI Mode Operation                        | 48 |
| Communication Cycle—Instruction Plus Data | 48 |
| Write                                     | 48 |
| Read                                      | 48 |
| SPI Instruction Word (16 Bits)            | 49 |
| SPI MSB/LSB First Transfers               | 49 |
| EEPROM Operations                         | 52 |
| Writing to the EEPROM                     | 52 |
| Reading from the EEPROM                   | 52 |
| Programming the EEPROM Buffer Segment     | 52 |
| Register Section Definition Group         | 53 |
|                                           |    |

| IO_UPDATE (Operational Code 0x80)                   | 53 |
|-----------------------------------------------------|----|
| End-of-Data (Operational Code 0xFF)                 | 53 |
| Pseudo-End-of-Data (Operational Code 0xFE)          | 53 |
| Thermal Performance                                 | 54 |
| Register Map                                        | 55 |
| Register Map Descriptions                           | 59 |
| Applications Information                            | 72 |
| Frequency Planning Using the AD9522                 | 72 |
| Using the AD9522 Outputs for ADC Clock Applications | 72 |
| LVDS Clock Distribution                             | 72 |
| CMOS Clock Distribution                             | 73 |
| Outline Dimensions                                  | 74 |
| Ordering Guide                                      | 74 |
|                                                     |    |

## **REVISION HISTORY**

| 3/15—Rev. 0 to Rev. A                                              |
|--------------------------------------------------------------------|
| Changes to Features Section1                                       |
| Changes to Table 1 and Table 25                                    |
| Change to Input Frequency Parameter, Table 3 8                     |
| Changes to Table 4                                                 |
| Changes to SDIO, SDO (Outputs) Parameter, Test                     |
| Conditions/Comments Column, Table 10 12                            |
| Changes to Table 1414                                              |
| Change to Junction Temperature Parameter, Table 1616               |
| Changes to Pin 22 Description Column, Table 18 18                  |
| Changes to Figure 26 27                                            |
| Changes to Table 22                                                |
| Changes to Figure 27                                               |
| Changes to Configuration of the PLL Section and Charge Pump        |
| (CP) Section                                                       |
| Changes to PLL Reference Inputs Section and Reference              |
| Switchover Section                                                 |
| Changes to Reference Divider R Section, Prescaler Section, A and B |
| Counters Section, and R and N Divider Delays Section32             |
| Changes to Table 25 and Current Source Digital Lock Detect         |
| (CSDLD) Section                                                    |
| Changes to External VCXO/VCO Clock Input (CLK/CLK) and             |
| Holdover Section                                                   |
| Changes to Frequency Status Monitors Section                       |
|                                                                    |

| Changes to Clock Distribution Section                         | 38   |
|---------------------------------------------------------------|------|
| Added Channel Divider Maximum Frequency Section               | 39   |
| Changes to Duty Cycle and Duty-Cycle Correction Section       | 39   |
| Changes to Table 31                                           | 40   |
| Changes to Synchronizing the Outputs—SYNC Function            |      |
| Section                                                       | 41   |
| Changes to Power-On Reset Section, Hardware Reset via the     |      |
| RESET Pin Section, and Soft Reset via the Serial Port Section | . 43 |
| Changes to Pin Descriptions Section and SPI Mode Operation    |      |
| Section                                                       | 48   |
| Changes to Figure 52, Figure 53 Caption, and Figure 54        | 50   |
| Changes to EEPROM Operation Section, Writing to EEPROM        | Л    |
| section, and Reading from EEPROM section                      | 52   |
| Changes to Table 43                                           | 55   |
| Changes to Table 44 and Table 45                              | 59   |
| Changes to Table 47                                           | 61   |
| Changes to Table 49                                           | 68   |
| Changes to Table 52                                           | 71   |
| Change to Frequency Planning Using the AD9522 Section         | 72   |
| Updated Outline Dimensions                                    | 74   |
|                                                               |      |

12/08—Revision 0: Initial Version

# **SPECIFICATIONS**

Typical (typ) is given for VS = 3.3 V  $\pm$  5%; VS  $\leq$  VCP  $\leq$  5.25 V; T<sub>A</sub> = 25°C; RSET = 4.12 kΩ; CPRSET = 5.1 kΩ, unless otherwise noted. Minimum (min) and maximum (max) values are given over full VS and T<sub>A</sub> (-40°C to +85°C) variation.

### **POWER SUPPLY REQUIREMENTS**

#### Table 1.

| Parameter                | Min   | Тур  | Max   | Unit | Test Conditions/Comments                                                                                                                                |  |  |  |
|--------------------------|-------|------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| VS                       | 3.135 | 3.3  | 3.465 | V    | 3.3 V ± 5%                                                                                                                                              |  |  |  |
| VCP                      | VS    |      | 5.25  | V    | This supply is usually at the same voltage as VS; set VCP = $5.0 V \pm 5\%$ only if connecting a 5 V external VCO/VCXO                                  |  |  |  |
| <b>RSET Pin Resistor</b> |       | 4.12 |       | kΩ   | Sets internal biasing currents; connect to ground                                                                                                       |  |  |  |
| CPRSET Pin Resistor      |       | 5.1  |       | kΩ   | Sets internal CP current range, nominally 4.8 mA (CP_Isb = 600 $\mu$ A);<br>actual current can be calculated by CP_Isb = 3.06/CPRSET; connect to ground |  |  |  |

### **PLL CHARACTERISTICS**

Table 2.

| Parameter                                            | Min   | Тур  | Max   | Unit   | Test Conditions/Comments                                                                                                                                        |
|------------------------------------------------------|-------|------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REFERENCE INPUTS                                     |       |      |       |        |                                                                                                                                                                 |
| Differential Mode (REFIN, REFIN)                     |       |      |       |        | Differential mode (can accommodate single-ended input by ac grounding the unused complementary input                                                            |
| Input Frequency                                      | 0     |      | 250   | MHz    | Frequencies below about 1 MHz must be dc-coupled; be careful to match $V_{CM}$ (self-bias voltage)                                                              |
| Input Sensitivity                                    |       | 280  |       | mV p-p | PLL figure of merit (FOM) increases with increasing<br>slew rate (see Figure 11); the input sensitivity is<br>sufficient for ac-coupled LVDS and LVPECL signals |
| Self-Bias Voltage, REFIN                             | 1.35  | 1.60 | 1.75  | V      | Self-bias voltage of REFIN <sup>1</sup>                                                                                                                         |
| Self-Bias Voltage, REFIN                             | 1.30  | 1.50 | 1.60  | V      | Self-bias voltage of REFIN <sup>1</sup>                                                                                                                         |
| Input Resistance, REFIN                              | 4.0   | 4.8  | 5.9   | kΩ     | Self-biased <sup>1</sup>                                                                                                                                        |
| Input Resistance, REFIN                              | 4.4   | 5.3  | 6.4   | kΩ     | Self-biased <sup>1</sup>                                                                                                                                        |
| Dual Single-Ended Mode (REF1, REF2)                  |       |      |       |        | Two single-ended CMOS-compatible inputs                                                                                                                         |
| Input Frequency (AC-Coupled with<br>DC Offset Off)   | 10    |      | 250   | MHz    | Slew rate must be > 50 V/µs                                                                                                                                     |
| Input Frequency (AC-Coupled<br>with DC Offset On)    |       |      | 250   | MHz    | Slew rate must be > 50 V/ $\mu$ s, and input amplitude sensitivity specification must be met; see input sensitivity                                             |
| Input Frequency (DC-Coupled)                         | 0     |      | 250   | MHz    | Slew rate > 50 V/µs; CMOS levels                                                                                                                                |
| Input Sensitivity (AC-Coupled<br>with DC Offset Off) | 0.55  |      | 3.28  | V р-р  | VIH must not exceed VS                                                                                                                                          |
| Input Sensitivity (AC-Coupled<br>with DC Offset On)  | 1.5   |      | 2.78  | V р-р  | VIH must not exceed VS                                                                                                                                          |
| Input Logic High, DC Offset Off                      | 2.0   |      |       | V      |                                                                                                                                                                 |
| Input Logic Low, DC Offset Off                       |       |      | 0.8   | V      |                                                                                                                                                                 |
| Input Current                                        | -100  |      | +100  | μΑ     |                                                                                                                                                                 |
| Input Capacitance                                    |       | 2    |       | pF     | Each pin, REFIN (REF1)/REFIN (REF2)                                                                                                                             |
| Pulse Width High/Low                                 | 1.8   |      |       | ns     | Amount of time a square wave is high/low determines the allowable input duty cycle                                                                              |
| Crystal Oscillator                                   |       |      |       |        |                                                                                                                                                                 |
| Crystal Resonator Frequency Range                    | 16.62 |      | 33.33 | MHz    |                                                                                                                                                                 |
| Maximum Crystal Motional Resistance                  |       |      | 30    | Ω      |                                                                                                                                                                 |
| PHASE/FREQUENCY DETECTOR (PFD)                       |       |      |       |        |                                                                                                                                                                 |
| PFD Input Frequency                                  |       |      | 100   | MHz    | Antibacklash pulse width = 1.3 ns, 2.9 ns                                                                                                                       |
|                                                      |       |      | 45    | MHz    | Antibacklash pulse width = 6.0 ns                                                                                                                               |
| Reference Input Clock Doubler Frequency              | 0.004 |      | 50    | MHz    | Antibacklash pulse width = 1.3 ns, 2.9 ns                                                                                                                       |
| Antibacklash Pulse Width                             |       | 1.3  |       | ns     | Register 0x017[1:0] = 01b                                                                                                                                       |
|                                                      |       | 2.9  |       | ns     | Register 0x017[1:0] = 00b; Register 0x017[1:0] = 11b                                                                                                            |
|                                                      |       | 6.0  |       | ns     | Register 0x017[1:0] = 10b                                                                                                                                       |

