

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Octal Ultrasound AFE with JESD204B

Data Sheet AD9675

FEATURES

8 channels of LNA, VGA, AAF, ADC, and digital RF decimator Low power

150 mW per channel, TGC mode, 40 MSPS 62.5 mW per channel, CW mode 10 mm × 10 mm, 144-ball CSP_BGA TGC channel input referred noise: 0.82 nV/√Hz,

maximum gain Flexible power-down modes

Fast recovery from low power standby mode: 2 µs

Low noise preamplifier (LNA)

Input referred noise: 0.78 nV/ $\sqrt{\text{Hz}}$, gain = 21.6 dB Programmable gain: 15.6 dB, 17.9 dB, or 21.6 dB

0.1 dB compression: 1000 mV p-p, 750 mV p-p, or 450 mV p-p

Flexible active input impedance matching

Variable gain amplifier (VGA)

Attenuator range: 45 dB, linear in dB gain control Postamp gain (PGA): 21 dB, 24 dB, 27 dB, or 30 dB Antialiasing filter (AAF)

Programmable second-order low-pass filter (LPF) from 8 MHz to 18 MHz or 13.5 MHz to 30 MHz and high-pass filter (HPF)

Analog-to-digital converter (ADC)

SNR: 75 dB, 14 bits up to 125 MSPS

JESD204B Subclass 0 coded serial digital outputs

CW Doppler mode harmonic rejection I/Q demodulator

Individual programmable phase rotation

Dynamic range per channel: 160 dBFS/√Hz

Close-in SNR: 156 dBc/√Hz, 1 kHz offset, −3 dBFS input

RF digital decimation by 2 and high-pass filter

APPLICATIONS

Medical imaging/ultrasound Nondestructive testing (NDT)

GENERAL DESCRIPTION

The AD9675 is designed for low cost, low power, small size, and ease of use for medical ultrasound. It contains eight channels of a variable gain amplifier (VGA) with a low noise preamplifier (LNA), a continuous wave (CW) harmonic rejection I/Q demodulator with programmable phase rotation, an antialiasing filter (AAF), an analog-to-digital converter (ADC), and a digital high-pass filter and RF decimation by 2 for data processing and bandwidth reduction.

Each channel features a maximum gain of up to 52 dB, a fully differential signal path, and an active input preamplifier termination. The channel is optimized for high dynamic performance and low power in applications where a small package size is critical.

The LNA has a single-ended to differential gain that is selectable through the serial port interface (SPI). Assuming a 15 MHz noise bandwidth (NBW) and a 21.6 dB LNA gain, the LNA input SNR is 94 dB. In CW Doppler mode, each LNA output drives an I/Q demodulator that has independently programmable phase rotation with 16 phase settings.

Power-down of individual channels is supported to increase battery life for portable applications. Standby mode allows quick power-up for power cycling. In CW Doppler operation, the VGA, AAF, and ADC are powered down. The ADC contains features to maximize flexibility and minimize system cost, such as a programmable clock, data alignment, and programmable digital test pattern generation. The digital test patterns include built-in fixed patterns, built-in pseudorandom patterns, and custom user-defined test patterns entered via the SPI.

AD9675* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

· AD9675: Octal Ultrasound AFE With JESD204B Data Sheet

REFERENCE MATERIALS •

Press

- JESD204B FPGA Debug Software Accelerates High-speed Design
- Low Cost, Octal Ultrasound Receiver with On-Chip RF Decimator and JESD204B Serial Interface
- Xilinx and Analog Devices Achieve JEDEC JESD204B Interoperability

DESIGN RESOURCES 🖵

- AD9675 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS •

View all AD9675 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

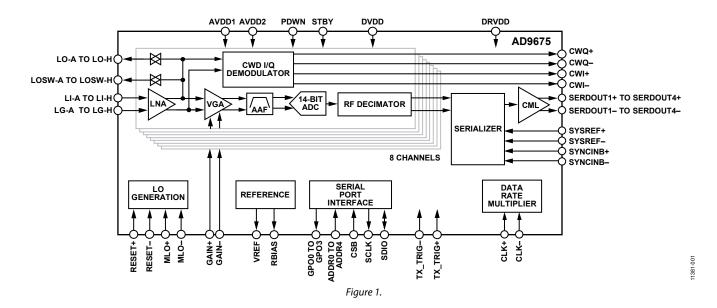
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS


Features	
Applications	
General Description	
Revision History	
Functional Block Diagram	3
Specifications	4
AC Specifications	4
Digital Specifications	
Switching Specifications	
Absolute Maximum Ratings	12
Thermal Impedance	12
ESD Caution	12
Pin Configuration and Function Descriptions	13
Typical Performance Characteristics	10
TGC Mode	10
CW Doppler Mode	20
Theory of Operation	2
TGC Operation	2

Digital Outputs and Timing
Analog Test Tone Generation
CW Doppler Operation
Digital RF Decimator
Vector Profile
RF Decimator41
Digital Test Waveforms41
Digital Block Power Saving Scheme
Serial Port Interface (SPI)
Hardware Interface
Memory Map
Reading the Memory Map Table45
Recommended Start-Up Sequence
Memory Map Register Table47
Memory Map Register Descriptions
Outline Dimensions
Ordering Guide60

REVISION HISTORY

1/16—Revision A: Initial Version

FUNCTIONAL BLOCK DIAGRAM

SPECIFICATIONS

AC SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.0 V, DVDD = 1.4 V, DRVDD = 1.8 V, 1.0 V internal ADC reference, full temperature range (0°C to 85°C), $f_{\rm IN}$ = 5 MHz, low bandwidth mode, $R_{\rm S}$ = 50 Ω , $R_{\rm FB}$ = ∞ (unterminated), LNA gain = 21.6 dB, LNA bias = mid-high, PGA gain = 27 dB, analog gain control, $V_{\rm GAIN}$ (V) = (GAIN+) - (GAIN-) = 1.6 V, AAF LPF cutoff = $f_{\rm SAMPLE}$ /3 (Mode I/Mode II) = $f_{\rm SAMPLE}$ /4.5 (Mode III/Mode IV), HPF cutoff = LPF cutoff/12.00, Mode I = $f_{\rm SAMPLE}$ = 40 MSPS, Mode II = $f_{\rm SAMPLE}$ = 80 MSPS, Mode IV = 125 MSPS, RF decimator bypassed (Mode I/Mode II), RF decimator enabled (Mode III/Mode IV), digital high-pass filter bypassed, JESD204B link parameters: M = 8 and L = 2, unless otherwise noted. All gain setting options are listed, which can be configured via SPI registers, and all power supply currents and power dissipations are listed for the four mode settings (Mode I, Mode II, Mode III, and Mode IV).

Table 1.

Parameter ¹	Test Conditions/Comments	Min	Тур	Max	Unit
LNA CHARACTERISTICS					
Gain	Single-ended input to differential output		15.6/17.9/21.6		dB
	Single-ended input to single-ended output		9.6/11.9/15.6		dB
0.1 dB Input Compression Point					
	LNA gain = 15.6 dB		1000		mV p-p
	LNA gain = 17.9 dB		750		mV p-p
	LNA gain = 21.6 dB		450		mV p-p
1 dB Input Compression Point					
	LNA gain = 15.6 dB		1200		mV p-p
	LNA gain = 17.9 dB		900		mV p-p
	LNA gain = 21.6 dB		600		mV p-p
Input Common Mode (LI-x, LG-x)			2.2		V
Output Common Mode (LO-x)	Switch off		High-Z		Ω
•	Switch on		1.5		V
Output Common Mode (LOSW-x)	Switch off		High-Z		Ω
•	Switch on		1.5		V
Input Resistance (LI-x)	$R_{FB} = 300 \Omega$, LNA gain = 21.6 dB		50		Ω
, , ,	$R_{FB} = 1350 \Omega$, LNA gain = 21.6 dB				
	J. J		6		Ω kΩ
Input Capacitance (LI-x)			22		pF
Input Referred Noise Voltage	$R_S = 0 \Omega$				'
,	LNA gain = 15.6 dB		0.83		nV/√Hz
	LNA gain = 17.9 dB		0.82		nV/√Hz
	LNA gain = 21.6 dB		0.78		nV/√Hz
Input Signal-to-Noise Ratio	Noise bandwidth = 15 MHz		94		dB
Input Noise Current			2.6		pA/√Hz
FULL CHANNEL CHARACTERISTICS	Time gain control (TGC)				
AAF Low-Pass Cutoff	-3 dB, programmable, low bandwidth mode	8		18	MHz
	-3 dB, programmable, high bandwidth mode	13.5		30	MHz
In Range AAF Bandwidth	σ, μ g		±10		%
Tolerance					, ,
Group Delay Variation	$f = 1 \text{ MHz to } 18 \text{ MHz}, V_{GAIN} = -1.6 \text{ V to } +1.6 \text{ V}$		±350		ps
Input Referred Noise Voltage	LNA gain = 15.6 dB		0.96		nV/√Hz
	LNA gain = 17.9 dB		0.90		nV/√Hz
	LNA gain = 21.6 dB		0.82		nV/√Hz
Noise Figure					
Active Termination Matched	LNA gain = 15.6 dB, $R_{FB} = 150 \Omega$		5.6		dB
	LNA gain = 17.9 dB, R_{FB} = 200 Ω		4.8		dB
	LNA gain = 21.6 dB, R_{FB} = 300 Ω		3.8		dB
Unterminated	LNA gain = 15.6 dB, $R_{FB} = \infty$		3.2		dB
-	LNA gain = 17.9 dB, $R_{FB} = \infty$		2.9		dB
	LNA gain = 21.6 dB, $R_{FB} = \infty$		2.6		dB

