# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





# 14-Bit, 500 MSPS LVDS, Dual Analog-to-Digital Converter

### **Data Sheet**

# AD9684

### FEATURES

Parallel LVDS (DDR) outputs 1.1 W total power per channel at 500 MSPS (default settings) SFDR = 85 dBFS at 170 MHz f<sub>IN</sub> (500 MSPS) SNR = 68.6 dBFS at 170 MHz f<sub>IN</sub> (500 MSPS) ENOB = 10.9 bits at 170 MHz fin  $DNL = \pm 0.5 LSB$  $INL = \pm 2.5 LSB$ Noise density = -153 dBFS/Hz at 500 MSPS 1.25 V, 2.50 V, and 3.3 V supply operation No missing codes Internal analog-to-digital converter (ADC) voltage reference Flexible input range and termination impedance 1.46 V p-p to 2.06 V p-p (2.06 V p-p nominal) 400  $\Omega$ , 200  $\Omega$ , 100  $\Omega$ , and 50  $\Omega$  differential SYNC± input allows multichip synchronization DDR LVDS (ANSI-644 levels) outputs 2 GHz usable analog input full power bandwidth >96 dB channel isolation/crosstalk Amplitude detect bits for efficient AGC implementation Two integrated wideband digital processors per channel 12-bit numerically controlled oscillator (NCO) 3 cascaded half-band filters Differential clock inputs Serial port control Integer clock divide by 2, 4, or 8 Small signal dither

### APPLICATIONS

Communications Diversity multiband, multimode digital receivers 3G/4G, TD-SCDMA, W-CDMA, MC-GSM, LTE General-purpose software radios Ultrawideband satellite receiver Instrumentation (spectrum analyzers, network analyzers, integrated RF test solutions) Radar Digital oscilloscopes High speed data acquisition systems DOCSIS CMTS upstream receiver paths HFC digital reverse path receivers

### FUNCTIONAL BLOCK DIAGRAM



### **GENERAL DESCRIPTION**

The AD9684 is a dual, 14-bit, 500 MSPS ADC. The device has an on-chip buffer and a sample-and-hold circuit designed for low power, small size, and ease of use. This product is designed for sampling wide bandwidth analog signals. The AD9684 is optimized for wide input bandwidth, a high sampling rate, excellent linearity, and low power in a small package.

The dual ADC cores feature a multistage, differential pipelined architecture with integrated output error correction logic. Each ADC features wide bandwidth buffered inputs, supporting a variety of user selectable input ranges. An integrated voltage reference eases design considerations. Each ADC data output is internally connected to an optional decimate by 2 block.

The analog input and clock signals are differential inputs. Each ADC data output is internally connected to two digital downconverters (DDCs). Each DDC consists of four cascaded signal processing stages: a 12-bit frequency translator (NCO), and three half-band decimation filters supporting a divide by factor of two, four, and eight.

Rev. 0

#### Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

# TABLE OF CONTENTS

| Features                                      |
|-----------------------------------------------|
| Applications1                                 |
| Functional Block Diagram1                     |
| General Description                           |
| Revision History                              |
| Product Highlights                            |
| Specifications                                |
| DC Specifications 4                           |
| AC Specifications                             |
| Digital Specifications6                       |
| Switching Specifications7                     |
| Timing Specifications                         |
| Absolute Maximum Ratings16                    |
| Thermal Characteristics16                     |
| ESD Caution16                                 |
| Pin Configuration and Function Descriptions17 |
| Typical Performance Characteristics           |
| Equivalent Circuits                           |
| Theory of Operation                           |
| ADC Architecture                              |
| Analog Input Considerations24                 |
| Voltage Reference                             |
| Clock Input Considerations27                  |
| Power-Down/Standby Mode28                     |
| Temperature Diode                             |
| ADC Overrange and Fast Detect                 |
| ADC Overrange                                 |
| Fast Threshold Detection (FD_A and FD_B)      |
| Signal Monitor                                |
| Digital Downconverters (DDCs)                 |
| DDC I/Q Input Selection                       |

### **REVISION HISTORY**

5/15—Revision 0: Initial Version

| DDC I/Q Output Selection                 |
|------------------------------------------|
| DDC General Description                  |
| Frequency Translation                    |
| General Description                      |
| DDC NCO Plus Mixer Loss and SFDR         |
| Numerically Controlled Oscillator        |
| FIR Filters 40                           |
| General Description                      |
| Half-Band Filters 41                     |
| DDC Gain Stage 42                        |
| DDC Complex to Real Conversion Block 42  |
| DDC Example Configurations 43            |
| Digital Outputs                          |
| Digital Outputs                          |
| ADC Overrange 47                         |
| Multichip Synchronization                |
| SYNC± Setup and Hold Window Monitor      |
| Test Modes                               |
| ADC Test Modes 51                        |
| Serial Port Interface (SPI)              |
| Configuration Using the SPI52            |
| Hardware Interface52                     |
| SPI Accessible Features                  |
| Memory Map 53                            |
| Reading the Memory Map Register Table 53 |
| Memory Map Register Table54              |
| Applications Information                 |
| Power Supply Recommendations63           |
| Outline Dimensions                       |
| Ordering Guide64                         |
|                                          |

The AD9684 has several functions that simplify the automatic gain control (AGC) function in a communications receiver. The programmable threshold detector allows monitoring of the incoming signal power using the fast detect output bits of the ADC. If the input signal level exceeds the programmable threshold, the fast detect indicator goes high. Because this threshold indicator has low latency, the user can quickly reduce the system gain to avoid an overrange condition at the ADC input. In addition to the fast detect outputs, the AD9684 also offers signal monitoring capability. The signal monitoring block provides additional information about the signal that the ADC digitized.

The dual ADC output data is routed directly to the one external, 14-bit LVDS output port, supporting double data rate (DDR) formatting. An external data clock and status bit are offered for data capture flexibility.

The LVDS outputs have several configurations, depending on the acceptable rate of the receiving logic device and the sampling rate of the ADC. Multiple device synchronization is supported through the SYNC± input pins. The AD9684 has flexible power-down options that allow significant power savings when desired. All of these features can be programmed using a 1.8 V to 3.4 V capable 3-wire serial port interface (SPI).

The AD9684 is available in a Pb-free, 196-ball ball grid array (BGA) and is specified over the -40°C to +85°C industrial temperature range. This product is protected by a U.S. patent.