# AD9522-5

| Parameter                                                          | Min  | Тур  | Мах  | Unit | Test Conditions/Comments                                                                                                             |
|--------------------------------------------------------------------|------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------|
| CHARGE PUMP (CP)                                                   |      |      |      |      |                                                                                                                                      |
| I <sub>CP</sub> Sink/Source                                        |      |      |      |      | Programmable                                                                                                                         |
| High Value                                                         |      | 4.8  |      | mA   | With CPRSET = 5.1 k $\Omega$ ; higher I <sub>CP</sub> is possible by changing CPRSET                                                 |
| Low Value                                                          |      | 0.60 |      | mA   | With CPRSET = 5.1 k $\Omega$ ; lower I <sub>CP</sub> is possible by changing CPRSET                                                  |
| Absolute Accuracy                                                  |      | 2.5  |      | %    | Charge pump voltage set to $V_{CP}/2$                                                                                                |
| CPRSET Range                                                       | 2.7  |      | 10   | kΩ   |                                                                                                                                      |
| I <sub>CP</sub> High Impedance Mode Leakage                        |      | 1    |      | nA   |                                                                                                                                      |
| Sink-and-Source Current Matching                                   |      | 1    |      | %    | $0.5 V < V_{CP} < VCP - 0.5 V$ ; $V_{CP}$ is the voltage on the CP (charge pump) pin; VCP is the voltage on the VCP power supply pin |
| ICP VS. VCP                                                        |      | 1.5  |      | %    | $0.5 V < V_{CP} < VCP - 0.5 V$                                                                                                       |
| I <sub>CP</sub> vs. Temperature                                    |      | 2    |      | %    | $V_{CP} = VCP/2 V$                                                                                                                   |
| PRESCALER (PART OF N DIVIDER)                                      |      |      |      |      |                                                                                                                                      |
| Prescaler Input Frequency                                          |      |      |      |      |                                                                                                                                      |
| P = 1 FD                                                           |      |      | 300  | MHz  |                                                                                                                                      |
| P = 2 FD                                                           |      |      | 600  | MHz  |                                                                                                                                      |
| P = 3 FD                                                           |      |      | 900  | MHz  |                                                                                                                                      |
| P = 2 DM (2/3)                                                     |      |      | 200  | MHz  |                                                                                                                                      |
| P = 4 DM (4/5)                                                     |      |      | 1000 | MHz  |                                                                                                                                      |
| P = 8 DM (8/9)                                                     |      |      | 2400 | MHz  |                                                                                                                                      |
| P = 16 DM (16/17)                                                  |      |      | 3000 | MHz  |                                                                                                                                      |
| P = 32 DM (32/33)                                                  |      |      | 3000 | MHz  |                                                                                                                                      |
| Prescaler Output Frequency                                         |      |      | 300  | MHz  | A, B counter input frequency (prescaler input frequency divided by P)                                                                |
| PLL N DIVIDER DELAY                                                |      |      |      |      | Register 0x019[2:0]; see Table 47                                                                                                    |
| 000                                                                |      | Off  |      |      |                                                                                                                                      |
| 001                                                                |      | 385  |      | ps   |                                                                                                                                      |
| 010                                                                |      | 504  |      | ps   |                                                                                                                                      |
| 011                                                                |      | 623  |      | ps   |                                                                                                                                      |
| 100                                                                |      | 743  |      | ps   |                                                                                                                                      |
| 101                                                                |      | 866  |      | ps   |                                                                                                                                      |
| 110                                                                |      | 989  |      | ps   |                                                                                                                                      |
| 111                                                                |      | 1112 |      | ps   |                                                                                                                                      |
| PLL R DIVIDER DELAY                                                |      |      |      |      | Register 0x019[5:3]; see Table 47                                                                                                    |
| 000                                                                |      | Off  |      |      |                                                                                                                                      |
| 001                                                                |      | 365  |      | ps   |                                                                                                                                      |
| 010                                                                |      | 486  |      | ps   |                                                                                                                                      |
| 011                                                                |      | 608  |      | ps   |                                                                                                                                      |
| 100                                                                |      | 730  |      | ps   |                                                                                                                                      |
| 101                                                                |      | 852  |      | ps   |                                                                                                                                      |
| 110                                                                |      | 976  |      | ps   |                                                                                                                                      |
| 111                                                                |      | 1101 |      | ps   |                                                                                                                                      |
| PHASE OFFSET IN ZERO DELAY                                         |      |      |      |      | REF refers to REFIN (REF1)/REFIN (REF2)                                                                                              |
| Phase Offset (REF-to-LVDS Clock Output<br>Pins) in Zero Delay Mode | 1890 | 2348 | 3026 | ps   | When N delay and R delay are bypassed                                                                                                |
| Phase Offset (REF-to-LVDS Clock Output<br>Pins) in Zero Delay Mode | 900  | 1217 | 1695 | ps   | When N delay = Setting 111 and R delay is bypassed                                                                                   |

| Demonstern                                  |     | <b>T</b> |     | 11     |                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------|-----|----------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                   | Min | Тур      | Max | Unit   | Test Conditions/Comments                                                                                                                                                                                                                                                                                                                                             |
| NOISE CHARACTERISTICS                       |     |          |     |        |                                                                                                                                                                                                                                                                                                                                                                      |
| In-Band Phase Noise of the Charge Pump/     |     |          |     |        | The PLL in-band phase noise floor is estimated by                                                                                                                                                                                                                                                                                                                    |
| Phase Frequency Detector (In-Band           |     |          |     |        | measuring the in-band phase noise at the output of                                                                                                                                                                                                                                                                                                                   |
| Means Within the LBW of the PLL)            |     |          |     |        | the VCO and subtracting 20 log(N) (where N is the value of the N divider)                                                                                                                                                                                                                                                                                            |
| At 500 kHz PFD Frequency                    |     | -165     |     | dBc/Hz |                                                                                                                                                                                                                                                                                                                                                                      |
| At 1 MHz PFD Frequency                      |     | -162     |     | dBc/Hz |                                                                                                                                                                                                                                                                                                                                                                      |
| At 10 MHz PFD Frequency                     |     | -152     |     | dBc/Hz |                                                                                                                                                                                                                                                                                                                                                                      |
| At 50 MHz PFD Frequency                     |     | -144     |     | dBc/Hz |                                                                                                                                                                                                                                                                                                                                                                      |
| PLL Figure of Merit (FOM)                   |     | -222     |     | dBc/Hz | Reference slew rate > 0.5 V/ns; FOM + 10 log(f <sub>PFD</sub> ) is an<br>approximation of the PFD/CP in-band phase noise (in<br>the flat region) inside the PLL loop bandwidth; when<br>running closed-loop, the phase noise, as observed at<br>the VCO output, is increased by 20 log(N); PLL figure of<br>merit decreases with decreasing slew rate; see Figure 11 |
| PLL DIGITAL LOCK DETECT WINDOW <sup>2</sup> |     |          |     |        | Signal available at the LD, STATUS, and REFMON pins<br>when selected by appropriate register settings; lock<br>detect window settings can be varied by changing the<br>CPRSET resistor                                                                                                                                                                               |
| Lock Threshold (Coincidence of Edges)       |     |          |     |        | Selected by Register 0x017[1:0] and Register 0x018[4]<br>(this is the threshold to go from unlock to lock)                                                                                                                                                                                                                                                           |
| Low Range (ABP 1.3 ns, 2.9 ns)              |     | 3.5      |     | ns     | Register 0x017[1:0] = 00b, 01b, 11b; Register 0x018[4] = 1b                                                                                                                                                                                                                                                                                                          |
| High Range (ABP 1.3 ns, 2.9 ns)             |     | 7.5      |     | ns     | Register 0x017[1:0] = 00b, 01b, 11b; Register 0x018[4] = 0b                                                                                                                                                                                                                                                                                                          |
| High Range (ABP 6.0 ns)                     |     | 3.5      |     | ns     | Register 0x017[1:0] = 10b; Register 0x018[4] = 0b                                                                                                                                                                                                                                                                                                                    |
| Unlock Threshold (Hysteresis) <sup>2</sup>  |     |          |     |        | Selected by Register 0x017[1:0] and Register 0x018[4] (this is the threshold to go from lock to unlock)                                                                                                                                                                                                                                                              |
| Low Range (ABP 1.3 ns, 2.9 ns)              |     | 7        |     | ns     | Register 0x017[1:0] = 00b, 01b, 11b; Register 0x018[4] = 1b                                                                                                                                                                                                                                                                                                          |
| High Range (ABP 1.3 ns, 2.9 ns)             |     | 15       |     | ns     | Register 0x017[1:0] = 00b, 01b, 11b; Register 0x018[4] = 0b                                                                                                                                                                                                                                                                                                          |
| High Range (ABP 6.0 ns)                     |     | 11       |     | ns     | Register 0x017[1:0] = 10b; Register 0x018[4] = 0b                                                                                                                                                                                                                                                                                                                    |

<sup>1</sup> The REFIN and REFIN self-bias points are offset slightly to avoid chatter on an open input condition. <sup>2</sup> For reliable operation of the digital lock detect, the period of the PFD frequency must be greater than the unlock-after-lock time.