Parameter ¹	Test Conditions/Comments	Min	Тур	Max	Unit
Correlated Noise Ratio	No signal, correlated/uncorrelated		-30		dB
Output Offset		-125		+125	LSB
Signal-to-Noise Ratio (SNR)	$f_{IN} = 5 \text{ MHz at } -12 \text{ dBFS}, V_{GAIN} = -1.6 \text{ V}$		69		dBFS
	$f_{IN} = 5 \text{ MHz at } -1 \text{ dBFS, } V_{GAIN} = 1.6 \text{ V}$		59		dBFS
Close-In SNR	$f_{IN} = 3.5 \text{ MHz at } -0.5 \text{ dBFS, } V_{GAIN} = 0 \text{ V,}$ 1 kHz offset		-130		dBc/√Hz
Second Harmonic	$f_{IN} = 5 \text{ MHz at } -12 \text{ dBFS}, V_{GAIN} = -1.6 \text{ V}$		-70		dBc
	$f_{IN} = 5 \text{ MHz at } -1 \text{ dBFS, } V_{GAIN} = 1.6 \text{ V}$		-62		dBc
Third Harmonic	$f_{IN} = 5 \text{ MHz at } -12 \text{ dBFS}, V_{GAIN} = -1.6 \text{ V}$		-61		dBc
	$f_{IN} = 5 \text{ MHz at } -1 \text{ dBFS}, V_{GAIN} = 1.6 \text{ V}$		-55		dBc
Two-Tone Intermodulation Distortion (IMD3)	$f_{RF1} = 5.015$ MHz, $f_{RF2} = 5.020$ MHz, $A_{RF1} = -1$ dBFS, $A_{RF2} = -21$ dBFS, $V_{GAIN} = 1.6$ V, IMD3 relative to A_{RF2}		–54		dBc
Channel-to-Channel Crosstalk	$f_{\text{IN1}} = 5.0 \text{ MHz at } -1 \text{ dBFS}$		-60		dB
Charmer to Charmer crosstant	Overrange condition ²		-55		dB
GAIN ACCURACY	T _A = 25°C				GB -
Gain Law Conformance Error	$-1.6 < V_{GAIN} < -1.28 V$		0.4		dB
dani Law Comonnance Error	$-1.28 \text{ V} < \text{V}_{GAIN} < +1.28 \text{ V}$ $-1.28 \text{ V} < \text{V}_{GAIN} < +1.28 \text{ V}$	-1.3	0.4	+1.3	dB
	1.28 V < VGAIN < 1.6 V	1.5	-0.5	11.5	dB
	$V_{GAIN} = 0 \text{ V}$, normalized for ideal AAF loss	-0.9	-0.5	+0.9	dB
Channel-to-Channel Matching	$-1.28 \text{ V} < \text{V}_{\text{GAIN}} < +1.28 \text{ V}, 1 \sigma$	-0.5	0.1	+0.9	dB
PGA Gain	1.20 V \ VGAIN \ 11.20 V, 10		21/24/27/30		dB
GAIN CONTROL INTERFACE			21/24/27/30		GD .
Control Range	Differential	-1.6		+1.6	V
Control Common Mode	GAIN+, GAIN-	0.7	0.8	0.9	V
Input Impedance	GAIN+, GAIN-	0.7	10	0.9	MΩ
Gain Range	GAINT, GAIN-		45		dB
Gain Sensitivity	Analog		14		dB/V
dain Sensitivity	Digital step size		3.5		dB/ v
Response Time	Analog 45 dB change		750		ns
CW DOPPLER MODE	Alialog 43 db Cliange		730		115
LO Frequency	$f_{IO} = f_{MIO}/M$	1		10	MHz
Phase Resolution	Per channel, 4LO mode	'	45	10	
Phase Resolution	Per channel, 8LO mode, 16LO mode		45 22.5		Degrees
Output DC Dies (Single Freded)	CWI+, CWI-, CWQ+, CWQ-		22.5 AVDD2 ÷ 2		Degrees V
Output DC Bias (Single-Ended)				125	
Output AC Current Range Transconductance (Differential)	Per CWI+, CWI–, CWQ+, CWQ–, each channel enabled (2 f _{LO} and baseband signal) Demodulated I _{OUT} /V _{IN} , per CWI+, CWI–,		±2.2	±2.5	mA
Transconductance (Differential)	CWQ+, CWQ-				
	LNA gain = 15.6 dB		3.3		mA/V
	LNA gain = 17.9 dB		4.3		mA/V
	LNA gain = 21.6 dB		6.6		mA/V
Input Referred Noise Voltage	$R_S = 0 \Omega$, $R_{FB} = \infty$		0.0		, .
input hereined Holse Voltage	LNA gain = 15.6 dB		1.6		nV/√Hz
	LNA gain = 17.9 dB		1.3		nV/√Hz
	LNA gain = 21.6 dB		1.0		nV/√Hz
Noise Figure	$R_S = 50 \Omega$, $R_{FB} = \infty$		1.0		1107 VI 12
14015c i iguic	LNA gain = 15.6 dB		5.7		dB
	LNA gain = 13.0 dB		4.5		dB
	_		4.5 3.4		dB
Input Poformed Dunamia Dan	LNA gain = 21.6 dB		J. 4		UD
Input Referred Dynamic Range	$R_S = 0 \Omega$, $R_{FB} = \infty$		164		PEC//III
	LNA gain = 15.6 dB		164		dBFS/√Hz
	LNA gain = 17.9 dB		162		dBFS/√Hz
	LNA gain = 21.6 dB		160		dBFS/√Hz

Parameter ¹	Test Conditions/Comments	Min	Тур	Max	Unit
Close-In SNR	-3 dBFS input, $f_{RF} = 2.5$ MHz, $f_{LO} = 40$ MHz, 1 kHz offset, 16LO mode, one channel enabled		156		dBc/√Hz
	-3 dBFS input, $f_{RF} = 2.5$ MHz, $f_{LO} = 40$ MHz, 1 kHz offset, 16LO mode, eight channels enabled		161		dBc/√Hz
Two-Tone Intermodulation Distortion (IMD3)	$f_{RF1}=5.015~MHz, f_{RF2}=5.020~MHz, f_{LO}=80~MHz, \\ A_{RF1}=-1~dBFS, A_{RF2}=-21~dBFS, IMD3~relative \\ to~A_{RF2}$		-58		dBc
LO Harmonic Rejection				-20	dBc
Quadrature Phase Error	I to Q, all phases, 1 σ		0.15		Degrees
I/Q Amplitude Imbalance	I to Q, all phases, 1 σ		0.015		dB
Channel to Channel Matching	Phase I to I, Q to Q, 1 σ		0.5		Degrees
_	Amplitude I to I, Q to Q, 1 σ		0.25		dB
POWER SUPPLY	Mode I/Mode II/Mode IV				
AVDD1		1.7	1.8	1.9	V
AVDD2		2.85	3.0	3.6	V
DVDD		1.3	1.4	1.9	V
DRVDD		1.7	1.8	1.9	V
I _{AVDD1}	TGC mode, low bandwidth mode		148/187/ 223/291		mA
	CW Doppler mode		4		mA
I _{AVDD2}	TGC mode, no signal, low bandwidth mode		230		mA
	TGC mode, no signal, high bandwidth mode		239		mA
	CW Doppler mode		140		mA
IDVDD			29/46/40/61		mA
	DVDD = 1.8 V		38/60/54/80		mA
IDRVDD	Four-lane mode, JESD204B lane rates = 1.6 Gbps/2.6 Gbps/1.6 Gbps/2.5 Gbps		121/168/ 122/166		mA
	Two-lane mode, JESD204B lane rates = 3.2 Gbps/5.0 Gbps/3.2 Gbps/5.0 Gbps		127/186/ 129/184		mA
	One-lane mode, RF decimator enabled, JESD204B lane rates = 3.2 Gbps/5.0 Gbps/ not valid/not valid		73/105/not valid/not valid		mA
Total Power Dissipation (Including Output Drivers)	TGC mode, no signal, two-lane mode		1200/1415/ 1365/1615	1445/1680/ 1635/1910	mW
	TGC mode, no signal, two-lane mode, DVDD = 1.8 V		1230/1460/ 1410/1675		mW
	CW Doppler mode, eight channels enabled		500		mW
Power-Down Dissipation			5	30	mW
Standby Power Dissipation			725		mW
ADC					
Resolution			14		Bits
SNR			75		dB
ADC REFERENCE					
Output Voltage Error	VREF = 1 V			±50	mV
Load Regulation at 1.0 mA	VREF = 1 V		2		mV
Input Resistance			7.5		kΩ