### **PRODUCT HIGHLIGHTS**

- 1. Wide full power bandwidth supports intermediate frequency (IF) sampling of signals up to 2 GHz.
- 2. Buffered inputs with programmable input termination ease filter design and implementation.
- 3. Four integrated wideband decimation filters and NCO blocks supporting multiband receivers.
- 4. Flexible SPI controls various product features and functions to meet specific system requirements.
- 5. Programmable fast overrange detection and signal monitoring.
- 6. SYNC± input allows synchronization of multiple devices.
- 7. 12 mm × 12 mm, 196-ball BGA\_ED.

### **SPECIFICATIONS**

### **DC SPECIFICATIONS**

AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling rate (500 MSPS), 1.7 V p-p full-scale differential input, 1.0 V internal reference, A<sub>IN</sub> = -1.0 dBFS, default SPI settings, T<sub>A</sub> = 25°C, unless otherwise noted.

| Parameter                                       | Temperature | Min  | Тур       | Мах  | Unit    |
|-------------------------------------------------|-------------|------|-----------|------|---------|
| RESOLUTION                                      | Full        | 14   |           |      | Bits    |
| ACCURACY                                        |             |      |           |      |         |
| No Missing Codes                                | Full        |      | Guarantee | d    |         |
| Offset Error                                    | Full        | -0.3 | 0         | +0.3 | % FSR   |
| Offset Matching                                 | Full        |      | 0         | +0.3 | % FSR   |
| Gain Error                                      | Full        | -6.5 | 0         | +6.5 | % FSR   |
| Gain Matching                                   | Full        |      | 0         | +5.0 | % FSR   |
| Differential Nonlinearity (DNL)                 | Full        | -0.6 | ±0.5      | +0.7 | LSB     |
| Integral Nonlinearity (INL)                     | Full        | -4.5 | ±2.5      | +5.0 | LSB     |
| TEMPERATURE DRIFT                               |             |      |           |      |         |
| Offset Error                                    | 25°C        |      | ±3        |      | ppm/°C  |
| Gain Error                                      | 25°C        |      | -39       |      | ppm/°C  |
| INTERNAL VOLTAGE REFERENCE                      | Full        |      | 1.0       |      | V       |
| INPUT-REFERRED NOISE                            |             |      |           |      |         |
| $V_{REF} = 1.0 V$                               | 25°C        |      | 2.63      |      | LSB rms |
| ANALOG INPUTS                                   |             |      |           |      |         |
| Differential Input Voltage Range (Programmable) | Full        | 1.46 | 2.06      | 2.06 | V p-p   |
| Common-Mode Voltage (V <sub>CM</sub> )          | 25°C        |      | 2.05      |      | V       |
| Differential Input Capacitance <sup>1</sup>     | 25°C        |      | 1.5       |      | pF      |
| Analog Input Full Power Bandwidth               | 25°C        |      | 2         |      | GHz     |
| POWER SUPPLY                                    |             |      |           |      |         |
| AVDD1                                           | Full        | 1.22 | 1.25      | 1.28 | V       |
| AVDD2                                           | Full        | 2.44 | 2.50      | 2.56 | V       |
| AVDD3                                           | Full        | 3.2  | 3.3       | 3.4  | V       |
| DVDD                                            | Full        | 1.22 | 1.25      | 1.28 | V       |
| DRVDD                                           | Full        | 1.22 | 1.25      | 1.28 | V       |
| SPIVDD                                          | Full        | 1.22 | 1.8       | 3.4  | V       |
| lavdd1                                          | Full        |      | 448       | 503  | mA      |
| lavdd2                                          | Full        |      | 396       | 455  | mA      |
| lavdd3                                          | Full        |      | 103       | 124  | mA      |
| IDVDD                                           | Full        |      | 108       | 127  | mA      |
| ldrvdd                                          | Full        |      | 106       | 119  | mA      |
| Ispivdd                                         | Full        |      | 2         | 6    | mA      |
| POWER CONSUMPTION                               |             |      |           |      |         |
| Total Power Dissipation <sup>2</sup>            | Full        |      | 2.2       |      | W       |
| Power-Down Dissipation                          | Full        |      | 710       |      | mW      |
| Standby                                         | Full        |      | 1.0       |      | W       |

<sup>1</sup> Differential capacitance is measured between the VIN+x and VIN-x pins (x = A or B). <sup>2</sup> Parallel interleaved LVDS mode. The power dissipation on DRVDD changes with the output data mode used.

### AC SPECIFICATIONS

AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling rate (500 MSPS), 1.7 V p-p full-scale differential input, 1.0 V internal reference,  $A_{IN} = -1.0$  dBFS, default SPI settings,  $T_A = 25^{\circ}$ C, unless otherwise noted.