### **CLOCK INPUTS**

# Table 3.

| Parameter                                  | Min            | Тур  | Max | Unit   | Test Conditions/Comments                                                                                                                                        |
|--------------------------------------------|----------------|------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLOCK INPUTS (CLK, CLK)                    |                |      |     |        | Differential input                                                                                                                                              |
| Input Frequency                            | 0 <sup>1</sup> |      | 2.4 | GHz    | High frequency distribution (VCO divider)                                                                                                                       |
|                                            | 01             |      | 2   | GHz    | Distribution only (VCO divider bypassed); this is the frequency<br>range supported by the channel divider, see the Channel<br>Divider Maximum Frequency section |
| Input Sensitivity, Differential            |                | 150  |     | mV p-p | Measured at 2.4 GHz; jitter performance is improved with slew rates > 1 V/ns                                                                                    |
| Input Level, Differential                  |                |      | 2   | V р-р  | Larger voltage swings can turn on the protection diodes and can degrade jitter performance                                                                      |
| Input Common-Mode Voltage, V <sub>см</sub> | 1.3            | 1.57 | 1.8 | V      | Self-biased; enables ac coupling                                                                                                                                |
| Input Common-Mode Range, V <sub>CMR</sub>  | 1.3            |      | 1.8 | V      | With 200 mV p-p signal applied; dc-coupled                                                                                                                      |
| Input Sensitivity, Single-Ended            |                | 150  |     | mV p-p | CLK ac-coupled; CLK ac-bypassed to RF ground                                                                                                                    |
| Input Resistance                           | 3.9            | 4.7  | 5.7 | kΩ     | Self-biased                                                                                                                                                     |
| Input Capacitance                          |                | 2    |     | рF     |                                                                                                                                                                 |

 $^{1}$  Below about 1 MHz, the input must be dc-coupled. Take care to match  $V_{\mbox{\tiny CM}}.$ 

### **CLOCK OUTPUTS**

#### Table 4.

| Parameter                                                                                                                                                                              | Min      | Тур  | Max   | Unit | Test Conditions/Comments                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LVDS CLOCK OUTPUTS                                                                                                                                                                     |          |      |       |      | Termination = 100 $\Omega$ across differential pair                                                                                                                                                                                                                                           |
| OUT0, OUT1, OUT2, OUT3, OUT4, OUT5,<br>OUT6, OUT7, OUT8, OUT9, OUT10, OUT11                                                                                                            |          |      |       |      | Differential (OUT, OUT)                                                                                                                                                                                                                                                                       |
| Output Frequency                                                                                                                                                                       |          |      | 800   | MHz  | The AD9522 outputs toggle at higher frequencies, but the output amplitude may not meet the $V_{\text{OD}}$ specification                                                                                                                                                                      |
| Output Differential Voltage, $V_{\text{OD}}$                                                                                                                                           | 247      | 360  | 454   | mV   | $V_{OH} - V_{OL}$ for each leg of a differential pair for default<br>amplitude setting with the driver not toggling; the<br>peak-to-peak amplitude measured using a differential<br>probe across the differential pair with the driver<br>toggling is roughly 2× these values (see Figure 17) |
| Delta Vod                                                                                                                                                                              |          |      | 25    | mV   | Absolute difference between voltage swing of normal pin and inverted pin, output driver static                                                                                                                                                                                                |
| Output Offset Voltage, Vos                                                                                                                                                             | 1.125    | 1.25 | 1.375 | V    | $(V_{OH} + V_{OL})/2$ across a differential pair                                                                                                                                                                                                                                              |
| Delta V <sub>os</sub>                                                                                                                                                                  |          |      | 25    | mV   | This is the absolute value of the difference between Vos when the normal output is high vs. when the complementary output is high                                                                                                                                                             |
| Short-Circuit Current, IsA, IsB                                                                                                                                                        |          | 14   | 24    | mA   | Output shorted to GND                                                                                                                                                                                                                                                                         |
| Tristate Leakage Current per Output                                                                                                                                                    |          | <1   |       | nA   | Output in tristate with 100 $\Omega$ across differential pair                                                                                                                                                                                                                                 |
| CMOS CLOCK OUTPUTS                                                                                                                                                                     |          |      |       |      |                                                                                                                                                                                                                                                                                               |
| OUT0A, OUT0B, OUT1A, OUT1B, OUT2A,<br>OUT2B, OUT3A, OUT3B, OUT4A, OUT4B,<br>OUT5A, OUT5B, OUT6A, OUT6B, OUT7A,<br>OUT7B, OUT8A, OUT8B, OUT9A, OUT9B,<br>OUT10A, OUT10B, OUT11A, OUT11B |          |      |       |      | Single-ended; termination = 10 pF                                                                                                                                                                                                                                                             |
| Output Frequency                                                                                                                                                                       |          |      | 250   | MHz  | See Figure 18                                                                                                                                                                                                                                                                                 |
| Output Voltage High, Voh                                                                                                                                                               | VS – 0.1 |      |       | V    | At 1 mA load                                                                                                                                                                                                                                                                                  |
| Output Voltage Low, Vol                                                                                                                                                                |          |      | 0.1   | V    | At 1 mA load                                                                                                                                                                                                                                                                                  |
| Output Voltage High, Vон                                                                                                                                                               | 2.7      |      |       | V    | At 10 mA load                                                                                                                                                                                                                                                                                 |
| Output Voltage Low, Vol                                                                                                                                                                |          |      | 0.5   | V    | At 10 mA load                                                                                                                                                                                                                                                                                 |

### TIMING CHARACTERISTICS

| Parameter                                                 | Min  | Тур  | Max  | Unit  | Test Conditions/Comments                            |
|-----------------------------------------------------------|------|------|------|-------|-----------------------------------------------------|
| LVDS OUTPUT RISE/FALL TIMES                               |      |      |      |       | Termination = 100 $\Omega$ across differential pair |
| Output Rise Time, t <sub>RP</sub>                         |      | 150  | 350  | ps    | 20% to 80%, measured differentially                 |
| Output Fall Time, t <sub>FP</sub>                         |      | 150  | 350  | ps    | 80% to 20%, measured differentially                 |
| PROPAGATION DELAY, tLVDS, CLK-TO-LVDS OUTPUT              |      |      |      |       |                                                     |
| For All Divide Values                                     | 1866 | 2313 | 2812 | ps    | High frequency clock distribution configuration     |
|                                                           | 1808 | 2245 | 2740 | ps    | Clock distribution configuration                    |
| Variation with Temperature                                |      | 1    |      | ps/°C |                                                     |
| OUTPUT SKEW, LVDS OUTPUTS <sup>1</sup>                    |      |      |      |       | Termination = 100 $\Omega$ across differential pair |
| LVDS Outputs That Share the Same Divider                  |      | 7    | 60   | ps    |                                                     |
| LVDS Outputs on Different Dividers                        |      | 19   | 162  | ps    |                                                     |
| All LVDS Outputs Across Multiple Parts                    |      |      | 432  | ps    |                                                     |
| CMOS OUTPUT RISE/FALL TIMES                               |      |      |      |       | Termination = open                                  |
| Output Rise Time, t <sub>RC</sub>                         |      | 625  | 835  | ps    | 20% to 80%; C <sub>LOAD</sub> = 10 pF               |
| Output Fall Time, t <sub>FC</sub>                         |      | 625  | 800  | ps    | 80% to 20%; C <sub>LOAD</sub> = 10 pF               |
| PROPAGATION DELAY, t <sub>CMOS</sub> , CLK-TO-CMOS OUTPUT |      |      |      |       | Clock distribution configuration                    |
| For All Divide Values                                     | 1913 | 2400 | 2950 | ps    |                                                     |
| Variation with Temperature                                |      | 2    |      | ps/°C |                                                     |
| OUTPUT SKEW, CMOS OUTPUTS <sup>1</sup>                    |      |      |      |       |                                                     |
| CMOS Outputs That Share the Same Divider                  |      | 10   | 55   | ps    |                                                     |
| All CMOS Outputs on Different Dividers                    |      | 27   | 230  | ps    |                                                     |
| All CMOS Outputs Across Multiple Parts                    |      |      | 500  | ps    |                                                     |
| OUTPUT SKEW, LVDS-TO-CMOS OUTPUT <sup>1</sup>             |      |      |      |       | All settings identical; different logic type        |
| Outputs That Share the Same Divider                       | -31  | +152 | +495 | ps    | LVDS to CMOS on the same part                       |
| Outputs That Are on Different Dividers                    | -193 | +160 | +495 | ps    | LVDS to CMOS on the same part                       |

<sup>1</sup> The output skew is the difference between any two similar delay paths while operating at the same voltage and temperature.