¹ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and information about how these tests were completed. ² The overrange condition is specified as 6 dB more than the full-scale input range.

DIGITAL SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.0 V, DVDD = 1.4 V, DRVDD = 1.8 V, 1.0 V internal ADC reference, full temperature range (0°C to 85°C), unless otherwise noted.

Table 2.

Parameter ¹	Temperature	Min	Тур	Max	Unit
<pre>INPUTS (CLK+, CLK-, TX_TRIG+, TX_TRIG-)</pre>					
Logic Compliance			CMOS/LVDS/LVPEC	CL	
Differential Input Voltage ²		0.2		3.6	V p-p
Input Voltage Range		GND – 0.2		AVDD1 + 0.2	V
Input Common-Mode Voltage			0.9		V
Input Resistance (Differential)	25°C		15		kΩ
Input Capacitance	25°C		4		pF
INPUTS (MLO+, MLO-, RESET+, RESET-)					
Logic Compliance			LVDS/LVPECL		
Differential Input Voltage ²		0.250		$AVDD2 \times 2$	V p-p
Input Voltage Range		GND - 0.2		AVDD2 + 0.2	V
Input Common-Mode Voltage			AVDD2/2		V
Input Resistance (Single-Ended)	25°C		20		kΩ
Input Capacitance	25°C		1.5		рF
LOGIC INPUTS (PDWN, STBY, SCLK, SDIO, ADDRx)					
Logic 1 Voltage	Full	1.2		DRVDD + 0.3	V
Logic 0 Voltage	Full			0.3	V
Input Resistance	25°C		30 (26 for SDIO)		kΩ
Input Capacitance	25°C		2 (5 for SDIO)		pF
LOGIC INPUT (CSB)					
Logic 1 Voltage	Full	1.2		DRVDD + 0.3	V
Logic 0 Voltage	Full			0.3	V
Input Resistance	25°C		26		kΩ
Input Capacitance	25°C		2		pF
LOGIC OUTPUT (SDIO) ³					
Logic 1 Voltage ($I_{OH} = 800 \mu A$)	Full		1.79		V
Logic 0 Voltage (I _{OL} = 50 μA)	Full			0.05	V
DIGITAL OUTPUTS (SERDOUTx+, SERDOUTx-)					
Logic Compliance			CML		
Differential Output Voltage (VoD)	Full	400	600	750	mV
Output Offset Voltage (Vos)	Full	0.75		1.05	V
LOGIC OUTPUT (GPO0, GPO1, GPO2, GPO3)					
Logic 0 Voltage ($I_{OL} = 50 \mu A$)	Full			0.05	V
DIGITAL INPUT (SYNCINB+, SYNCINB-)					
Logic Compliance			CMOS/LVDS		
Internal Bias	Full		0.9		V
Differential Input Voltage Range	Full	0.3		3.6	V
Input Voltage Range	Full	GND		DRVDD	V
Input Common-Mode Range	Full	0.9		1.4	V
High Level Input Current	Full	-5		+5	μΑ
Low Level Input Current	Full	-5		+5	μA
Input Capacitance	Full		1		pF
Input Resistance	Full	12	16	20	kΩ

Parameter ¹	Temperature	Min	Тур	Max	Unit
DIGITAL INPUT (SYSREF+, SYSREF-)					
Logic Compliance			LVD	5	
Internal Common-Mode Bias	Full		0.9		V
Differential Input Voltage	Full	0.3		3.6	V p-p
Input Voltage Range	Full	GND		DRVDD	V
Input Common-Mode Range	Full	0.9		1.4	V
High Level Input Current	Full	- 5		+5	μΑ
Low Level Input Current	Full	-5		+5	μΑ
Input Capacitance	Full		4		pF
Input Resistance	Full	8	10	12	kΩ

¹ See the AN-835 Application Note, *Understanding High Speed ADC Testing and Evaluation*, for a complete set of definitions and information about how these tests were completed.
² Specified for LVDS and LVPECL only.
³ Specified for 13 SDIO pins sharing the same connection.

SWITCHING SPECIFICATIONS

 $AVDD1 = 1.8 \text{ V}, AVDD2 = 3.0 \text{ V}, DVDD = 1.4 \text{ V}, DRVDD = 1.8 \text{ V}, 1.0 \text{ V} internal ADC reference}, L = 2, M = 8, f_{SAMPLE} = 40 \text{ MHz}, lane data rate = 3.2 Gbps, full temperature range (0°C to 85°C), unless otherwise noted.$

Table 3.

Parameter ¹	Temperature	Min	Тур	Max	Unit
CLOCK ²					
Clock Rate (f _{SAMPLE})					
40 MSPS (Mode I)	Full	20.5		40	MHz
65 MSPS (Mode II)	Full	20.5		65	MHz
80 MSPS (Mode III) ³	Full	20.5		80	MHz
125 MSPS (Mode IV) ⁴	Full	20.5		125	MHz
Clock Pulse Width High (teh)	Full		3.75		ns
Clock Pulse Width Low (tel)	Full		3.75		ns
CLOCK INPUT PARAMETERS					
TX_TRIG± to CLK± Setup Time (tsetup)	25°C	1			ns
TX_TRIG± to CLK± Hold Time (t _{HOLD})	25°C	1			ns
DATA OUTPUT PARAMETERS					
Data Output Period or Unit Interval (UI)	Full		$L/(20 \times M \times f_{SAMPLE})$		Seconds
Data Output Duty Cycle	25°C		50		%
Data Valid Time	25°C		0.76		UI
PLL Lock Time⁵	25°C		26		μs
Wake-Up Time (Standby)	25°C		2		μs
Wake-Up Time (Power-Down) ⁶					
Device	25°C		375		μs
JESD204B Link	25°C		250		μs
SYNCINB± Falling Edge to First K.28 Characters	Full	4			Multiframes
Code Group Synchronization (CGS) Phase K.28 Characters Duration	Full	1			Multiframe
Delay (Latency)	Full				
ADC Pipeline	Full		16		Cycles
RF Decimator	Full		11		Cycles
Digital High-Pass Filter	Full		100		Cycles
TX_TRIG± to Start Code (Mode I/Mode II/Mode III/ Mode IV)					
Four-Lane Mode	Full		31/42/30/36		Cycles
Two-Lane Mode	Full		31/33/30/30		Cycles
Data Rate per Lane	25°C			5.0	Gbps
Uncorrelated Bounded High Probability (UBHP) Jitter	25°C		11		ps
Random Jitter at 2.5 Gbps Data Rate	25°C		80		ps rms
Random Jitter at 5 Gbps Data Rate	25°C		46		ps rms
Output Rise/Fall Time	25°C		64		ps
TERMINATION CHARACTERISTICS					
Differential Termination Resistance	Full		100		Ω
APERTURE					
Aperture Uncertainty (Jitter)	25°C		<1		ps rms

Parameter ¹	Temperature	Min	Тур	Max	Unit
LO GENERATION					
MLO± Frequency					
4LO Mode	Full	4		40	MHz
8LO Mode	Full	8		80	MHz
16LO Mode	Full	16		160	MHz
RESET± to MLO± Setup Time (tsetup)	Full	1	t _{MLO} /2		ns
RESET± to MLO± Hold Time (t _{HOLD})	Full	1	$t_{MLO}/2$		ns

¹ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and information about how these tests were completed.