#### Table 2.

| Parameter <sup>1</sup>                                          | Temperature | Min  | Тур  | Мах | Unit    |
|-----------------------------------------------------------------|-------------|------|------|-----|---------|
| ANALOG INPUT FULL SCALE                                         | Full        |      | 2.06 |     | V р-р   |
| NOISE DENSITY <sup>2</sup>                                      | Full        |      | -153 |     | dBFS/Hz |
| SIGNAL-TO-NOISE RATIO (SNR) <sup>3</sup>                        |             |      |      |     |         |
| $f_{IN} = 10 \text{ MHz}$                                       | 25°C        |      | 69.2 |     | dBFS    |
| $f_{IN} = 170 \text{ MHz}$                                      | Full        | 67.5 | 68.6 |     | dBFS    |
| $f_{IN} = 340 \text{ MHz}$                                      | 25°C        |      | 68.4 |     | dBFS    |
| $f_{IN} = 450 \text{ MHz}$                                      | 25°C        |      | 68.0 |     | dBFS    |
| $f_{IN} = 765 \text{ MHz}$                                      | 25°C        |      | 64.4 |     | dBFS    |
| f <sub>IN</sub> = 985 MHz                                       | 25°C        |      | 63.8 |     | dBFS    |
| f <sub>IN</sub> = 1950 MHz                                      | 25°C        |      | 60.5 |     | dBFS    |
| SIGNAL-TO-NOISE RATIO AND DISTORTION RATIO (SINAD) <sup>3</sup> |             |      |      |     |         |
| $f_{IN} = 10 \text{ MHz}$                                       | 25°C        |      | 68.7 |     | dBFS    |
| $f_{IN} = 170 \text{ MHz}$                                      | Full        | 67   | 68.5 |     | dBFS    |
| f <sub>IN</sub> = 340 MHz                                       | 25°C        |      | 67.6 |     | dBFS    |
| $f_{IN} = 450 \text{ MHz}$                                      | 25°C        |      | 67.2 |     | dBFS    |
| f <sub>IN</sub> = 765 MHz                                       | 25°C        |      | 63.8 |     | dBFS    |
| f <sub>IN</sub> = 985 MHz                                       | 25°C        |      | 62.5 |     | dBFS    |
| f <sub>IN</sub> = 1950 MHz                                      | 25°C        |      | 58.3 |     | dBFS    |
| EFFECTIVE NUMBER OF BITS (ENOB)                                 |             |      |      |     |         |
| $f_{IN} = 10 \text{ MHz}$                                       | 25°C        |      | 11.1 |     | Bits    |
| f <sub>IN</sub> = 170 MHz                                       | Full        | 10.8 | 10.9 |     | Bits    |
| f <sub>IN</sub> = 340 MHz                                       | 25°C        |      | 10.8 |     | Bits    |
| $f_{IN} = 450 \text{ MHz}$                                      | 25°C        |      | 10.8 |     | Bits    |
| $f_{IN} = 765 \text{ MHz}$                                      | 25°C        |      | 10.3 |     | Bits    |
| $f_{IN} = 985 \text{ MHz}$                                      | 25°C        |      | 10.1 |     | Bits    |
| f <sub>IN</sub> = 1950 MHz                                      | 25°C        |      | 9.5  |     | Bits    |
| SPURIOUS-FREE DYNAMIC RANGE (SFDR) <sup>3</sup>                 |             |      |      |     |         |
| $f_{IN} = 10 \text{ MHz}$                                       | 25°C        |      | 83   |     | dBFS    |
| $f_{IN} = 170 \text{ MHz}$                                      | Full        | 76   | 85   |     | dBFS    |
| $f_{IN} = 340 \text{ MHz}$                                      | 25°C        |      | 82   |     | dBFS    |
| $f_{IN} = 450 \text{ MHz}$                                      | 25°C        |      | 86   |     | dBFS    |
| f <sub>IN</sub> = 765 MHz                                       | 25°C        |      | 81   |     | dBFS    |
| f <sub>IN</sub> = 985 MHz                                       | 25°C        |      | 76   |     | dBFS    |
| f <sub>IN</sub> = 1950 MHz                                      | 25°C        |      | 69   |     | dBFS    |
| WORST HARMONIC, SECOND OR THIRD <sup>3</sup>                    |             |      |      |     |         |
| $f_{IN} = 10 \text{ MHz}$                                       | 25°C        |      | -83  |     | dBFS    |
| $f_{IN} = 170 \text{ MHz}$                                      | Full        |      | -85  | -76 | dBFS    |
| f <sub>IN</sub> = 340 MHz                                       | 25°C        |      | -82  |     | dBFS    |
| $f_{IN} = 450 \text{ MHz}$                                      | 25°C        |      | -86  |     | dBFS    |
| f <sub>IN</sub> = 765 MHz                                       | 25°C        |      | -81  |     | dBFS    |
| f <sub>IN</sub> = 985 MHz                                       | 25°C        |      | -76  |     | dBFS    |
| f <sub>IN</sub> = 1950 MHz                                      | 25°C        |      | -69  |     | dBFS    |

| Parameter <sup>1</sup>                                                       | Temperature | Min | Тур | Max | Unit |
|------------------------------------------------------------------------------|-------------|-----|-----|-----|------|
| WORST OTHER, EXCLUDING SECOND OR THIRD HARMONIC <sup>3</sup>                 |             |     |     |     |      |
| $f_{IN} = 10 \text{ MHz}$                                                    | 25°C        |     | -93 |     | dBFS |
| f <sub>IN</sub> = 170 MHz                                                    | Full        |     | -92 | -76 | dBFS |
| $f_{IN} = 340 \text{ MHz}$                                                   | 25°C        |     | -90 |     | dBFS |
| $f_{IN} = 450 \text{ MHz}$                                                   | 25°C        |     | -92 |     | dBFS |
| $f_{IN} = 765 \text{ MHz}$                                                   | 25°C        |     | -89 |     | dBFS |
| $f_{IN} = 985 \text{ MHz}$                                                   | 25°C        |     | -89 |     | dBFS |
| $f_{IN} = 1950 \text{ MHz}$                                                  | 25°C        |     | -85 |     | dBFS |
| TWO-TONE INTERMODULATION DISTORTION (IMD), $A_{IN1}$ AND $A_{IN2} = -7$ dBFS |             |     |     |     |      |
| f <sub>IN1</sub> = 185 MHz, f <sub>IN2</sub> = 188 MHz                       | 25°C        |     | -88 |     | dBFS |
| $f_{IN1} = 338 \text{ MHz}, f_{IN2} = 341 \text{ MHz}$                       | 25°C        |     | -87 |     | dBFS |
| CROSSTALK <sup>4</sup>                                                       | 25°C        |     | 96  |     | dB   |
| FULL POWER BANDWIDTH                                                         | 25°C        |     | 2   |     | GHz  |

<sup>1</sup> See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.

<sup>2</sup> Noise density is measured at a low analog input frequency (30 MHz).

<sup>3</sup> See Table 9 for the recommended settings for full-scale voltage and buffer current control.

<sup>4</sup> Crosstalk is measured at 170 MHz with a -1.0 dBFS analog input on one channel and no input on the adjacent channel.

### **DIGITAL SPECIFICATIONS**

AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling rate (500 MSPS), 1.7 V p-p full-scale differential input, 1.0 V internal reference,  $A_{IN} = -1.0$  dBFS, default SPI settings,  $T_A = 25^{\circ}$ C, unless otherwise noted.

#### Table 3.

| Parameter                                  | Temperature | Min | Тур                 | Max  | Unit   |
|--------------------------------------------|-------------|-----|---------------------|------|--------|
| CLOCK INPUTS (CLK+, CLK–)                  |             |     |                     |      |        |
| Logic Compliance                           | Full        |     | LVDS/LVPECL         |      |        |
| Differential Input Voltage                 | Full        | 600 | 1200                | 1800 | mV p-p |
| Input Common-Mode Voltage                  | Full        |     | 0.85                |      | V      |
| Input Resistance (Differential)            | Full        |     | 35                  |      | kΩ     |
| Input Capacitance                          | Full        |     |                     | 2.5  | pF     |
| SYNC INPUTS (SYNC+, SYNC-)                 |             |     |                     |      |        |
| Logic Compliance                           | Full        |     | LVDS/LVPECL         |      |        |
| Differential Input Voltage                 | Full        | 400 | 1200                | 1800 | mV p-p |
| Input Common-Mode Voltage                  | Full        | 0.6 | 0.85                | 2.0  | V      |
| Input Resistance (Differential)            | Full        |     | 35                  |      | kΩ     |
| Input Capacitance (Differential)           | Full        |     |                     | 2.5  | pF     |
| LOGIC INPUTS (SDIO, SCLK, CSB, PDWN/STBY)  |             |     |                     |      |        |
| Logic Compliance                           | Full        |     | CMOS                |      |        |
| Logic 1 Voltage                            | Full        |     | $0.8 \times SPIVDD$ |      | V      |
| Logic 0 Voltage                            | Full        | 0   | $0.2 \times SPIVDD$ |      | V      |
| Input Resistance                           | Full        |     | 30                  |      | kΩ     |
| LOGIC OUTPUT (SDIO)                        |             |     |                     |      |        |
| Logic Compliance                           | Full        |     | CMOS                |      |        |
| Logic 1 Voltage (I <sub>OH</sub> = 800 μA) | Full        |     | $0.8 \times SPIVDD$ |      | V      |
| Logic 0 Voltage (lo∟ = 50 µA)              | Full        |     | $0.2 \times SPIVDD$ |      | V      |
| LOGIC OUTPUTS (FD_A, FD_B)                 |             |     |                     |      |        |
| Logic Compliance                           | Full        |     | CMOS                |      |        |
| Logic 1 Voltage                            | Full        | 0.8 | SPIVDD              |      | V      |
| Logic 0 Voltage                            | Full        | 0   | 0                   |      | V      |
| Input Resistance                           | Full        |     | 30                  |      | kΩ     |