#### **Timing Diagrams**

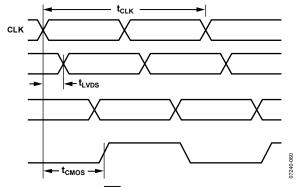
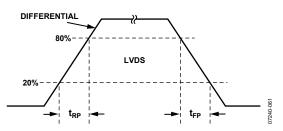
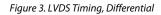
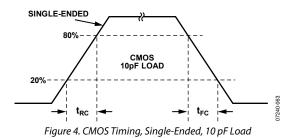






Figure 2. CLK/ $\overline{CLK}$  to Clock Output Timing, DIV = 1







## CLOCK OUTPUT ADDITIVE PHASE NOISE (DISTRIBUTION ONLY; VCO DIVIDER NOT USED)

| Table 6. |
|----------|
|----------|

| Parameter                        | Min | Тур  | Max | Unit   | Test Conditions/Comments                                |
|----------------------------------|-----|------|-----|--------|---------------------------------------------------------|
| CLK-TO-LVDS ADDITIVE PHASE NOISE |     |      |     |        | Distribution section only; does not include PLL and VCO |
| CLK = 1.6 GHz, Output = 800 MHz  |     |      |     |        | Input slew rate > 1 V/ns                                |
| Divider = 2                      |     |      |     |        |                                                         |
| At 10 Hz Offset                  |     | -100 |     | dBc/Hz |                                                         |
| At 100 Hz Offset                 |     | -110 |     | dBc/Hz |                                                         |
| At 1 kHz Offset                  |     | -117 |     | dBc/Hz |                                                         |
| At 10 kHz Offset                 |     | -126 |     | dBc/Hz |                                                         |
| At 100 kHz Offset                |     | -134 |     | dBc/Hz |                                                         |
| At 1 MHz Offset                  |     | -137 |     | dBc/Hz |                                                         |
| At 10 MHz Offset                 |     | -147 |     | dBc/Hz |                                                         |
| At 100 MHz Offset                |     | -148 |     | dBc/Hz |                                                         |
| CLK = 1 GHz, Output = 200 MHz    |     |      |     |        | Input slew rate > 1 V/ns                                |
| Divider = 5                      |     |      |     |        |                                                         |
| At 10 Hz Offset                  |     | -111 |     | dBc/Hz |                                                         |
| At 100 Hz Offset                 |     | -123 |     | dBc/Hz |                                                         |
| At 1 kHz Offset                  |     | -132 |     | dBc/Hz |                                                         |
| At 10 kHz Offset                 |     | -141 |     | dBc/Hz |                                                         |
| At 100 kHz Offset                |     | -146 |     | dBc/Hz |                                                         |
| At 1 MHz Offset                  |     | -150 |     | dBc/Hz |                                                         |
| >10 MHz Offset                   |     | -156 |     | dBc/Hz |                                                         |
| CLK-TO-CMOS ADDITIVE PHASE NOISE |     |      |     |        | Distribution section only; does not include PLL and VCO |
| CLK = 1 GHz, Output = 500 MHz    |     |      |     |        | Input slew rate > 1 V/ns                                |
| Divider = 2                      |     |      |     |        |                                                         |
| At 10 Hz Offset                  |     | -102 |     | dBc/Hz |                                                         |
| At 100 Hz Offset                 |     | -114 |     | dBc/Hz |                                                         |
| At 1 kHz Offset                  |     | -122 |     | dBc/Hz |                                                         |
| At 10 kHz Offset                 |     | -129 |     | dBc/Hz |                                                         |
| At 100 kHz Offset                |     | -135 |     | dBc/Hz |                                                         |
| At 1 MHz Offset                  |     | -140 |     | dBc/Hz |                                                         |
| >10 MHz Offset                   |     | -150 |     | dBc/Hz |                                                         |
| CLK = 1 GHz, Output = 50 MHz     |     |      |     |        | Input slew rate > 1 V/ns                                |
| Divider = 20                     |     |      |     |        |                                                         |
| At 10 Hz Offset                  |     | -125 |     | dBc/Hz |                                                         |
| At 100 Hz Offset                 |     | -136 |     | dBc/Hz |                                                         |
| At 1 kHz Offset                  |     | -144 |     | dBc/Hz |                                                         |
| At 10 kHz Offset                 |     | -152 |     | dBc/Hz |                                                         |
| At 100 kHz Offset                |     | -157 |     | dBc/Hz |                                                         |
| At 1 MHz Offset                  |     | -160 |     | dBc/Hz |                                                         |
| >10 MHz Offset                   |     | -164 |     | dBc/Hz |                                                         |

### CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING EXTERNAL VCXO)

#### Table 7.

| Parameter                           | Min | Тур | Max | Unit   | Test Conditions/Comments                                                                                                                  |
|-------------------------------------|-----|-----|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------|
| LVDS OUTPUT ABSOLUTE TIME JITTER    |     |     |     |        | Application example based on a typical setup using an<br>external 245.76 MHz VCXO (Toyocom TCO-2112);<br>reference = 15.36 MHz; R DIV = 1 |
| LVDS = 245.76 MHz; PLL LBW = 125 Hz |     | 87  |     | fs rms | Integration bandwidth = 200 kHz to 5 MHz                                                                                                  |
|                                     |     | 108 |     | fs rms | Integration bandwidth = 200 kHz to 10 MHz                                                                                                 |
|                                     |     | 146 |     | fs rms | Integration bandwidth = 12 kHz to 20 MHz                                                                                                  |
| LVDS = 122.88 MHz; PLL LBW = 125 Hz |     | 120 |     | fs rms | Integration bandwidth = 200 kHz to 5 MHz                                                                                                  |
|                                     |     | 151 |     | fs rms | Integration bandwidth = 200 kHz to 10 MHz                                                                                                 |
|                                     |     | 207 |     | fs rms | Integration bandwidth = 12 kHz to 20 MHz                                                                                                  |
| LVDS = 61.44 MHz; PLL LBW = 125 Hz  |     | 157 |     | fs rms | Integration bandwidth = 200 kHz to 5 MHz                                                                                                  |
|                                     |     | 210 |     | fs rms | Integration bandwidth = 200 kHz to 10 MHz                                                                                                 |
|                                     |     | 295 |     | fs rms | Integration bandwidth = $12 \text{ kHz}$ to $20 \text{ MHz}$                                                                              |

### CLOCK OUTPUT ADDITIVE TIME JITTER (VCO DIVIDER NOT USED)

#### Table 8.

| Parameter                        | Min | Тур | Max | Unit   | Test Conditions/Comments                                                                         |
|----------------------------------|-----|-----|-----|--------|--------------------------------------------------------------------------------------------------|
| LVDS OUTPUT ADDITIVE TIME JITTER |     |     |     |        | Distribution section only; does not include PLL and VCO; measured at rising edge of clock signal |
| CLK = 622.08 MHz                 |     | 69  |     | fs rms | Integration bandwidth = $12 \text{ kHz}$ to $20 \text{ MHz}$                                     |
| Any LVDS Output = 622.08 MHz     |     |     |     |        |                                                                                                  |
| Divide Ratio = 1                 |     |     |     |        |                                                                                                  |
| CLK = 622.08 MHz                 |     | 116 |     | fs rms | Integration bandwidth = 12 kHz to 20 MHz                                                         |
| Any LVDS Output = 155.52 MHz     |     |     |     |        |                                                                                                  |
| Divide Ratio = 4                 |     |     |     |        |                                                                                                  |
| CLK = 100 MHz                    |     | 263 |     | fs rms | Calculated from SNR of ADC method                                                                |
| Any LVDS Output = 100 MHz        |     |     |     |        | Broadband jitter                                                                                 |
| Divide Ratio = 1                 |     |     |     |        |                                                                                                  |
| CLK = 500 MHz                    |     | 242 |     | fs rms | Calculated from SNR of ADC method                                                                |
| Any LVDS Output = 100 MHz        |     |     |     |        | Broadband jitter                                                                                 |
| Divide Ratio = 5                 |     |     |     |        |                                                                                                  |
| CMOS OUTPUT ADDITIVE TIME JITTER |     |     |     |        | Distribution section only; does not include PLL and VCO                                          |
| CLK = 200 MHz                    |     | 289 |     | fs rms | Calculated from SNR of ADC method                                                                |
| Any CMOS Output Pair = 100 MHz   |     |     |     |        | Broadband jitter                                                                                 |
| Divide Ratio = 2                 |     |     |     |        |                                                                                                  |