CLK±, TX_TRIG± Synchronization Timing Diagram

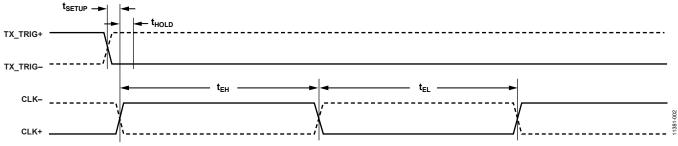



Figure 2. TX_TRIG± to CLK± Input Timing

CW Timing Diagram

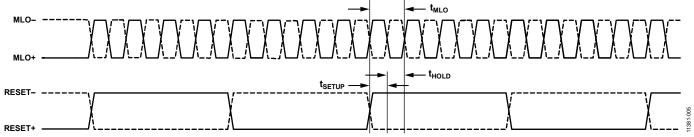


Figure 4. CW Doppler Mode Input MLO±, Continuous Synchronous RESET± Timing, Sampled on the Falling MLO± Edge, 8LO Mode

² Can be adjusted via the SPI. ³ Mode III must have the RF decimator enabled.

⁴ Mode IV must have the RF decimator enabled.

 $^{^{\}rm 5}$ PLL lock time from 0 Hz to 40 MHz frequency change.

⁶ Wake-up time is defined as the time required to return to normal operation from power-down mode.

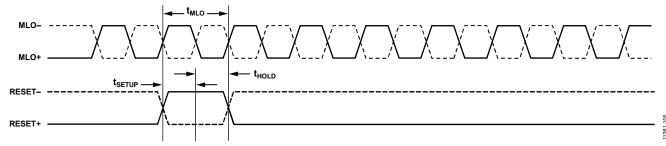
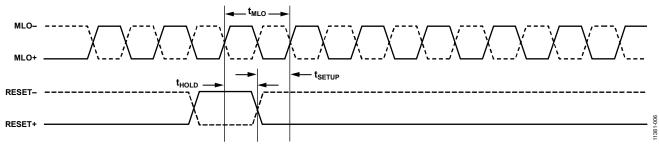



Figure 5. CW Doppler Mode Input MLO±, Pulse Synchronous RESET± Timing, 4LO/8LO/16LO Mode

 $\textit{Figure 6. CW Doppler Mode Input MLO\pm, Pulse Asynchronous \textit{RESET\pm Timing, 4LO/8LO/16LO Mode}$

ABSOLUTE MAXIMUM RATINGS

Table 4.

14010 11	
Parameter	Rating
AVDD1 to GND	-0.3 V to +2.0 V
AVDD2 to GND	−0.3 V to +3.9 V
DVDD to GND	-0.3 V to +2.0 V
DRVDD to GND	−0.3 V to +2.0 V
GND to GND	-0.3 V to +0.3 V
AVDD2 to AVDD1	−2.0 V to +3.9 V
AVDD1 to DRVDD	-2.0 V to +2.0 V
AVDD2 to DRVDD	−2.0 V to +3.9 V
SERDOUTx+, SERDOUTx-, SDIO, PDWN, STBY, SCLK, CSB, ADDRx to GND	-0.3 V to DRVDD + 0.3 V
LI-x, LO-x, LOSW-x, CWI-, CWI+, CWQ-, CWQ+, GAIN+, GAIN-, RESET+, RESET-, MLO+, MLO-, GPO0, GPO1, GPO2, GPO3 to GND	-0.3 V to AVDD2 + 0.3 V
CLK+, CLK-, TX_TRIG+, TX_TRIG-, VREF to GND	-0.3 V to AVDD1 + 0.3 V
Operating Temperature Range (Ambient)	0°C to 85°C
Storage Temperature Range (Ambient)	−65°C to +150°C
Maximum Junction Temperature	150°C
Lead Temperature (Soldering, 10 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL IMPEDANCE

Table 5.

Symbol	Description	Value ¹	Unit
θ_{JA}	Junction-to-ambient thermal resistance, 0.0 m/sec air flow per JEDEC JESD51-2 (still air)	22.0	°C/W
Ψ_{JB}	Junction-to-board thermal characterization parameter, 0 m/sec air flow per JEDEC JESD51-8 (still air)	9.2	°C/W
Ψπ	Junction-to-top-of-package characterization parameter, 0 m/sec air flow per JEDEC JESD51-2 (still air)	0.12	°C/W

¹ Results are from simulations. Printed circuit board (PCB) is JEDEC multilayer. Thermal performance for actual applications requires careful inspection of the conditions in the application to determine if they are similar to those assumed in these calculations.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

	1	2	3	4	5	6	7	8	9	10	11	12
A	LI-E	LI-F	LI-G	LI-H	VREF	RBIAS	GAIN+	GAIN-	LI-A	LI-B	LI-C	LI-D
В	LG-E	LG-F	LG-G	LG-H	GND	GND	CLNA	GND	LG-A	LG-B	LG-C	LG-D
С	LO-E	LO-F	LO-G	LO-H	GND	GND	GND	GND	LO-A	LO-B	LO-C	LO-D
D	LOSW-E	LOSW-F	LOSW-G	LOSW-H	GND	GND	GND	GND	LOSW-A	LOSW-B	LOSW-C	LOSW-D
E	GND	AVDD2	AVDD2	AVDD2	GND	GND	GND	GND	AVDD2	AVDD2	AVDD2	GND
F	AVDD1	GND	AVDD1	GND	AVDD1	GND	GND	AVDD1	GND	AVDD1	GND	AVDD1
G	GND	AVDD1	GND	DVDD	GND	GND	GND	GND	AVDD1	GND	DVDD	GND
н	CLK-	TX_TRIG-	GND	GND	GND	GND	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0	CSB
J	CLK+	TX_TRIG+	cwq+	GND	CWI+	AVDD2	MLO+	RESET-	GPO3	GPO1	PDWN	SDIO
ĸ	GND	GND	cwq-	GND	CWI-	AVDD2	MLO-	RESET+	GPO2	GPO0	STBY	SCLK
L	DRVDD	NIC	NIC	SYNCINB+	SERDOUT4+	SERDOUT3+	SERDOUT2+	SERDOUT1+	SYSREF+	NIC	NIC	DRVDD
М	GND	NIC	NIC	SYNCINB-	SERDOUT4-	SERDOUT3-	SERDOUT2-	SERDOUT1-	SYSREF-	NIC	NIC	GND

NIC = NOT INTERNALLY CONNECTED.