| Parameter                                                | Temperature | Min  | Тур  | Max  | Unit   |
|----------------------------------------------------------|-------------|------|------|------|--------|
| DIGITAL OUTPUTS (Dx±, 1 DCO±, STATUS±)                   |             |      |      |      |        |
| Logic Compliance                                         | Full        |      | LVDS |      |        |
| Differential Output Voltage                              | Full        | 230  |      | 430  | mV p-p |
| Output Common-Mode Voltage (V <sub>CM</sub> )            |             |      |      |      |        |
| AC-Coupled                                               | 25°C        | 0    |      | 1.8  | V      |
| Short-Circuit Current (IDSHORT)                          | 25°C        | -100 |      | +100 | mA     |
| Differential Return Loss (RLDIFF) <sup>2</sup>           | 25°C        | 8    |      |      | dB     |
| Common-Mode Return Loss (RL <sub>CM</sub> ) <sup>2</sup> | 25°C        | 6    |      |      | dB     |
| Differential Termination Impedance                       | Full        | 80   | 100  | 120  | Ω      |

<sup>1</sup> Where x = 0 to 13.

 $^2$  Differential and common-mode return loss is measured from 100 MHz to 0.75 MHz × baud rate.

### SWITCHING SPECIFICATIONS

AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling rate, 1.7 V p-p full-scale differential input, 1.0 V internal reference,  $A_{IN} = -1.0 \text{ dBFS}$ , default SPI settings,  $T_A = 25^{\circ}C$ , unless otherwise noted.

| Table 4.                                                      |             |      |       |      |              |
|---------------------------------------------------------------|-------------|------|-------|------|--------------|
| Parameter                                                     | Temperature | Min  | Тур   | Max  | Unit         |
| CLOCK                                                         |             |      |       |      |              |
| Clock Rate (at CLK+/CLK– Pins)                                | Full        | 0.25 |       | 4    | GHz          |
| Maximum Sample Rate <sup>1</sup>                              | Full        | 500  |       |      | MSPS         |
| Minimum Sample Rate <sup>2</sup>                              | Full        | 250  |       |      | MSPS         |
| Clock Pulse Width                                             |             |      |       |      |              |
| High                                                          | Full        | 1000 |       |      | ps           |
| Low                                                           | Full        | 1000 |       |      | ps           |
| LVDS DATA OUTPUT PARAMETERS                                   |             |      |       |      |              |
| Data Propagation Delay $(t_{PD})^3$                           | Full        |      | 2.225 |      | ns           |
| $DCO \pm Propagation Delay (t_{DCO})^3$                       | Full        |      | 2.2   |      | ns           |
| DCO± to Data Skew                                             |             |      |       |      |              |
| Rising Edge Data (t <sub>skewr</sub> ) <sup>3</sup>           | Full        | -150 | -25   | +100 | ps           |
| Falling Edge Data (t <sub>skewf</sub> ) <sup>3</sup>          | Full        | 850  | 1.025 | 1100 | ps           |
| STATUS± Propagation Delay (t <sub>STATUS</sub> ) <sup>4</sup> | Full        |      | 2.2   |      | ns           |
| DCO± to STATUS± Skew (t <sub>FRAME</sub> ) <sup>4</sup>       | Full        | -150 | -25   | +100 | ps           |
| Data Propagation Delay $(t_{PD})^3$                           | Full        |      | 2.225 |      | ns           |
| DCO $\pm$ Propagation Delay ( $t_{DCO}$ ) <sup>3</sup>        | Full        |      | 2.2   |      | ns           |
| LATENCY <sup>5</sup>                                          |             |      |       |      |              |
| Pipeline Latency                                              | Full        |      | 35    |      | Clock cycles |
| Fast Detect Latency                                           | Full        |      |       | 28   | Clock cycles |
| HB1 Filter Latency <sup>3</sup>                               | Full        |      | 50    |      | Clock cycles |
| HB1 + HB2 Filter Latency <sup>3</sup>                         | Full        |      | 101   |      | Clock cycles |
| HB1 + HB2 + HB3 Filter Latency <sup>3</sup>                   | Full        |      | 217   |      | Clock cycles |
| HB1 + HB2 + HB3 + HB4 Filter Latency <sup>3</sup>             | Full        |      | 433   |      | Clock cycles |
| Fast Detect Latency                                           | Full        |      | 28    |      | Clock cycles |
| Wake-Up Time <sup>6</sup>                                     |             |      |       |      |              |
| Standby                                                       | 25°C        |      | 1     |      | ms           |
| Power-Down                                                    | 25°C        |      |       | 4    | ms           |

| Parameter                                      | Temperature | Min | Тур | Max | Unit         |
|------------------------------------------------|-------------|-----|-----|-----|--------------|
| APERTURE                                       |             |     |     |     |              |
| Aperture Delay (t <sub>A</sub> )               | Full        |     | 530 |     | ps           |
| Aperture Uncertainty (Jitter, t <sub>i</sub> ) | Full        |     | 55  |     | fs rms       |
| Out of Range Recovery Time                     | Full        |     | 1   |     | Clock Cycles |

<sup>1</sup> The maximum sample rate is the clock rate after the divider.
 <sup>2</sup> The minimum sample rate operates at 300 MSPS.
 <sup>3</sup> This specification is valid for parallel interleaved, channel multiplexed, and byte mode output modes.

<sup>4</sup> This specification is valid for byte mode output mode only.