### CLOCK OUTPUT ADDITIVE TIME JITTER (VCO DIVIDER USED)

#### Table 9.

| Parameter                                                                                          | Min | Тур | Max | Unit   | Test Conditions/Comments                                                                     |
|----------------------------------------------------------------------------------------------------|-----|-----|-----|--------|----------------------------------------------------------------------------------------------|
| LVDS OUTPUT ADDITIVE TIME JITTER                                                                   |     |     |     |        | Distribution section only; does not include<br>PLL and VCO; uses rising edge of clock signal |
| CLK = 500 MHz; VCO DIV = 5; LVDS = 100 MHz;<br>Bypass Channel Divider; Duty-Cycle Correction = On  |     | 248 |     | fs rms | Calculated from SNR of ADC method<br>(broadband jitter)                                      |
| CMOS OUTPUT ADDITIVE TIME JITTER                                                                   |     |     |     |        | Distribution section only; does not include<br>PLL and VCO; uses rising edge of clock signal |
| CLK = 200 MHz; VCO DIV = 2; CMOS = 100 MHz;<br>Bypass Channel Divider; Duty-Cycle Correction = Off |     | 290 |     | fs rms | Calculated from SNR of ADC method<br>(broadband jitter)                                      |
| CLK = 200 MHz; VCO DIV = 1; CMOS = 100 MHz;<br>Bypass Channel Divider; Duty-Cycle Correction = Off |     | 288 |     | fs rms | Calculated from SNR of ADC method<br>(broadband jitter)                                      |

### SERIAL CONTROL PORT—SPI MODE

| Parameter                                             | Min | Тур  | Max | Unit | Test Conditions/Comments                                              |
|-------------------------------------------------------|-----|------|-----|------|-----------------------------------------------------------------------|
| CS (INPUT)                                            |     | ,,   |     |      | $\overline{\text{CS}}$ has an internal 30 k $\Omega$ pull-up resistor |
| Input Logic 1 Voltage                                 | 2.0 |      |     | v    |                                                                       |
| Input Logic 0 Voltage                                 |     |      | 0.8 | v    |                                                                       |
| Input Logic 1 Current                                 |     |      | 3   | μA   |                                                                       |
| Input Logic 0 Current                                 |     | -110 |     | μA   | The minus sign indicates that current is flowing out of               |
|                                                       |     |      |     |      | the AD9522, which is due to the internal pull-up resistor             |
| Input Capacitance                                     |     | 2    |     | рF   |                                                                       |
| SCLK (INPUT) IN SPI MODE                              |     |      |     |      | SCLK has an internal 30 k $\Omega$ pull-down resistor in SPI          |
|                                                       |     |      |     |      | mode, but not in I <sup>2</sup> C mode                                |
| Input Logic 1 Voltage                                 | 2.0 |      |     | V    |                                                                       |
| Input Logic 0 Voltage                                 |     |      | 0.8 | V    |                                                                       |
| Input Logic 1 Current                                 |     | 110  |     | μΑ   |                                                                       |
| Input Logic 0 Current                                 |     |      | 1   | μΑ   |                                                                       |
| Input Capacitance                                     |     | 2    |     | рF   |                                                                       |
| SDIO (WHEN AN INPUT IN BIDIRECTIONAL MODE)            |     |      |     |      |                                                                       |
| Input Logic 1 Voltage                                 | 2.0 |      |     | V    |                                                                       |
| Input Logic 0 Voltage                                 |     |      | 0.8 | V    |                                                                       |
| Input Logic 1 Current                                 |     | 1    |     | μΑ   |                                                                       |
| Input Logic 0 Current                                 |     | 1    |     | μΑ   |                                                                       |
| Input Capacitance                                     |     | 2    |     | рF   |                                                                       |
| SDIO, SDO (OUTPUTS)                                   |     |      |     |      |                                                                       |
| Output Logic 1 Voltage                                | 2.7 |      |     | V    | At 1 mA current; maximum recommended current: 5 mA                    |
| Output Logic 0 Voltage                                |     |      | 0.4 | V    | At 1 mA current                                                       |
| TIMING                                                |     |      |     |      |                                                                       |
| Clock Rate (SCLK, 1/t <sub>SCLK</sub> )               |     |      | 25  | MHz  |                                                                       |
| Pulse Width High, t <sub>HIGH</sub>                   | 16  |      |     | ns   |                                                                       |
| Pulse Width Low, t <sub>LOW</sub>                     | 16  |      |     | ns   |                                                                       |
| SDIO to SCLK Setup, t <sub>DS</sub>                   | 4   |      |     | ns   |                                                                       |
| SCLK to SDIO Hold, tDH                                | 0   |      |     | ns   |                                                                       |
| SCLK to Valid SDIO and SDO, t <sub>DV</sub>           |     |      | 11  | ns   |                                                                       |
| $\overline{\text{CS}}$ to SCLK Setup and Hold, ts, tc | 2   |      |     | ns   |                                                                       |
| CS Minimum Pulse Width High, tPWH                     | 3   |      |     | ns   |                                                                       |

## SERIAL CONTROL PORT—I<sup>2</sup>C MODE

#### Table 11.

| Parameter                                                                                                               | Min                     | Тур | Max             | Unit | Test Conditions/Comments                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------|-----|-----------------|------|------------------------------------------------------------------------------------------------------------------------------|
| SDA, SCL (WHEN INPUTTING DATA)                                                                                          |                         |     |                 |      |                                                                                                                              |
| Input Logic 1 Voltage                                                                                                   | $0.7 \times VS$         |     |                 | V    |                                                                                                                              |
| Input Logic 0 Voltage                                                                                                   |                         |     | $0.3 \times VS$ | V    |                                                                                                                              |
| Input Current with an Input Voltage Between $0.1 \times VS$ and $0.9 \times VS$                                         | -10                     |     | +10             | μΑ   |                                                                                                                              |
| Hysteresis of Schmitt Trigger Inputs                                                                                    | $0.015 \times VS$       |     |                 | V    |                                                                                                                              |
| Pulse Width of Spikes That Must Be Suppressed by<br>the Input Filter, tspike                                            |                         |     | 50              | ns   |                                                                                                                              |
| SDA (WHEN OUTPUTTING DATA)                                                                                              |                         |     |                 |      |                                                                                                                              |
| Output Logic 0 Voltage at 3 mA Sink Current                                                                             |                         |     | 0.4             | V    |                                                                                                                              |
| Output Fall Time from VIH <sub>MIN</sub> to VIL <sub>MAX</sub> with a Bus<br>Capacitance from 10 pF to 400 pF           | 20 + 0.1 C <sub>b</sub> |     | 250             | ns   | $C_b$ = capacitance of one bus line in pF                                                                                    |
| TIMING                                                                                                                  |                         |     |                 |      | Note that all I <sup>2</sup> C timing values refer to VIH <sub>MIN</sub> (0.3 × VS) and VIL <sub>MAX</sub> levels (0.7 × VS) |
| Clock Rate (SCL, f <sub>12C</sub> )                                                                                     |                         |     | 400             | kHz  |                                                                                                                              |
| Bus Free Time Between a Stop and Start Condition, t <sub>IDLE</sub>                                                     | 1.3                     |     |                 | μs   |                                                                                                                              |
| Setup Time for a Repeated Start Condition, tSET; STR                                                                    | 0.6                     |     |                 | μs   |                                                                                                                              |
| Hold Time (Repeated) Start Condition (After This Period,<br>the First Clock Pulse Is Generated), t <sub>HLD</sub> , str | 0.6                     |     |                 | μs   |                                                                                                                              |
| Setup Time for Stop Condition, tSET; STP                                                                                | 0.6                     |     |                 | μs   |                                                                                                                              |
| Low Period of the SCL Clock, tLow                                                                                       | 1.3                     |     |                 | μs   |                                                                                                                              |
| High Period of the SCL Clock, t <sub>HIGH</sub>                                                                         | 0.6                     |     |                 | μs   |                                                                                                                              |
| SCL, SDA Rise Time, t <sub>RISE</sub>                                                                                   | $20 + 0.1 C_{b}$        |     | 300             | ns   | $C_b$ = capacitance of one bus line in pF                                                                                    |
| SCL, SDA Fall Time, t <sub>FALL</sub>                                                                                   | $20 + 0.1 C_b$          |     | 300             | ns   | $C_b$ = capacitance of one bus line in pF                                                                                    |
| Data Setup Time, t <sub>SET; DAT</sub>                                                                                  | 120                     |     |                 | ns   | This is a minor deviation from the original I <sup>2</sup> C specification of 100 ns minimum                                 |
| Data Hold Time, t <sub>HLD; DAT</sub>                                                                                   | 140                     |     | 880             | ns   | This is a minor deviation from the original I <sup>2</sup> C specification of 0 ns minimum <sup>1</sup>                      |
| Capacitive Load for Each Bus Line, $C_b$                                                                                |                         |     | 400             | рF   |                                                                                                                              |

<sup>1</sup> According to the original I<sup>2</sup>C specification, an I<sup>2</sup>C master must also provide a minimum hold time of 300 ns for the SDA signal to bridge the undefined region of the SCL falling edge.