Figure 7. Pin Configuration

11381-007

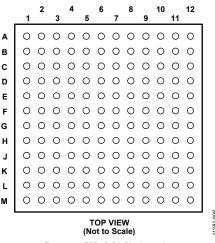


Figure 8. CSP_BGA Pin Location

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
B5, B6, B8, C5, C6, C7, C8, D5, D6, D7, D8,	GND	Ground. These pins are tied to a quiet analog ground.
E1, E5, E6, E7, E8, E12, F2, F4, F6, F7, F9,		
F11, G1, G3, G5, G6, G7, G8, G10, G12,		
H3, H4, H5, H6, J4, K1, K2, K4, M1, M12	11/201	
F1, F3, F5, F8, F10, F12, G2, G9	AVDD1	1.8 V Analog Supply.
G4, G11	DVDD	1.4 V Digital Supply.
E2, E3, E4, E9, E10, E11, J6, K6	AVDD2	3.0 V Analog Supply.
B7	CLNA	LNA External Capacitor.
L1, L12	DRVDD	1.8 V Digital Output Driver Supply.
C1	LO-E	LNA Analog Inverted Output for Channel E.
D1	LOSW-E	LNA Analog Switched Output for Channel E.
A1	LI-E	LNA Analog Input for Channel E.
B1	LG-E	LNA Ground for Channel E.
C2	LO-F	LNA Analog Inverted Output for Channel F.
D2	LOSW-F	LNA Analog Switched Output for Channel F.
A2	LI-F	LNA Analog Input for Channel F.
B2	LG-F	LNA Ground for Channel F.
C3	LO-G	LNA Analog Inverted Output for Channel G.
D3	LOSW-G	LNA Analog Switched Output for Channel G.
A3	LI-G	LNA Analog Input for Channel G.
B3	LG-G	LNA Ground for Channel G.
C4	LO-H	LNA Analog Inverted Output for Channel H.
D4	LOSW-H	LNA Analog Switched Output for Channel H.
A4	LI-H	LNA Analog Input for Channel H.
B4	LG-H	LNA Ground for Channel H.
H1	CLK-	Clock Input Complement.
J1	CLK+	Clock Input True.
H2	TX_TRIG-	Transmit Trigger Complement.
J2	TX_TRIG+	Transmit Trigger True.
H11	ADDR0	Chip Address Bit 0.
H10	ADDR1	Chip Address Bit 1.
H9	ADDR2	Chip Address Bit 2.
H8	ADDR3	Chip Address Bit 3.
H7	ADDR4	Chip Address Bit 4.
L2, M2, L3, M3, L10, M10, L11, M11	NIC	Not Internally Connected. These pins are not connected internally. Allow the
		NIC pins to float, or connect them to ground. Avoid routing high speed signals
14	CANCINID	through these pins because noise coupling may result.
L4	SYNCINB+	Active Low JESD204B LVDS SYNC Input—True.
M4	SYNCINB-	Active Low JESD204B LVDS SYNC Input—Complement.
M5	SERDOUT4-	Serial Lane 4 CML Output Data—Complement.
L5	SERDOUT4+	Serial Lane 4 CML Output Data—True.
M6	SERDOUT3-	Serial Lane 3 CML Output Data—Complement.
L6	SERDOUT3+	Serial Lane 3 CML Output Data—True.
M7	SERDOUT2-	Serial Lane 2 CML Output Data—Complement.
L7	SERDOUT2+	Serial Lane 2 CML Output Data—True.
M8	SERDOUT1-	Serial Lane 1 CML Output Data—Complement.
L8	SERDOUT1+	Serial Lane 1 CML Output Data—True.
M9	SYSREF-	Active Low JESD204B LVDS System Reference (SYSREF) Input—Complement.
L9	SYSREF+	Active Low JESD204B LVDS SYSREF Input—True.
K11	STBY	Standby Power-Down.
J11	PDWN	Full Power-Down.
K12	SCLK	Serial Clock.
J12	SDIO	Serial Data Input/Output.

Pin No.	Mnemonic	Description		
H12	CSB	Chip Select Bar.		
B9	LG-A	LNA Ground for Channel A.		
A9	LI-A	LNA Analog Input for Channel A.		
D9	LOSW-A	LNA Analog Switched Output for Channel A.		
C9	LO-A	LNA Analog Inverted Output for Channel A.		
B10	LG-B	LNA Ground for Channel B.		
A10	LI-B	LNA Analog Input for Channel B.		
D10	LOSW-B	LNA Analog Switched Output for Channel B.		
C10	LO-B	LNA Analog Inverted Output for Channel B.		
B11	LG-C	LNA Ground for Channel C.		
A11	LI-C	LNA Analog Input for Channel C.		
D11	LOSW-C	LNA Analog Switched Output for Channel C.		
C11	LO-C	LNA Analog Inverted Output for Channel C.		
B12	LG-D	LNA Ground for Channel D.		
A12	LI-D	LNA Analog Input for Channel D.		
D12	LOSW-D	LNA Analog Switched Output for Channel D.		
C12	LO-D	LNA Analog Inverted Output for Channel D.		
K10	GPO0	General-Purpose Open-Drain Output 0.		
J10	GPO1	General-Purpose Open-Drain Output 1.		
K9	GPO2	General-Purpose Open-Drain Output 2.		
J9	GPO3	General-Purpose Open-Drain Output 3.		
J8	RESET-	Synchronizing Input for LO Divide by M Counter Complement.		
K8	RESET+	Synchronizing Input for LO Divide by M Counter True.		
K7	MLO-	CW Doppler Multiple Local Oscillator Input Complement.		
J7	MLO+	CW Doppler Multiple Local Oscillator Input True.		
A8	GAIN-	Gain Control Voltage Input Complement.		
A7	GAIN+	Gain Control Voltage Input True.		
A6	RBIAS	External Resistor to Set the Internal ADC Core Bias Current.		
A5	VREF	Voltage Reference Input/Output.		
K5	CWI-	CW Doppler I Output Complement.		
J5	CWI+	CW Doppler I Output True.		
K3	CWQ-	CW Doppler Q Output Complement.		
J3	CWQ+	CW Doppler Q Output True.		

TYPICAL PERFORMANCE CHARACTERISTICS

TGC MODE

Mode I = f_{SAMPLE} = 40 MSPS, f_{IN} = 5 MHz, low bandwidth mode, R_S = 50 Ω , R_{FB} = ∞ (unterminated), LNA gain = 21.6 dB, LNA bias = midhigh, PGA gain = 27 dB, V_{GAIN} (V) = (GAIN+) – (GAIN-) = 1.6 V, AAF LPF cutoff = $f_{SAMPLE}/3$, HPF cutoff = LPF cutoff/12.00 (default), RF decimator bypassed, digital high-pass filter bypassed, unless otherwise noted.

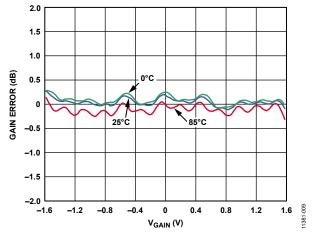


Figure 9. Gain Error vs. VGAIN

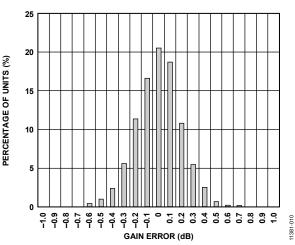


Figure 10. Gain Error Histogram, $V_{GAIN} = -1.28 \text{ V}$

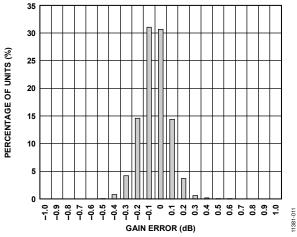


Figure 11. Gain Error Histogram, $V_{GAIN} = 0 V$

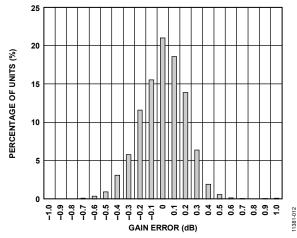


Figure 12. Gain Error Histogram, V_{GAIN} = 1.28 V

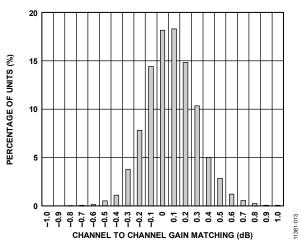


Figure 13. Gain Matching Histogram, $V_{GAIN} = -1.2 \text{ V}$

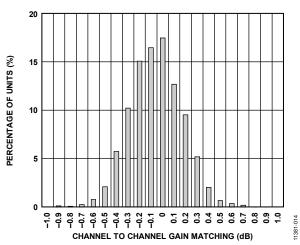


Figure 14. Gain Matching Histogram, V_{GAIN} = 1.2 V

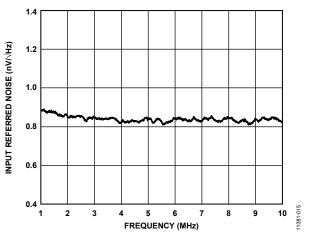


Figure 15. Short-Circuit, Input Referred Noise vs. Frequency

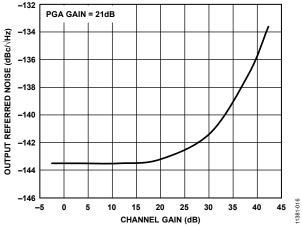


Figure 16. Short-Circuit, Output Referred Noise vs. Channel Gain, LNA Gain = 21.6 dB, PGA Gain = 21 dB, $V_{GAIN} = 1.6$ V