<sup>5</sup> No DDCs used.

<sup>6</sup> Wake-up time is defined as the time required to return to normal operation from power-down mode or standby mode.

### TIMING SPECIFICATIONS

#### Table 5.

| Parameter                         | Description                                                                                                                   | Min | Тур | Max | Unit |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| CLK± to SYNC± TIMING REQUIREMENTS | See Figure 2                                                                                                                  |     |     |     |      |
| t <sub>su_sr</sub>                | Device clock to SYNC± setup time                                                                                              |     | 117 |     | ps   |
| t <sub>H_SR</sub>                 | Device clock to SYNC± hold time                                                                                               |     | -96 |     | ps   |
| SPI TIMING REQUIREMENTS           | See Figure 3                                                                                                                  |     |     |     |      |
| t <sub>Ds</sub>                   | Setup time between the data and the rising edge of SCLK                                                                       | 2   |     |     | ns   |
| t <sub>DH</sub>                   | Hold time between the data and the rising edge of SCLK                                                                        | 2   |     |     | ns   |
| tclk                              | Period of the SCLK                                                                                                            | 40  |     |     | ns   |
| ts                                | Setup time between CSB and SCLK                                                                                               | 2   |     |     | ns   |
| tн                                | Hold time between CSB and SCLK                                                                                                | 2   |     |     | ns   |
| tнigh                             | Minimum period that SCLK must be in a logic high state                                                                        | 10  |     |     | ns   |
| t <sub>LOW</sub>                  | Minimum period that SCLK must be in a logic low state                                                                         | 10  |     |     | ns   |
| t <sub>en_sdio</sub>              | Time required for the SDIO pin to switch from an input to an output relative to the SCLK falling edge (not shown in Figure 3) | 10  |     |     | ns   |
| t <sub>dis_sdio</sub>             | Time required for the SDIO pin to switch from an output to an input relative to the SCLK rising edge (not shown in Figure 3)  | 10  |     |     | ns   |

### **Timing Diagrams**



Figure 3. Serial Port Interface Timing Diagram

## AD9684



Figure 4. Parallel Interleaved Mode—One Converter, ≤14-Bit Data

Rev. 0 | Page 9 of 64



Figure 5. Parallel Interleaved Mode—Two Converters, ≤14-Bit Data, Output Sample Rate < 625 MSPS

13015-005



Figure 6. Channel Multiplexed (Even/Odd) Mode—One Converter, ≤14-Bit Data

**Data Sheet** 



Figure 7. Channel Multiplexed (Even/Odd) Mode—Two Converters, ≤14-Bit Data, Output Sample Rate < 625 MSPS

3015-008



<sup>190°</sup> PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.
<sup>2270°</sup> PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.
<sup>3</sup>FRAME CLOCK OUTPUT SUPPORTS 3 MODES OF OPERATION:

1) ENABLED (ALWAYS ON).

DISABLED (ALWAYS OFF).
 GAPPED PERIODIC (CONDITIONALLY ENABLED BASED ON PSEUDO-RANDOM BIT).
 4STATUS BIT SELECTED BY REGISTER 0x559, BITS[2:0] IN THE REGISTER MAP.

Figure 8. LVDS Byte Mode—Two Virtual Converters, One DDC, I/Q Data Decimate by 4



**3FRAME CLOCK OUTPUT SUPPORTS 3 MODES OF OPERATION:** 

1) ENABLED (ALWAYS ON).

2) DISABLED (ALWAYS OFF).

3) GAPPED PERIODIC (CONDITIONALLY ENABLED BASED ON PSEUDO-RANDOM BIT). 4STATUS BIT SELECTED BY REGISTER 0x559, BITS[2:0] IN THE REGISTER MAP.

13015-010



Rev. 0 | Page 15 of 64

## **ABSOLUTE MAXIMUM RATINGS**

#### Table 6.

| Parameter                                           | Rating                     |
|-----------------------------------------------------|----------------------------|
| Electrical                                          |                            |
| AVDD1 to AGND                                       | 1.32 V                     |
| AVDD2 to AGND                                       | 2.75 V                     |
| AVDD3 to AGND                                       | 3.63 V                     |
| DVDD to DGND                                        | 1.32 V                     |
| DRVDD to DRGND                                      | 1.32 V                     |
| SPIVDD to AGND                                      | 3.63 V                     |
| AGND to DRGND                                       | –0.3 V to +0.3 V           |
| VIN±x to AGND                                       | 3.2 V                      |
| SCLK, SDIO, CSB to AGND                             | -0.3 V to SPIVDD + 0.3 V   |
| VIN±x Maximum Swing                                 | 4.3 V p-p                  |
| PDWN/STBY to AGND                                   | -0.3 V to SPIVDD $+$ 0.3 V |
| Environmental                                       |                            |
| Operating Temperature Range<br>(T <sub>CASE</sub> ) | −40°C to +85°C             |
| Maximum Junction Temperature                        | 125°C                      |
| Storage Temperature Range<br>(Ambient)              | −65°C to +150°C            |

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

### THERMAL CHARACTERISTICS

Typical  $\theta_{JA}$ ,  $\theta_{JB}$ , and  $\theta_{JC}$  are specified vs. the number of printed circuit board (PCB) layers in different airflow velocities (in m/sec). Airflow increases heat dissipation effectively reducing  $\theta_{JA}$  and  $\theta_{JB}$ . The use of appropriate thermal management techniques is recommended to ensure that the maximum junction temperature does not exceed the limits shown in Table 7.

#### Table 7. Simulated Thermal Data

| PCB<br>Type | Airflow<br>Velocity<br>(m/sec) | Αιθ                  | Өљ                 | θις_τορ            | <b>Ө</b> јс_вот    | Unit |
|-------------|--------------------------------|----------------------|--------------------|--------------------|--------------------|------|
| JEDEC       | 0.0                            | 17.8 <sup>1, 2</sup> | 6.3 <sup>1,3</sup> | 4.7 <sup>1,5</sup> | 1.2 <sup>1,5</sup> | °C/W |
| 2s2p        | 1.0                            | 15.6 <sup>1, 2</sup> | 5.9 <sup>1,3</sup> | N/A <sup>4</sup>   | N/A <sup>4</sup>   | °C/W |
| Board       | 2.5                            | 15.0 <sup>1, 2</sup> | 5.7 <sup>1,3</sup> | N/A <sup>4</sup>   | N/A <sup>4</sup>   | °C/W |
| 10-Layer    | 0.0                            | 13.8                 | 4.6                | 4.7                | 1.2                | °C/W |
| PCB         | 1.0                            | 12.7                 | 4.6                | N/A <sup>4</sup>   | N/A <sup>4</sup>   | °C/W |
|             | 2.5                            | 12.0                 | 4.6                | N/A <sup>4</sup>   | N/A <sup>4</sup>   | °C/W |

<sup>1</sup> Per JEDEC 51-7, plus JEDEC 51-5 2s2p test board.