# $\overline{\text{PD}},\overline{\text{SYNC}},\text{AND}\,\overline{\text{RESET}}\,\text{PINS}$

### Table 12.

| Parameter                                              | Min | Тур  | Max | Unit | Test Conditions/Comments                                                                                          |
|--------------------------------------------------------|-----|------|-----|------|-------------------------------------------------------------------------------------------------------------------|
| INPUT CHARACTERISTICS                                  |     |      |     |      | Each of these pins has an 30 k $\Omega$ internal pull-up resistor                                                 |
| Logic 1 Voltage                                        | 2.0 |      |     | V    |                                                                                                                   |
| Logic 0 Voltage                                        |     |      | 0.8 | V    |                                                                                                                   |
| Logic 1 Current                                        |     |      | 1   | μA   |                                                                                                                   |
| Logic 0 Current                                        |     | -110 |     | μΑ   | The minus sign indicates that current is flowing out of the AD9522, which is due to the internal pull-up resistor |
| Capacitance                                            |     | 2    |     | рF   |                                                                                                                   |
| RESET TIMING                                           |     |      |     |      |                                                                                                                   |
| Pulse Width Low                                        | 50  |      |     | ns   |                                                                                                                   |
| <b>RESET</b> Inactive to Start of Register Programming | 100 |      |     | ns   |                                                                                                                   |
| SYNC TIMING                                            |     |      |     |      |                                                                                                                   |
| Pulse Width Low                                        | 1.3 |      |     | ns   | High speed clock is CLK input signal                                                                              |

### SERIAL PORT SETUP PINS: SP1, SP0

| Parameter     | Min             | Тур | Max              | Unit | Test Conditions/Comments                                                                                            |
|---------------|-----------------|-----|------------------|------|---------------------------------------------------------------------------------------------------------------------|
| SP1, SP0      |                 |     |                  |      | These pins do not have internal pull-up/pull-down resistors                                                         |
| Logic Level 0 |                 |     | $0.25 \times VS$ | V    | VS is the voltage on the VS pin                                                                                     |
| Logic Level ½ | $0.4 \times VS$ |     | 0.65 × VS        | V    | User can float these pins to obtain Logic Level $\frac{1}{2}$ ; if floating this pin, connect a capacitor to ground |
| Logic Level 1 | $0.8 \times VS$ |     |                  | V    |                                                                                                                     |

### LD, STATUS, AND REFMON PINS

#### Table 14.

| Parameter                                    | Min  | Тур | Max | Unit | Test Conditions/Comments                                                                                                                                                                                                            |
|----------------------------------------------|------|-----|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUTPUT CHARACTERISTICS                       |      |     |     |      | When selected as a digital output (CMOS); there are other<br>modes in which these pins are not CMOS digital outputs;<br>see Table 47, Register 0x017, Register 0x01A, and<br>Register 0x01B                                         |
| Output Voltage High, Vон                     | 2.7  |     |     | v    | At 1 mA current; maximum recommended current: 5 mA                                                                                                                                                                                  |
| Output Voltage Low, Vol                      |      |     | 0.4 | v    | At 1 mA current                                                                                                                                                                                                                     |
| MAXIMUM TOGGLE RATE                          |      | 100 |     | MHz  | Applies when mux is set to any divider or counter output,<br>or PFD up/down pulse; also applies in analog lock detect<br>mode; usually debug mode only; note that spurs can<br>couple to output when any of these pins are toggling |
| ANALOG LOCK DETECT                           |      |     |     |      |                                                                                                                                                                                                                                     |
| Capacitance                                  |      | 3   |     | pF   | On-chip capacitance; used to calculate RC time constant for analog lock detect read back; use a pull-up resistor                                                                                                                    |
| REF1, REF2, AND CLK FREQUENCY STATUS MONITOR |      |     |     |      |                                                                                                                                                                                                                                     |
| Normal Range                                 | 1.02 |     |     | MHz  | Frequency above which the monitor indicates the presence of the reference                                                                                                                                                           |
| Extended Range                               | 8    |     |     | kHz  | Frequency above which the monitor indicates the presence of the reference                                                                                                                                                           |
| LD PIN COMPARATOR                            |      |     |     |      |                                                                                                                                                                                                                                     |
| Trip Point                                   |      | 1.6 |     | V    |                                                                                                                                                                                                                                     |
| Hysteresis                                   |      | 260 |     | mV   |                                                                                                                                                                                                                                     |

### **POWER DISSIPATION**

### Table 15.

| Parameter                                                           | Min | Тур  | Max  | Unit | Test Conditions/Comments                                                                                                                                                        |
|---------------------------------------------------------------------|-----|------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POWER DISSIPATION, CHIP                                             |     |      |      |      | Does not include power dissipated in external resistors; all LVDS outputs terminated with 100 $\Omega$ across differential pair; all CMOS outputs have 10 pF capacitive loading |
| Power-On Default                                                    |     | 0.88 | 1.0  | W    | No clock; no programming; default register values                                                                                                                               |
| Distribution Only Mode; VCO Divider On;<br>One LVDS Output Enabled  |     | 0.36 | 0.43 | W    | $f_{CLK} = 2.4 \text{ GHz}$ ; $f_{OUT} = 200 \text{ MHz}$ ; VCO divider = 2; one LVDS output and output divider enabled; zero delay off                                         |
| Distribution Only Mode; VCO Divider Off;<br>One LVDS Output Enabled |     | 0.33 | 0.4  | W    | $f_{CLK} = 2.4 \text{ GHz}$ ; $f_{OUT} = 200 \text{ MHz}$ ; VCO divider bypassed; one LVDS output and output divider enabled; zero delay off                                    |
| Maximum Power, Full Operation                                       |     | 1.1  | 1.3  | W    | PLL on; VCO divider = 3; all channel dividers on; 12 LVDS outputs at 125 MHz; zero delay on                                                                                     |
| PD Power-Down                                                       |     | 35   | 50   | mW   | PD pin pulled low; does not include power dissipated in                                                                                                                         |
|                                                                     |     |      |      |      | termination resistors                                                                                                                                                           |
| PD Power-Down, Maximum Sleep                                        |     | 27   | 43   | mW   | PD pin pulled low; PLL power-down, Register 0x010[1:0] = 01b;                                                                                                                   |
|                                                                     |     |      |      |      | power-down SYNC, Register 0x230[2] = 1b; power-down distribution reference, Register 0x230[1] = 1b                                                                              |
| VCP Supply                                                          |     | 2.3  | 8    | mW   | PLL operating; typical closed-loop configuration                                                                                                                                |
| POWER DELTAS, INDIVIDUAL FUNCTIONS                                  |     |      |      |      | Power delta when a function is enabled/disabled                                                                                                                                 |
| VCO Divider On/Off                                                  |     | 33   | 43   | mW   | VCO divider not used                                                                                                                                                            |
| REFIN (Differential) Off                                            |     | 25   | 31   | mW   | Delta between reference input off and differential reference input mode                                                                                                         |
| REF1, REF2 (Single-Ended) On/Off                                    |     | 16   | 22   | mW   | Delta between reference inputs off and one single-ended<br>reference enabled; double this number if both REF1 and REF2<br>are powered up                                        |
| PLL Dividers and Phase Detector On/Off                              |     | 54   | 67   | mW   | PLL off to PLL on, normal operation; no reference enabled                                                                                                                       |
| LVDS Channel                                                        |     | 118  | 146  | mW   | No LVDS output on to one LVDS output on; channel divider set to 1                                                                                                               |
| LVDS Driver                                                         |     | 11   | 15   | mW   | Second LVDS output turned on, same channel                                                                                                                                      |
| CMOS Channel                                                        |     | 120  | 154  | mW   | No CMOS output on to one CMOS output on; channel divider set to 1; $f_{OUT} = 62.5$ MHz and 10 pF of capacitive loading                                                         |
| CMOS Driver On/Off                                                  |     | 16   | 30   | mW   | Additional CMOS outputs within the same channel turned on                                                                                                                       |
| Channel Divider Enabled                                             |     | 33   | 40   | mW   | Delta between divider bypassed (divide-by-1) and divide-by-2 to divide-by-32                                                                                                    |
| Zero Delay Block On/Off                                             |     | 30   | 35   | mW   |                                                                                                                                                                                 |

# **ABSOLUTE MAXIMUM RATINGS**

Table 16.

|                                                 | With              |                        |
|-------------------------------------------------|-------------------|------------------------|
| Parameter or Pin                                | <b>Respect to</b> | Rating                 |
| VS                                              | GND               | –0.3 V to +3.6 V       |
| VCP, CP                                         | GND               | –0.3 V to +5.8 V       |
| REFIN, REFIN                                    | GND               | –0.3 V to VS + 0.3 V   |
| RSET                                            | GND               | –0.3 V to VS + 0.3 V   |
| CPRSET                                          | GND               | –0.3 V to VS + 0.3 V   |
| CLK, CLK                                        | GND               | –0.3 V to VS + 0.3 V   |
| CLK                                             | CLK               | –1.2 V to +1.2 V       |
| SCLK/SCL, SDIO/SDA, SDO, CS                     | GND               | –0.3 V to VS + 0.3 V   |
| $OUT0, \overline{OUT0}, OUT1, \overline{OUT1},$ | GND               | –0.3 V to VS + 0.3 V   |
| OUT2, <u>OUT2</u> , OUT3, <u>OUT3</u> ,         |                   |                        |
| OUT4, <u>OUT4</u> , OUT5, <u>OUT5</u> ,         |                   |                        |
| OUT6, OUT6, OUT7, OUT7,                         |                   |                        |
| OUT8, OUT8, OUT9, OUT9,                         |                   |                        |
| OUT10, OUT10, OUT11, OUT11                      |                   |                        |
| SYNC, RESET, PD                                 | GND               | -0.3 V to VS $+$ 0.3 V |
| REFMON, STATUS, LD                              | GND               | –0.3 V to VS + 0.3 V   |
| SP0, SP1, EEPROM                                | GND               | –0.3 V to VS + 0.3 V   |
| Junction Temperature <sup>1</sup>               |                   | 125°C                  |
| Storage Temperature Range                       |                   | –65°C to +150°C        |
| Lead Temperature (10 sec)                       |                   | 300°C                  |

<sup>1</sup> See the Specifications section for operating temperature range ( $T_A$ ).