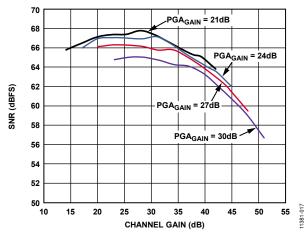


Figure 17. SNR vs. Channel Gain and PGA Gain, $A_{OUT} = -1.0 dBFS$

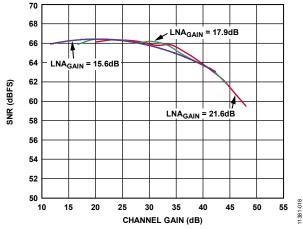


Figure 18. SNR vs. Channel Gain and LNA Gain, $A_{OUT} = -1.0 \text{ dBFS}$

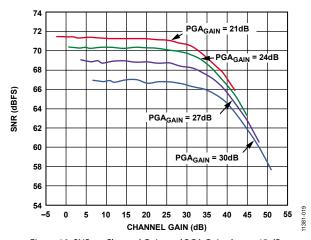


Figure 19. SNR vs. Channel Gain and PGA Gain, $A_{\text{IN}} = -45~\text{dBm}$

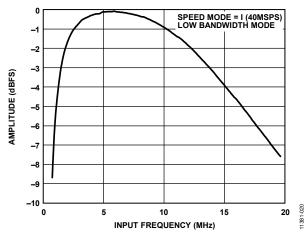


Figure 20. Antialiasing Filter (AAF) Pass-Band Response, LPF Cutoff = $1 \times (1/3) \times f_{SAMPLE}$, HPF = $1/12 \times LPF$ Cutoff

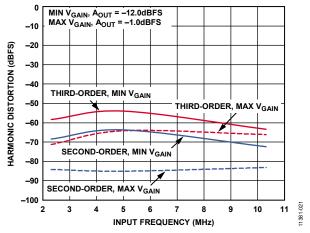


Figure 21. Second-Order and Third-Order Harmonic Distortion vs. Input Frequency

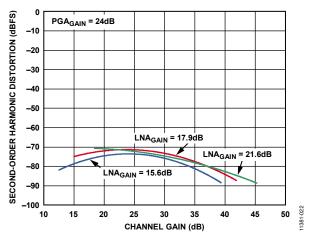


Figure 22. Second-Order Harmonic Distortion vs. Channel Gain, $A_{OUT} = -1.0 \text{ dBFS}$

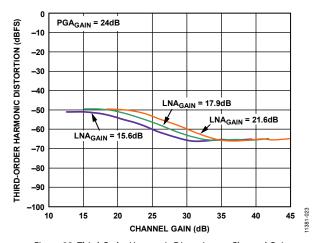


Figure 23. Third-Order Harmonic Distortion vs. Channel Gain, $A_{OUT} = -1.0 \text{ dBFS}$

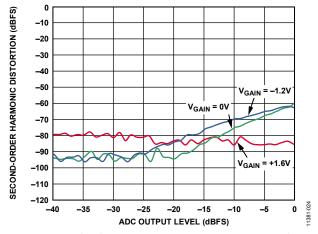
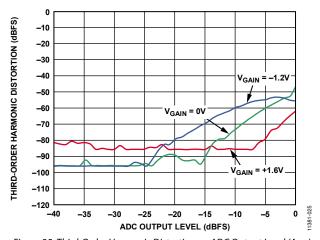



Figure 24. Second-Order Harmonic Distortion vs. ADC Output Level (A $_{\text{OUT}}$)

 $\textit{Figure 25. Third-Order Harmonic Distortion vs. ADC Output Level (A_{OUT})}$

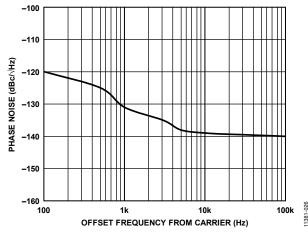


Figure 26. TGC Path Phase Noise, LNA Gain = 21.6 dB, PGA Gain = 27 dB, V_{GAIN} = 0 V

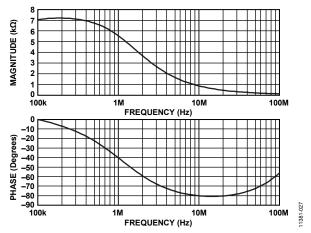


Figure 27. LNA Input Impedance Magnitude and Phase, Unterminated

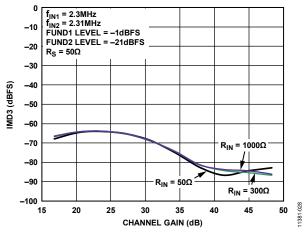


Figure 28. IMD3 vs. Channel Gain

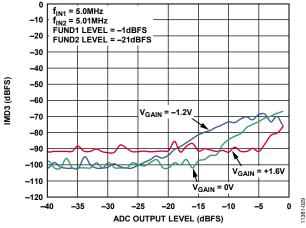


Figure 29. IMD3 vs. ADC Output Level

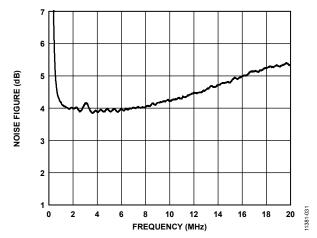


Figure 30. Noise Figure vs. Frequency $R_S = R_{IN} = 100 \Omega$, LNA Gain = 17.9 dB, PGA Gain = 30 dB, $V_{GAIN} = 1.6 V$

CW DOPPLER MODE

 $f_{IN} = 5$ MHz, $f_{LO} = 20$ MHz, 4LO mode, $R_S = 50$ Ω , LNA gain = 21.6 dB, LNA bias = midhigh, all CW channels enabled, phase rotation = 0° .

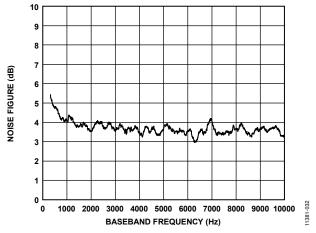


Figure 31. Noise Figure vs. Baseband Frequency

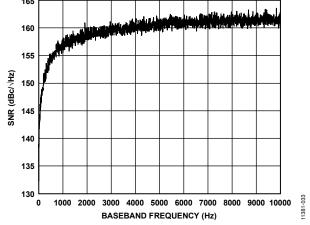


Figure 32. Output Referred SNR vs. Baseband Frequency

THEORY OF OPERATION

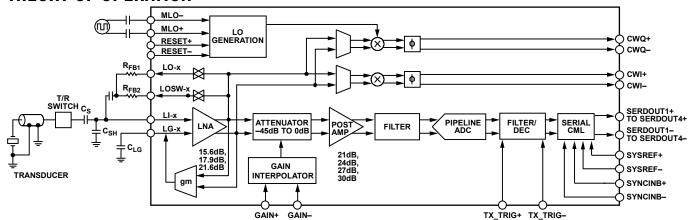


Figure 33. Simplified Block Diagram of a Single Channel

Each channel of the AD9675 contains both a TGC signal path and a CW Doppler signal path. Common to both signal paths, the LNA provides four user adjustable input impedance termination options for matching different probe impedances. The CW Doppler path includes an I/Q demodulator with programmable phase rotation needed for analog beamforming. The TGC path includes a differential X-AMP* VGA, an antialiasing filter, an ADC, and a digital RF decimation by 2 and high-pass filter. Figure 33 shows a simplified block diagram with external components.

TGC OPERATION

The system gain is distributed as listed in Table 7.

Table 7. Channel Analog Gain Distribution

Section	Nominal Gain (dB)		
LNA	15.6/17.9/21.6 (LNA _{GAIN})		
Attenuator	-45 to 0 (VGA _{ATT})		
VGA Amplifier	21/24/27/30 (PGA _{GAIN})		
Filter	0		
ADC	0		

Each LNA output is dc-coupled to a VGA input. The VGA consists of an attenuator with a range of –45 dB to 0 dB followed by an amplifier with a selectable gain of 21 dB, 24 dB, 27 dB, or 30 dB. The X-AMP gain interpolation technique results in low gain error and uniform bandwidth, and differential signal paths minimize distortion.

The linear in dB gain (law conformance) range of the TGC path is 45 dB. The slope of the gain control interface is 14 dB/V, and the gain control range is -1.6 V to +1.6 V. Equation 1 is the expression for the differential voltage, V_{GAIN} , at the gain control interface. Equation 2 is the expression for the VGA attenuation, VGA_{ATT}, as a function of V_{GAIN} .

$$V_{GAIN}(V) = (GAIN+) - (GAIN-)$$
 (1)

$$VGA_{ATT}$$
 (dB) = -14 (dB/V) × (1.6 – V_{GAIN}) (2)

Then, calculate the total channel gain as in Equation 3.