<sup>2</sup> Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).

<sup>3</sup> Per JEDEC JESD51-8 (still air).

<sup>4</sup> N/A means not applicable.

<sup>5</sup> Per MIL-STD 883, Method 1012.1.

### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

# PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

|   | 1     | 2    | 3    | 4     | 5      | 6     | 7     | 8     | 9     | 10    | 11     | 12    | 13        | 14      | _ |
|---|-------|------|------|-------|--------|-------|-------|-------|-------|-------|--------|-------|-----------|---------|---|
| A | AGND  | AGND | AGND | AVDD2 | AVDD1  | AGND  | CLK+  | CLK-  | AGND  | AVDD1 | AVDD2  | AGND  | AGND      | AGND    | A |
| в | AVDD3 | AGND | AGND | AVDD2 | AVDD1  | AGND  | AGND  | AGND  | AGND  | AVDD1 | AVDD2  | AGND  | AGND      | AVDD3   | в |
| с | AVDD3 | AGND | AGND | AVDD2 | AVDD1  | AGND  | SYNC+ | SYNC- | AGND  | AVDD1 | AVDD2  | AGND  | AGND      | AVDD3   | с |
| D | AGND  | AGND | AGND | AVDD2 | AVDD1  | AGND  | AVDD1 | AGND  | AGND  | AVDD1 | AVDD2  | AGND  | AGND      | AGND    | D |
| E | VIN-B | AGND | AGND | AVDD2 | AVDD1  | AGND  | AGND  | AGND  | AGND  | AVDD1 | AVDD2  | AGND  | AGND      | VIN-A   | E |
| F | VIN+B | AGND | AGND | AVDD2 | AGND   | AGND  | AGND  | AGND  | AGND  | AGND  | AVDD2  | AGND  | AGND      | VIN+A   | F |
| G | AGND  | AGND | AGND | AGND  | AGND   | AGND  | AGND  | AGND  | AGND  | AGND  | AVDD2  | AGND  | AGND      | AGND    | G |
| н | AGND  | AGND | AGND | CSB   | AGND   | AGND  | AGND  | AGND  | AGND  | V_1P0 | AGND   | AGND  | AGND      | AGND    | н |
| J | FD_B  | AGND | AGND | SCLK  | SPIVDD | AGND  | AGND  | AGND  | AGND  | AVDD2 | SPIVDD | AGND  | PDWN/STBY | FD_A    | J |
| к | DGND  | DGND | AGND | SDIO  | AGND   | AGND  | AGND  | AGND  | AGND  | AGND  | AGND   | AGND  | DCO-      | DCO+    | к |
| L | DVDD  | DVDD | DGND | DGND  | AGND   | AGND  | AGND  | AGND  | AGND  | AGND  | AGND   | AGND  | STATUS-   | STATUS+ | L |
| м | D1+   | D1–  | DVDD | DVDD  | DRVDD  | DRVDD | DRVDD | DRGND | DRGND | DRGND | DRGND  | DRGND | D13-      | D13+    | м |
| N | D2-   | D3-  | D4-  | D5    | D6-    | D0-   | DRVDD | DRGND | D7–   | D8-   | D9-    | D10-  | D11-      | D12–    | N |
| Р | D2+   | D3+  | D4+  | D5+   | D6+    | D0+   | DRVDD | DRGND | D7+   | D8+   | D9+    | D10+  | D11+      | D12+    | Р |
|   | 1     | 2    | 3    | 4     | 5      | 6     | 7     | 8     | 9     | 10    | 11     | 12    | 13        | 14      |   |

Figure 11. Pin Configuration (Top View)

#### **Table 8. Pin Function Descriptions**

| 1                                                                                                                                                                                                                                                                                                                                     |              | _         |                                                                                                                                                                                                                                                                                              |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Pin No.                                                                                                                                                                                                                                                                                                                               | Mnemonic     | Туре      | Description                                                                                                                                                                                                                                                                                  |  |  |  |
| Power Supplies                                                                                                                                                                                                                                                                                                                        |              |           |                                                                                                                                                                                                                                                                                              |  |  |  |
| A5, A10, B5, B10, C5, C10, D5, D7,<br>D10, E5, E10                                                                                                                                                                                                                                                                                    | AVDD1        | Supply    | Analog Power Supply (1.25 V Nominal).                                                                                                                                                                                                                                                        |  |  |  |
| A4, A11, B4, B11, C4, C11, D4,<br>D11, E4, E11, F4, F11, G11, J10                                                                                                                                                                                                                                                                     | AVDD2        | Supply    | Analog Power Supply (2.50 V Nominal).                                                                                                                                                                                                                                                        |  |  |  |
| B1, B14, C1, C14                                                                                                                                                                                                                                                                                                                      | AVDD3        | Supply    | Analog Power Supply (3.3 V Nominal)                                                                                                                                                                                                                                                          |  |  |  |
| L1, L2, M3, M4                                                                                                                                                                                                                                                                                                                        | DVDD         | Supply    | Digital Power Supply (1.25 V Nominal).                                                                                                                                                                                                                                                       |  |  |  |
| M5, M6, M7, N7, P7                                                                                                                                                                                                                                                                                                                    | DRVDD        | Supply    | Digital Driver Power Supply (1.25 V Nominal).                                                                                                                                                                                                                                                |  |  |  |
| J5, J11                                                                                                                                                                                                                                                                                                                               | SPIVDD       | Supply    | Digital Power Supply for SPI (1.8 V to 3.4 V).                                                                                                                                                                                                                                               |  |  |  |
| K1, K2, L3, L4                                                                                                                                                                                                                                                                                                                        | DGND         | Ground    | Ground Reference for DVDD.                                                                                                                                                                                                                                                                   |  |  |  |
| M8 to M12, N8, P8                                                                                                                                                                                                                                                                                                                     | DRGND        | Ground    | Ground Reference for DRVDD.                                                                                                                                                                                                                                                                  |  |  |  |
| A1, A2, A3, A6, A9, A12, A13, A14,<br>B2, B3, B6, B7, B8, B9, B12, B13,<br>C2, C3, C6, C9, C12, C13, D1,<br>D2, D3, D6, D8, D9, D12, D13,<br>D14, E2, E3, E6 to E9, E12, E13,<br>F2, F3, F5 to F10, F12, F13, G1<br>to G10, G12, G13, G14, H1, H2,<br>H3, H5 to H9, H11 to H14, J2,<br>J3, J6 to J9, J12, K3, K5 to K12,<br>L5 to L12 | AGND         | Ground    | Ground Reference for AVDD.                                                                                                                                                                                                                                                                   |  |  |  |
| Analog                                                                                                                                                                                                                                                                                                                                |              |           |                                                                                                                                                                                                                                                                                              |  |  |  |
| E14, F14                                                                                                                                                                                                                                                                                                                              | VIN–A, VIN+A | Input     | ADC A Analog Input Complement/True.                                                                                                                                                                                                                                                          |  |  |  |
| E1, F1                                                                                                                                                                                                                                                                                                                                | VIN–B, VIN+B | Input     | ADC B Analog Input Complement/True.                                                                                                                                                                                                                                                          |  |  |  |
| H10                                                                                                                                                                                                                                                                                                                                   | V_1P0        | Input/DNC | 1.0 V Reference Voltage Input/Do Not Connect. This pin is<br>configurable through the SPI as a no connect or as an input.<br>Do not connect this pin if using the internal reference. This pin<br>requires a 1.0 V reference voltage input if using an external<br>voltage reference source. |  |  |  |
| A7, A8                                                                                                                                                                                                                                                                                                                                | CLK+, CLK–   | Input     | Clock Input True/Complement.                                                                                                                                                                                                                                                                 |  |  |  |