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

### THERMAL RESISTANCE

Thermal impedance measurements were taken on a JEDEC JESD51-5 2S2P test board in still air in accordance with JEDEC JESD51-2. See the Thermal Performance section for more details.

#### Table 17.

| Package Type            | θ <sub>JA</sub> | Unit |
|-------------------------|-----------------|------|
| 64-Lead LFCSP (CP-64-4) | 22              | °C/W |

#### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

# **PIN CONFIGURATION AND FUNCTION DESCRIPTIONS**

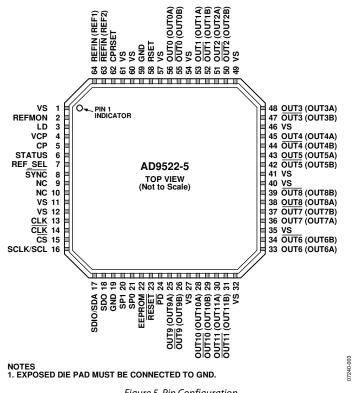
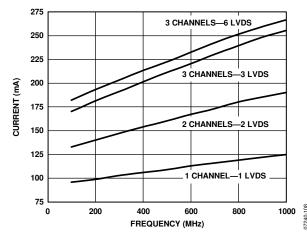
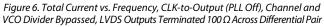



Figure 5. Pin Configuration

| Pin No.                                                        | Input/<br>Output | Pin<br>Type                 | Mnemonic | Description                                                                                                                                                                                                 |
|----------------------------------------------------------------|------------------|-----------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 11, 12, 27,<br>32, 35, 40,<br>41, 46, 49,<br>54, 57, 60, 61 | 1                | Power                       | VS       | 3.3 V Power Pins.                                                                                                                                                                                           |
| 2                                                              | 0                | 3.3 V CMOS                  | REFMON   | Reference Monitor (Output). This pin has multiple selectable outputs.                                                                                                                                       |
| 3                                                              | 0                | 3.3 V CMOS                  | LD       | Lock Detect (Output). This pin has multiple selectable outputs.                                                                                                                                             |
| 4                                                              | I                | Power                       | VCP      | Power Supply for Charge Pump (CP); VS $\leq$ VCP $\leq$ 5.25 V. VCP must still be connected to 3.3 V if the PLL is not used.                                                                                |
| 5                                                              | 0                | Loop filter                 | СР       | Charge Pump (Output). This pin connects to an external loop filter. This pin can be left unconnected if the PLL is not used.                                                                                |
| 6                                                              | 0                | 3.3 V CMOS                  | STATUS   | Programmable Status Output.                                                                                                                                                                                 |
| 7                                                              | I                | 3.3 V CMOS                  | REF_SEL  | Reference Select. It selects REF1 (low) or REF2 (high). This pin has an internal 30 k $\Omega$ pull-down resistor.                                                                                          |
| 8                                                              | I                | 3.3 V CMOS                  | SYNC     | Manual Synchronizations and Manual Holdover. This pin initiates a manual synchronization and is used for manual holdover. Active low. This pin has an internal 30 k $\Omega$ pull-up resistor.              |
| 9, 10                                                          |                  |                             | NC       | No Connect. These pins can be left floating.                                                                                                                                                                |
| 13                                                             | 1                | Differential<br>clock input | CLK      | Along with $\overline{\text{CLK}}$ , this pin is the differential input for the clock distribution section.                                                                                                 |
| 14                                                             | I                | Differential<br>clock input | CLK      | Along with CLK, this pin is the differential input for the clock distribution section. If a single-ended input is connected to the CLK pin, connect a 0.1 $\mu$ F bypass capacitor from this pin to ground. |


#### Table 18. Pin Function Descriptions


# AD9522-5

| Pin No. | Input/<br>Output | Pin<br>Type          | Mnemonic       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|------------------|----------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15      | I                | 3.3 V CMOS           | CS             | Serial Control Port Chip Select; Active Low. This pin has an internal 30 $k\Omega$ pull-up resistor.                                                                                                                                                                                                                                                                                                                                                          |
| 16      | I                | 3.3 V CMOS           | SCLK/SCL       | Serial Control Port Clock Signal. This pin has an internal 30 k $\Omega$ pull-down resistor in SPI mode but is high impedance in I <sup>2</sup> C mode.                                                                                                                                                                                                                                                                                                       |
| 17      | I/O              | 3.3 V CMOS           | SDIO/SDA       | Serial Control Port Bidirectional Serial Data In/Out.                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18      | 0                | 3.3 V CMOS           | SDO            | Serial Control Port Unidirectional Serial Data Out.                                                                                                                                                                                                                                                                                                                                                                                                           |
| 19, 59  | I                | GND                  | GND            | Ground Pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20      | I                | Three-level<br>logic | SP1            | Select SPI or I <sup>2</sup> C as the serial interface port and select the I <sup>2</sup> C slave address in I <sup>2</sup> C mode. Three-level logic. This pin is internally biased for the open logic level.                                                                                                                                                                                                                                                |
| 21      | I                | Three-level<br>logic | SPO            | Select SPI or I <sup>2</sup> C as the serial interface port and select the I <sup>2</sup> C slave address in I <sup>2</sup> C mode. Three-level logic. This pin is internally biased for the open logic level.                                                                                                                                                                                                                                                |
| 22      | 1                | 3.3 V CMOS           | EEPROM         | Setting this pin high selects the register values stored in the internal EEPROM to<br>load at reset and/or power-up. Setting this pin low causes the AD9522 to load<br>the hard-coded default register values at power-up/reset. This pin has an internal<br>30 k $\Omega$ pull-down resistor. Note that to guarantee the proper loading of the<br>EEPROM during startup, a high-low-high pulse on the RESET pin occurs after the<br>power supply stabilizes. |
| 23      | 1                | 3.3 V CMOS           | RESET          | Chip Reset, Active Low. This pin has an internal 30 k $\Omega$ pull-up resistor.                                                                                                                                                                                                                                                                                                                                                                              |
| 24      | 1                | 3.3 V CMOS           | PD             | Chip Power-Down, Active Low. This pin has an internal 30 k $\Omega$ pull-up resistor.                                                                                                                                                                                                                                                                                                                                                                         |
| 25      | 0                | LVDS or<br>CMOS      | OUT9 (OUT9A)   | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                          |
| 26      | 0                | LVDS or<br>CMOS      | OUT9 (OUT9B)   | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                          |
| 28      | 0                | LVDS or<br>CMOS      | OUT10 (OUT10A) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                          |
| 29      | 0                | LVDS or<br>CMOS      | OUT10 (OUT10B) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                          |
| 30      | 0                | LVDS or<br>CMOS      | OUT11 (OUT11A) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                          |
| 31      | 0                | LVDS or<br>CMOS      | OUT11 (OUT11B) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                          |
| 33      | 0                | LVDS or<br>CMOS      | OUT6 (OUT6A)   | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                          |
| 34      | 0                | LVDS or<br>CMOS      | OUT6 (OUT6B)   | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                          |
| 36      | 0                | LVDS or<br>CMOS      | OUT7 (OUT7A)   | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                          |
| 37      | 0                | LVDS or<br>CMOS      | OUT7 (OUT7B)   | Clock Output. This pin can be configured as one side of a differential LVDS output<br>or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                       |
| 38      | 0                | LVDS or<br>CMOS      | OUT8 (OUT8A)   | Clock Output. This pin can be configured as one side of a differential LVDS output<br>or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                       |
| 39      | 0                | LVDS or<br>CMOS      | OUT8 (OUT8B)   | Clock Output. This pin can be configured as one side of a differential LVDS output<br>or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                       |
| 42      | 0                | LVDS or<br>CMOS      | OUT5 (OUT5B)   | Clock Output. This pin can be configured as one side of a differential LVDS output<br>or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                       |
| 43      | 0                | LVDS or<br>CMOS      | OUT5 (OUT5A)   | Clock Output. This pin can be configured as one side of a differential LVDS output<br>or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                       |
| 44      | 0                | LVDS or<br>CMOS      | OUT4 (OUT4B)   | Clock Output. This pin can be configured as one side of a differential LVDS output<br>or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                       |
| 45      | 0                | LVDS or<br>CMOS      | OUT4 (OUT4A)   | Clock Output. This pin can be configured as one side of a differential LVDS output<br>or as a single-ended CMOS output.                                                                                                                                                                                                                                                                                                                                       |