Channel Gain (dB) =
$$LNA_{GAIN} + VGA_{ATT} + PGA_{GAIN}$$
 (3)

In its default condition, the LNA has a gain of 21.6 dB (12×), and the VGA postamp gain is 24 dB. If the voltage on the GAIN+ pin is 0 V and the voltage on the GAIN- pin is 1.6 V (44.8 dB attenuation), the total gain of the channel is 0.8 dB if the LNA input is unmatched. The channel gain is –5.2 dB if the LNA is matched to 50 Ω (RFB = 300 Ω). However, if the voltage on the GAIN+ pin is 1.6 V and the voltage on the GAIN- pin is 0 V (0 dB attenuation), VGAATT is 0 dB. This results in a total gain of 45.6 dB through the TGC path if the LNA input is unmatched, or in a total gain of 39.6 dB if the LNA input is matched. Similarly, if the LNA input is unmatched and has a gain of 21.6 dB (12×), and the VGA postamp gain is 30 dB, the channel gain is approximately 52 dB with 0 dB VGAATT.

1381-034

In addition to the analog VGA attenuation described in Equation 2, the attenuation level can be digitally controlled in 3.5 dB increments. Equation 3 is still valid, and the value of VGA_{ATT} is equal to the attenuation level set in Address 0x011, Bits[7:4].

Low Noise Amplifier (LNA)

Good system sensitivity relies on a proprietary ultralow noise LNA at the beginning of the signal chain, which minimizes the noise contribution in the following VGA. Active impedance control optimizes noise performance for applications that benefit from input impedance matching.

The LNA input, LI-x, is capacitively coupled to the source. An on-chip bias generator establishes dc input bias voltages of approximately 2.2 V and centers the output common-mode levels at 1.5 V (AVDD2 divided by 2). A capacitor, C_{LG} , of the same value as the input coupling capacitor, C_{S} , is connected from the LG-x pin to ground.

The LNA supports three gains, 21.6 dB, 17.9 dB, or 15.6 dB, set through the SPI. Overload protection ensures quick recovery time from large input voltages.

Low value feedback resistors and the current driving capability of the output stage allow the LNA to achieve a low input referred noise voltage of $0.78~\text{nV/}\sqrt{\text{Hz}}$ (at a gain of 21.6 dB).

On-chip resistor matching results in precise single-ended gains, which are critical for accurate impedance control. The use of a fully differential topology and negative feedback minimizes distortion. Low second-order harmonic distortion is particularly important in harmonic ultrasound imaging applications.

Active Impedance Matching

The LNA consists of a single-ended voltage gain amplifier with differential outputs and the negative output externally available on two output pins (LO-x and LOSW-x) that are controlled via internal switches. This configuration allows active input impedance synthesis of 3 different impedance values (and unterminated value) via connecting up to two external resistances in parallel and controlling the internal switch states via SPI. This well known technique is used for interfacing multiple probe impedances to a single system. For example, with a fixed gain of 8× (17.9 dB), an active input termination is synthesized by connecting a feedback resistor between the negative output pin, LO-x, and the positive input pin, LI-x. The input resistance calculation is shown in Equation 4.

$$R_{IN} = \frac{(R_{FBI} + 20\,\Omega) || (R_{FB2} + 20\,\Omega) + 30\,\Omega}{(1 + \frac{A}{2})}$$
(4)

where:

 R_{FB1} and R_{FB2} are the external feedback resistors.

 20Ω is the internal switch on resistance.

30 Ω is an internal series resistance common to the two internal switches.

A/2 is the single-ended gain or the gain from the LI-x inputs to the LO-x outputs.

 R_{FB} can be equal to R_{FB1} , R_{FB2} , or $(R_{FB1} + 20) || (R_{FB2} + 20)$ depending on the connection status of the internal switches.

Because the amplifier has a gain of 8× from its input to its differential output, it is important to note that the gain, A/2, is the gain from Pin LI-x to Pin LO-x and that it is 6 dB less than the gain of the amplifier, or 12.1 dB (4×). The input resistance is reduced by an internal bias resistor of 6 k Ω in parallel with the source resistance connected to pin LI-x, with Pin LG-x ac grounded. Use, the more accurate, Equation 5 to calculate the required R_{FB} for a desired R_{IN} , even for higher values of R_{IN} .

$$R_{IN} = \frac{(R_{FBI} + 20\,\Omega) || (R_{FB2} + 20\,\Omega) + 30\,\Omega}{(1 + A/2)} || 6\,k\,\Omega$$
 (5)

For example, to set R_{IN} to $200~\Omega$ with a single-ended LNA gain of $12.1~dB~(4\times)$, the value of R_{FB1} from Equation 4 must be 950 Ω , while the switch for R_{FB2} is open. If the more accurate equation (Equation 5) is used to calculate R_{IN} , the value is then $194~\Omega$ instead of $200~\Omega$, resulting in a gain error of less than 0.27~dB. Some factors, such as the presence of a dynamic source resistance, may influence the absolute gain accuracy more significantly. At higher frequencies, the input capacitance of the LNA must be considered. The user must determine the level of matching accuracy and adjust R_{FB1} and R_{FB2} accordingly.

 R_{FB} is the resulting impedance of the R_{FB1} and R_{FB2} combination (see Figure 33). Use Register 0x02C in the SPI memory to program the AD9675 for four impedance matching options: three active terminations and unterminated. Table 8 shows an example of how to select R_{FB1} and R_{FB2} for 66 Ω , 100 Ω , and 200 Ω input impedance for LNA gain = 21.6 dB (12×).

Table 8. Active Termination Example for LNA Gain = 21.6 dB, R_{FB1} = 650 Ω , R_{FB2} = 1350 Ω

Addr 0x02C Value	R _s (Ω)	LO-x Switch	LOSW-x Switch	R _{FB} (Ω)	R _{IN} (Ω) (Eq. 4)
00 (default)	100	On	Off	R _{FB1}	100
01	50	On	On	R _{FB1} R _{FB2}	69
10	200	Off	On	R _{FB2}	200
11	N/A ¹	Off	Off	∞	8

¹ N/A means not applicable.

The bandwidth (BW) of the LNA is greater than 80 MHz. Ultimately, the BW of the LNA limits the accuracy of the synthesized $R_{\rm IN}.$ For $R_{\rm IN}=R_{\rm S}$ up to about 200 $\Omega,$ the best match is between 100 kHz and 10 MHz, where the lower frequency limit is determined by the size of the ac coupling capacitors, and the upper limit is determined by the LNA BW. Furthermore, the input capacitance and $R_{\rm S}$ limit the BW at higher frequencies. Figure 34 shows $R_{\rm IN}$ vs. frequency for various values of $R_{\rm FB}.$

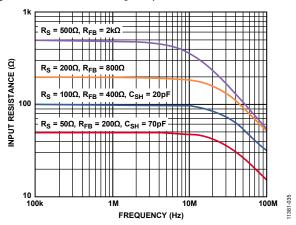


Figure 34. R_{IN} vs. Frequency for Various Values of R_{FB} (Effects of R_{SH} and C_{SH} Are Also Shown)

However, for larger $R_{\rm IN}$ values, parasitic capacitance starts rolling off the signal BW before the LNA can produce peaking. C_{SH} further degrades the match; therefore, do not use C_{SH} for values of $R_{\rm IN}$ that are greater than 100 $\Omega.$ Table 9 lists the recommended values for R_{FB} and C_{SH} in terms of $R_{IN}.$ C_{FB} is needed in series with R_{FB} because the dc levels at Pin LO-x and Pin LI-x are unequal.

Table 9. Active Termination External Component Values

LNA Gain (dB)	R _{IN} (Ω)	R _{FB} (Ω)	Minimum C _{SH} (pF)
15.6	50	150	90
17.9	50	200	70
21.6	50	300	50
15.6	100	350	30
17.9	100	450	20
21.6	100	650	10
15.6	200	750	Not applicable
17.9	200	950	Not applicable
21.6	200	1350	Not applicable

LNA Noise

The short-circuit noise voltage (input referred noise) is an important limit on system performance. The short-circuit noise voltage for the LNA is 0.78 nV/ $\sqrt{\rm Hz}$ at a gain of 21.6 dB, including the VGA noise at a VGA postamp gain of 27 dB. These measurements, which were taken without a feedback resistor, provide the basis for calculating the input noise and noise figure (NF) performance.

Figure 35 and Figure 36 are simulations of noise figure vs. R_S results with different input configurations and an input referred noise voltage of 2.5 nV/ $\sqrt{\text{Hz}}$ for the VGA. Unterminated ($R_{FB} = \infty$) operation exhibits the lowest equivalent input noise and noise figure. Figure 36 shows the noise figure vs. source resistance rising at low R_S , where the LNA voltage noise is large compared with the source noise, and at high R_S due to the noise contribution from R_{FB} . The lowest NF is achieved when R_S matches R_{IN} .