| Pin No.           | Mnemonic          | Туре                                                      | Description                                                                                                                       |  |  |  |
|-------------------|-------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CMOS Outputs      |                   |                                                           |                                                                                                                                   |  |  |  |
| J14, J1           | FD_A, FD_B        | Output                                                    | Fast Detect Outputs for Channel A and Channel B.                                                                                  |  |  |  |
| Digital Inputs    |                   |                                                           |                                                                                                                                   |  |  |  |
| C7, C8            | SYNC+, SYNC-      | Input                                                     | Active High LVDS SYNC Input—True/Complement.                                                                                      |  |  |  |
| Data Outputs      |                   |                                                           |                                                                                                                                   |  |  |  |
| N6, P6            | D0–, D0+          | Output                                                    | LVDS Lane 0 Output Data—Complement/True.                                                                                          |  |  |  |
| M1, M2            | D1+, D1–          | Output                                                    | LVDS Lane 1 Output Data—True/Complement.                                                                                          |  |  |  |
| N1, P1            | D2–, D2+          | Output                                                    | LVDS Lane 2 Output Data—Complement/True.                                                                                          |  |  |  |
| N2, P2            | D3–, D3+          | Output                                                    | LVDS Lane 3 Output Data—Complement/True.                                                                                          |  |  |  |
| N3, P3            | D4–, D4+          | Output                                                    | LVDS Lane 4 Output Data—Complement/True.                                                                                          |  |  |  |
| N4, P4            | D5–, D5+          | Output                                                    | LVDS Lane 5 Output Data—Complement/True.                                                                                          |  |  |  |
| N5, P5 D6–, D6+ O |                   | Output                                                    | LVDS Lane 6 Output Data—Complement/True.                                                                                          |  |  |  |
| N9, P9            | N9, P9 D7–, D7+ O |                                                           | LVDS Lane 7 Output Data—Complement/True.                                                                                          |  |  |  |
| N10, P10          | D8–, D8+ Output   |                                                           | LVDS Lane 8 Output Data—Complement/True.                                                                                          |  |  |  |
| N11, P11          | D9–, D9+          | Output                                                    | LVDS Lane 9 Output Data—Complement/True.                                                                                          |  |  |  |
| N12, P12          | D10–, D10+        | Output                                                    | LVDS Lane 10 Output Data—Complement/True.                                                                                         |  |  |  |
| N13, P13          | D11–, D11+        | 11–, D11+ Output LVDS Lane 11 Output Data—Complement/True |                                                                                                                                   |  |  |  |
| N14, P14          | D12–, D12+        | Output                                                    | LVDS Lane 12 Output Data—Complement/True.                                                                                         |  |  |  |
| M13, M14          | D13–, D13+        | Output                                                    | LVDS Lane 13 Output Data—Complement/True.                                                                                         |  |  |  |
| L13, L14          | STATUS-, STATUS+  | Output                                                    | LVDS Status Output Data—Complement/True.                                                                                          |  |  |  |
| K13, K14          | DCO-, DCO+        | Output                                                    | LVDS Digital Clock Output Data—Complement/True.                                                                                   |  |  |  |
| SPI Controls      |                   |                                                           |                                                                                                                                   |  |  |  |
| K4                | SDIO              | Input/output                                              | SPI Serial Data Input/Output.                                                                                                     |  |  |  |
| J4                | SCLK              | Input                                                     | SPI Serial Clock.                                                                                                                 |  |  |  |
| H4                | CSB               | Input                                                     | SPI Chip Select (Active Low).                                                                                                     |  |  |  |
| J13               | PDWN/STBY         | Input                                                     | Power-Down Input (Active High). The operation of this pin depends on the SPI mode and can be configured as power-down or standby. |  |  |  |

# **TYPICAL PERFORMANCE CHARACTERISTICS**

AVDD1 = 1.2 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.2 V, DRVDD = 1.2 V, SPIVDD = 1.8 V, sampling rate = 500 MHz, 1.6 V p-p full-scale differential input,  $A_{IN} = -1.0 dBFS$ , default SPI settings,  $T_A = 25^{\circ}C$ , 256k FFT sample, unless otherwise noted.









Figure 19. Single Tone FFT with  $f_{IN} = 1630.3 \text{ MHz}$ 



Figure 20. Single Tone FFT with  $f_{IN} = 985.3 \text{ MHz}$ 



Figure 21. SNR/SFDR vs. Analog Input Frequency ( $f_{IN}$ );  $f_{IN} < 500$  MHz; Buffer Control 1 Setting = 2.0×, 3.0×, and 4.0×



Figure 22. Two-Tone FFT with  $f_{IN1} = 184$  MHz and  $f_{IN2} = 187$  MHz



Figure 23. Two-Tone FFT;  $f_{IN1} = 338 \text{ MHz}$ ,  $f_{IN2} = 341 \text{ MHz}$ 

#### 0 -20 SFDR (dBc) SFDR/IMD3 (dBc AND dBFS) -40 IMD3 (dBc) -60 -80 SFDR (dBFS) -100 IMD3 (dBFS) -120 -140 -90 -84 -78 -72 -66 -60 -54 -48 -42 -36 -30 -24 -18 -12 -6 3015-027 INPUT AMPLITUDE (dBFS)