|         | Input/ | Pin                  |              |                                                                                                                                                |
|---------|--------|----------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin No. | Output | Туре                 | Mnemonic     | Description                                                                                                                                    |
| 47      | 0      | LVDS or<br>CMOS      | OUT3 (OUT3B) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                           |
| 48      | 0      | LVDS or<br>CMOS      | OUT3 (OUT3A) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                           |
| 50      | 0      | LVDS or<br>CMOS      | OUT2 (OUT2B) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                           |
| 51      | 0      | LVDS or<br>CMOS      | OUT2 (OUT2A) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                           |
| 52      | 0      | LVDS or<br>CMOS      | OUT1 (OUT1B) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                           |
| 53      | 0      | LVDS or<br>CMOS      | OUT1 (OUT1A) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                           |
| 55      | 0      | LVDS or<br>CMOS      | OUTO (OUTOB) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                           |
| 56      | 0      | LVDS or<br>CMOS      | OUT0 (OUT0A) | Clock Output. This pin can be configured as one side of a differential LVDS output or as a single-ended CMOS output.                           |
| 58      | 0      | Current set resistor | RSET         | Clock Distribution Current Set Resistor. Connect a 4.12 k $\Omega$ resistor from this pin to GND.                                              |
| 62      | 0      | Current set resistor | CPRSET       | Charge Pump Current Set Resistor. Connect a 5.1 k $\Omega$ resistor from this pin to GND. This resistor can be omitted if the PLL is not used. |
| 63      | I      | Reference<br>input   | REFIN (REF2) | Along with REFIN, this is the differential input for the PLL reference. Alternatively, this pin is a single-ended input for REF2.              |
| 64      | I      | Reference            | REFIN (REF1) | Along with REFIN, this is the differential input for the PLL reference. Alternatively, this pin is a single-ended input for REF1.              |
| EPAD    |        | GND                  | GND          | The exposed die pad must be connected to GND.                                                                                                  |

# **TYPICAL PERFORMANCE CHARACTERISTICS**





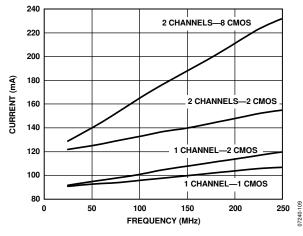



Figure 7. Total Current vs. Frequency, CLK-to-Output (PLL Off), Channel and VCO Divider Bypassed, CMOS Outputs with 10 pF Load

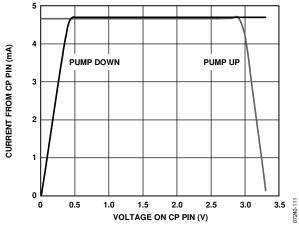
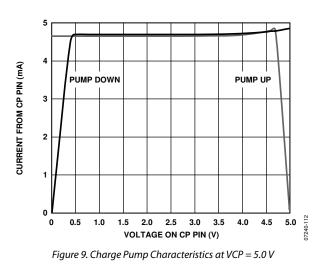




Figure 8. Charge Pump Characteristics at VCP = 3.3 V



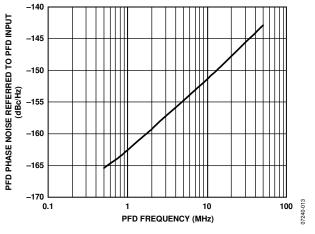
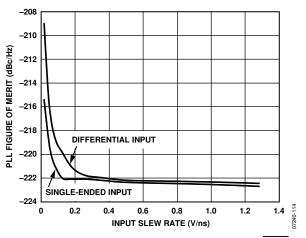
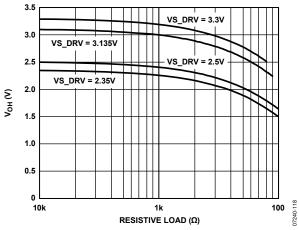
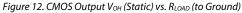
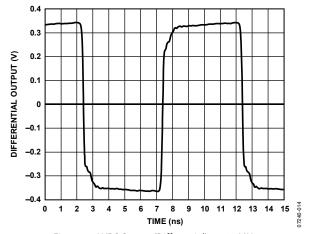
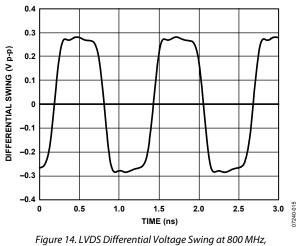
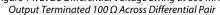


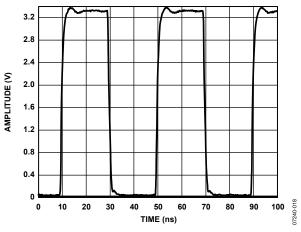

Figure 10. PFD Phase Noise Referred to PFD Input vs. PFD Frequency

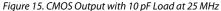





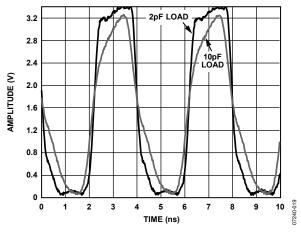



Figure 11. PLL Figure of Merit (FOM) vs. Slew Rate at REFIN/REFIN

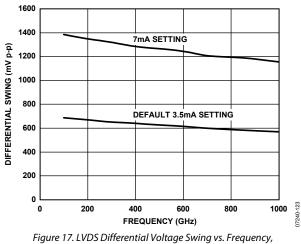


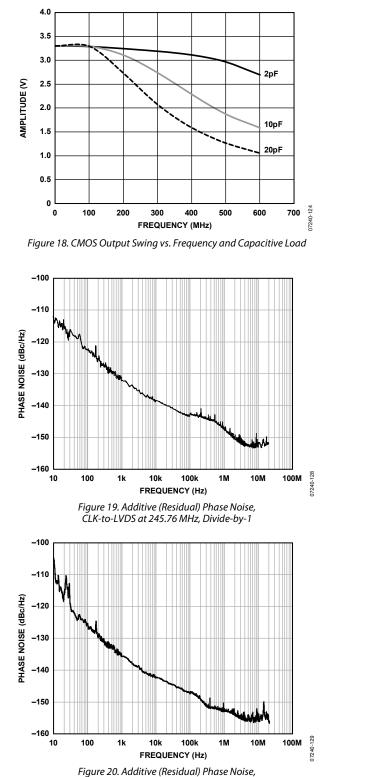


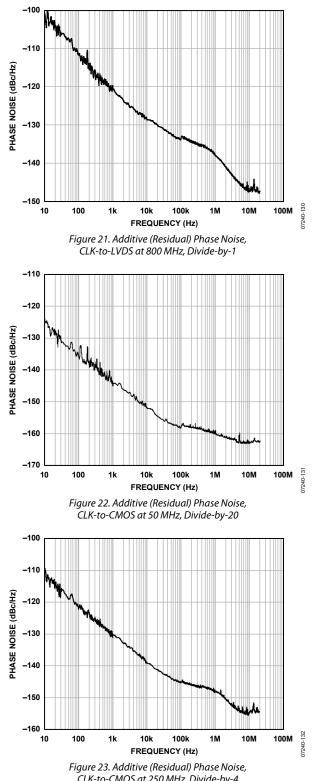










Output Terminated 100  $\Omega$  Across Differential Pair

# AD9522-5

# AD9522-5



CLK-to-LVDS at 200 MHz, Divide-by-5



CLK-to-CMOS at 250 MHz, Divide-by-4

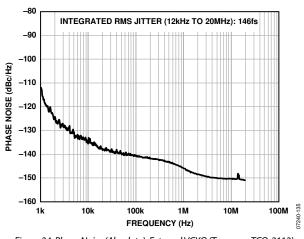



Figure 24. Phase Noise (Absolute), External VCXO (Toyocom TCO-2112) at 245.76 MHz; PFD = 15.36 MHz; LBW = 250 Hz; LVDS Output = 245.76 MHz

# AD9522-5

# TERMINOLOGY

#### Phase Jitter and Phase Noise

An ideal sine wave can be thought of as having a continuous and even progression of phase with time from 0° to 360° for each cycle. Actual signals, however, display a certain amount of variation from ideal phase progression over time. This phenomenon is called phase jitter. Although many causes can contribute to phase jitter, one major cause is random noise, which is characterized statistically as Gaussian (normal) in distribution.

This phase jitter leads to a spreading out of the energy of the sine wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are dBc/Hz at a given offset in frequency from the sine wave (carrier). The value is a ratio (expressed in decibels) of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement, the offset from the carrier frequency is also given.

It is meaningful to integrate the total power contained within some interval of offset frequencies (for example, 10 kHz to 10 MHz). This is called the integrated phase noise over that frequency offset interval and can be readily related to the time jitter due to the phase noise within that offset frequency interval.

Phase noise has a detrimental effect on the performance of ADCs, DACs, and RF mixers. It lowers the achievable dynamic range of the converters and mixers, although they are affected in somewhat different ways.

#### Time Jitter

Phase noise is a frequency domain phenomenon. In the time domain, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings varies. In a square wave, the time jitter is a displacement of the edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Because these variations are random in nature, the time jitter is specified in seconds root mean square (rms) or 1 sigma of the Gaussian distribution.

Time jitter that occurs on a sampling clock for a DAC or an ADC decreases the signal-to-noise ratio (SNR) and dynamic range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.

#### **Additive Phase Noise**

Additive phase noise is the amount of phase noise that is attributable to the device or subsystem being measured. The phase noise of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contributes its own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise. When there are multiple contributors to phase noise, the total is the square root of the sum of squares of the individual contributors.

#### Additive Time Jitter

Additive time jitter is the amount of time jitter that is attributable to the device or subsystem being measured. The time jitter of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contributes its own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.