Figure 35 shows the relative noise figure performance. With an LNA gain of 21.6 dB, the input impedance is swept with $R_{\rm S}$ to preserve the match at each point. The noise figures for a source impedance of 50 Ω are 7 dB, 4 dB, and 2.5 dB for the shunt termination, active termination, and unterminated configurations, respectively. The noise figures for 200 Ω are 4.5 dB, 1.7 dB, and 1 dB, respectively.

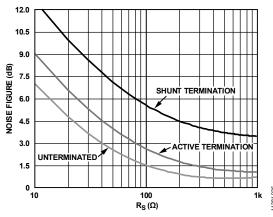


Figure 35. Noise Figure vs. R_S for Shunt Termination, Active Termination Matched and Unterminated Inputs, $V_{GAIN} = 1.6 \text{ V}$

Figure 36 shows the noise figure as it relates to R_S for various values of $R_{\rm IN}$, which is helpful for design purposes.

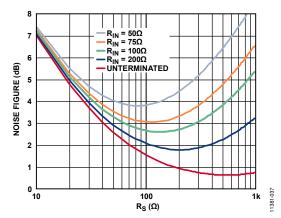


Figure 36. Noise Figure vs. R_S for Various Fixed Values of R_{IN} , Active Termination Matched Inputs, $V_{GAIN} = 1.6 \text{ V}$

CLNA Connection

CLNA (Pin B7) must have a 1 nF capacitor attached to AVDD2.

DC Offset Correction/High-Pass Filter

The AD9675 LNA architecture corrects for dc offset voltages that can develop on the external C_S capacitor due to leakage of the transmit (Tx)/receive (Rx) switch during ultrasound transmit cycles. The dc offset correction, as shown in Figure 37, provides a feedback mechanism to the LG-x input of the LNA to correct for this dc voltage.

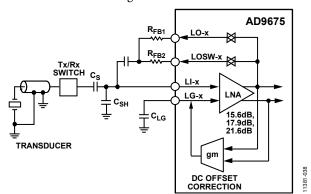


Figure 37. Simplified LNA Input Configuration

The feedback acts as high-pass filter providing dynamic correction of the dc offset. The cutoff frequency of the high-pass filter response is dependent on the value of the C_{LG} capacitor, the gain of the LNA (LNA $_{GAIN}$) and the g_m of the feedback transconductance amplifier. The g_m value is programmed in Register 0x120, Bits[4:3]. Ensure that C_S is equal to C_{LG} for proper operation.

Table 10. High-Pass Filter Cutoff Frequency, f_{HP} , for $C_{LG} = 10 \text{ nF}$

Address 0x120[4:3]	g _m	LNA _{GAIN} = 15.6 dB	LNA _{GAIN} = 17.9 dB	LNA _{GAIN} = 21.6 dB
00 (default)	0.5 mS	41 kHz	55 kHz	83 kHz
01	1.0 mS	83 kHz	110 kHz	167 kHz
10	1.5 mS	133 kHz	178 kHz	267 kHz
11	2.0 mS	167 kHz	220 kHz	330 kHz

For other values of C_{LG} , determine the high-pass filter cutoff frequency by scaling the values from Table 10 or calculating based on C_{LG} , LNA_{GAIN}, and g_m , as shown in Equation 6.

$$f_{HP}(C_{LG}) = \frac{1}{2 \times \pi} \times LNA_{GAIN} \times \frac{g_m}{C_{LG}} = f_{HP} \times \frac{10 \text{ nF}}{C_{LG}}$$
 (6)

where f_{HP} is the high-pass filter cutoff frequency (see Table 10).

Variable Gain Amplifier (VGA)

The differential X-AMP VGA provides precise input attenuation and interpolation. It has a low input referred noise of 2.5 nV/ $\sqrt{\text{Hz}}$ and excellent gain linearity. The VGA is driven by a fully differential input signal from the LNA. The X-AMP architecture produces a linear-in-dB gain law conformance and low distortion levels—deviating only ± 0.5 dB or less from the ideal. The gain slope is monotonic with respect to the control voltage and is stable with variations in process, temperature, and supply. The resulting total gain range is 45 dB, which allows range loss at the endpoints.

The X-AMP inputs are part of a PGA that completes the VGA. The PGA in the VGA can be programmed to a gain of 21 dB, 24 dB, 27 dB, or 30 dB, allowing for optimization of channel gain for different imaging modes in the ultrasound system. The VGA bandwidth is greater than 100 MHz. The input stage ensures excellent frequency response uniformity across the gain setting. For TGC mode, this minimizes time delay variation across the gain range.

Gain Control

The analog gain control interface, GAIN±, is a differential input. V_{GAIN} varies the gain of all VGAs through the interpolator by selecting the appropriate input stages connected to the input attenuator. The nominal V_{GAIN} range is 14 dB/V from -1.6 V to +1.6 V, with the best gain linearity from approximately -1.44 V to +1.44 V, where the error is typically less than ± 0.5 dB. For V_{GAIN} voltages of greater than 1.44 V and less than -1.44 V, the error increases. The value of GAIN± can exceed the supply voltage by 1 V without gain foldover.

Gain control response time is less than 750 ns to settle within 10% of the final value for a change from minimum to maximum gain.

The differential input pins, GAIN+ and GAIN-, can interface to an amplifier, as shown in Figure 38. Decouple and drive the GAIN+ and GAIN- pins to accommodate a 3.2 V full-scale input.

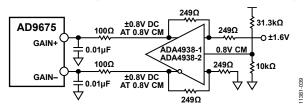


Figure 38. Differential GAIN± Pin Configuration

Use Address 0x011, Bits[7:4], to disable the analog gain control and to control the attenuator digitally. The control range is 45 dB and the step size is 3.5 dB.

VGA Noise

In a typical application, a VGA compresses a wide dynamic range input signal to within the input span of an ADC. The input referred noise of the LNA limits the minimum resolvable input signal, whereas the output referred noise, which depends primarily on the VGA, limits the maximum instantaneous dynamic range that can be processed at any one particular gain control voltage. This latter limit is set in accordance with the total noise floor of the ADC.

The output referred noise is a flat $40 \text{ nV/}\sqrt{\text{Hz}}$ (postamp gain = 24 dB) over most of the gain range because it is dominated by the fixed output referred noise of the VGA. At the high end of the gain control range, the noise of the LNA and the source prevail. The input referred noise reaches its minimum value near the maximum gain control voltage, where the input referred contribution of the VGA is miniscule.

At lower gains, the input referred noise and, therefore, the noise figure increase as the gain decreases. The instantaneous dynamic range of the system is not lost, however, because the input capacity increases as the input referred noise increases. The contribution of the ADC noise floor has the same dependence. The important relationship is the magnitude of the VGA output noise floor relative to that of the ADC.

Gain control noise is a concern in very low noise applications. Thermal noise in the gain control interface can modulate the channel gain. The resulting noise is proportional to the output signal level and is usually evident only when a large signal is present. Take care to minimize noise impinging at the GAIN \pm inputs. Use an external RC filter to remove V_{GAIN} source noise. Ensure that the filter bandwidth is sufficient to accommodate the desired control bandwidth and attenuate unwanted switching noise from the external DACs used to drive the gain control.

The AD9675 can bypass the GAIN± inputs and control the gain of the attenuator digitally (see the Gain Control section). This mode removes any external noise contributions when active gain control is not needed.

Antialiasing Filter (AAF)

The filter that the signal reaches prior to the ADC is used to reject dc signals and to band limit the signal for antialiasing. The antialiasing filter is a combination of a single-pole, high-pass filter and a second-order, low-pass filter. Configure the high-pass filter as a ratio of the low-pass filter cutoff frequency using Address 0x02B, Bits[1:0].

The filter uses on-chip tuning to trim the capacitors and, in turn, to set the desired low-pass cutoff frequency and reduce variations. The default -3 dB low-pass filter cutoff is 1/3, 1/4.5, or 1/6 of the ADC sample clock rate. The cutoff can be scaled to 0.75, 0.8, 0.9, 1.0, 1.13, 1.25, or 1.45 times this frequency using Address 0x00F. The cutoff tolerance ($\pm 10\%$) is maintained from 8 MHz to 18 MHz for low bandwidth mode or 13.5 MHz to 30 MHz for high bandwidth mode.