Figure 24. Two-Tone SFDR/IMD3 vs. Input Amplitude (A<sub>IN</sub>) with  $f_{IN1} = 184$  MHz and  $f_{IN2} = 187$  MHz



Figure 25. Two-Tone SFDR/IMD3 vs. Input Amplitude (A\_{IN}) with  $f_{\rm IN1}$  = 338 MHz and  $f_{\rm IN2}$  = 341 MHz



Figure 26. SNR/SFDR vs. Input Amplitude,  $f_{IN} = 170.3 \text{ MHz}$ 



Figure 27. SNR/SFDR vs. Temperature,  $f_{IN} = 170.3 \text{ MHz}$ 



Figure 28. Power Dissipation vs. Sample Rate (fs) (Default SPI)















Figure 36. FD\_A/FD\_B Outputs



# THEORY OF OPERATION

The AD9684 has two analog input channels and 14 LVDS output lane pairs. The ADC is designed to sample wide bandwidth analog signals of up to 2 GHz. The AD9684 is optimized for wide input bandwidth, a high sampling rate, excellent linearity, and low power in a small package.

The dual ADC cores feature a multistage, differential pipelined architecture with integrated output error correction logic. Each ADC features wide bandwidth inputs that support a variety of user selectable input ranges. An integrated voltage reference eases design considerations.

The AD9684 has several functions that simplify the AGC function in a communications receiver. The programmable threshold detector allows monitoring of the incoming signal power using the fast detect output bits of the ADC. If the input signal level exceeds the programmable threshold, the fast detect indicator goes high. Because this threshold indicator has low latency, the user can quickly reduce the system gain to avoid an overrange condition at the ADC input.

The LVDS outputs can be configured depending on the decimation ratio. Multiple device synchronization is supported through the SYNC± input pins.

### ADC ARCHITECTURE

The architecture of the AD9684 consists of an input buffered pipelined ADC. The input buffer provides a termination impedance to the analog input signal. This termination impedance can be changed using the SPI to meet the termination needs of the driver/ amplifier. The default termination value is set to 400  $\Omega$ . The input buffer is optimized for high linearity, low noise, and low power.

The input buffer provides a linear high input impedance (for ease of drive) and reduces kickback from the ADC. The buffer is optimized for high linearity, low noise, and low power. The quantized outputs from each stage are combined into a final 14-bit result in the digital correction logic. The pipelined architecture permits the first stage to operate with a new input sample, whereas the remaining stages operate with the preceding samples. Sampling occurs on the rising edge of the clock.

### ANALOG INPUT CONSIDERATIONS

The analog input to the AD9684 is a differential buffer. The internal common-mode voltage of the buffer is 2.05 V. The clock signal alternately switches the input circuit between sample mode and hold mode. When the input circuit is switched into sample mode, the signal source must be capable of charging the sample capacitors and settling within one-half of a clock cycle. A small resistor, in series with each input, helps reduce the peak transient current injected from the output stage of the driving source. In addition, low Q inductors or ferrite beads can be placed on each leg of the input to reduce high differential capacitance at the analog inputs and, thus, achieve the maximum bandwidth of the ADC. Such use of low Q inductors or ferrite beads is required when driving the converter front end at high IF

frequencies. Place either a differential capacitor or two singleended capacitors on the inputs to provide a matching passive network. This ultimately creates a low-pass filter at the input, which limits unwanted broadband noise. For more information, see the AN-742 Application Note, the AN-827 Application Note, and the *Analog Dialogue* article "Transformer-Coupled Front-End for Wideband A/D Converters" (Volume 39, April 2005). In general, the precise values depend on the application.

For best dynamic performance, the source impedances driving VIN+x and VIN-x must be matched such that common-mode settling errors are symmetrical. These errors are reduced by the common-mode rejection of the ADC. An internal reference buffer creates a differential reference that defines the span of the ADC core.

Maximum SNR performance is achieved by setting the ADC to the largest span in a differential configuration. In the case of the AD9684, the available span is 2.06 V p-p differential.

### **Differential Input Configurations**

There are several ways to drive the AD9684, either actively or passively. However, optimum performance is achieved by driving the analog input differentially.

For applications in which SNR and SFDR are key parameters, differential transformer coupling is the recommended input configuration because the noise performance of most amplifiers is not adequate to achieve the true performance of the AD9684.

For low to midrange frequencies, a double balun or double transformer network is recommended for optimum performance of the AD9684 (see Figure 39). For higher frequencies in the second and third Nyquist zones, it is better to remove some of the front-end passive components to ensure wideband operation (see Figure 40).



Figure 39. Differential Transformer-Coupled Configuration for First and Second Nyquist Frequencies



Figure 40. Differential Transformer-Coupled Configuration for Second and Third Nyquist Frequencies

### Input Common Mode

The analog inputs of the AD9684 are internally biased to the common mode as shown in Figure 41. The common-mode buffer has a limited range in that the performance suffers greatly if the common-mode voltage drops by more than 100 mV. Therefore, in dc-coupled applications, set the common-mode voltage to  $2.05 \text{ V} \pm 100 \text{ mV}$  to ensure proper ADC operation.

### Analog Input Controls and SFDR Optimization

The AD9684 offers flexible controls for the analog inputs, such as input termination and buffer current. All of the available controls are shown in Figure 41.



Figure 41. Analog Input Controls (Should the AIN

Using Register 0x018, the buffer currents on each channel can be scaled to optimize the SFDR over various input frequencies and bandwidths of interest. As the input buffer currents are set, the amount of current required by the AVDD3 supply changes. For a complete list of buffer current settings, see Table 29.



Figure 42. AVDD3 Power (I<sub>AVDD3</sub>) vs. Buffer Current Control Setting in Register 0x018



Figure 43. Buffer Current Sweeps (SFDR vs. Input Frequency and  $I_{BUFF}$ ), 10 MHz <  $f_{IN}$  < 500 MHz



Figure 44. Buffer Current Sweeps (SFDR vs. Input Frequency and  $I_{\text{BUFF}}$ ), 500 MHz <  $f_{\text{IN}}$  < 1000 MHz



Figure 45. Buffer Current Sweeps (SFDR vs. Input Frequency and  $I_{BUFF}$ ), 1 GHz < f<sub>IN</sub> < 2 GHz, Front-End Network Shown in Figure 40

Figure 43, Figure 44, and Figure 45 show how the SFDR can be optimized using the buffer current setting in Register 0x018 for different Nyquist zones. At frequencies greater than 1 GHz, it is better to run the ADC at input amplitudes less than –1 dBFS (–3 dBFS, for example). This greatly improves the linearity of the converted signal without sacrificing SNR performance.

AD9684