: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

10-/12-/14-bit dual transmit digital-to-analog converters (DACs) 125 MSPS update rate
Excellent SFDR to Nyquist @ $\mathbf{5} \mathbf{~ M H z}$ output: $\mathbf{7 5} \mathbf{d B c}$
Excellent gain and offset matching: 0.1\%
Fully independent or single-resistor gain control
Dual-port or interleaved data
On-chip 1.2 V reference
5 V or 3.3 V operation
Power dissipation: 380 mW @ 5 V
Power-down mode: 50 mW @ 5 V
48-lead LQFP

APPLICATIONS

Communications

Base stations

Digital synthesis
Quadrature modulation
3D ultrasound

GENERAL DESCRIPTION

The AD9763/AD9765/AD9767 are dual-port, high speed, 2-channel, 10-/12-/14-bit CMOS DACs. Each part integrates two high quality TxDAC $+{ }^{\bullet}$ cores, a voltage reference, and digital interface circuitry into a small 48-lead LQFP. The AD9763/ AD9765/AD9767 offer exceptional ac and dc performance while supporting update rates of up to 125 MSPS.
The AD9763/AD9765/AD9767 have been optimized for processing I and Q data in communications applications. The digital interface consists of two double-buffered latches as well as control logic. Separate write inputs allow data to be written to the two DAC ports independent of one another. Separate clocks control the update rate of the DACs.
A mode control pin allows the AD9763/AD9765/AD9767 to interface to two separate data ports, or to a single interleaved high speed data port. In interleaving mode, the input data stream is demuxed into its original I and Q data and then latched. The I and Q data is then converted by the two DACs and updated at half the input data rate.
The GAINCTRL pin allows two modes for setting the full-scale current (Ioutrs) of the two DACs. Ioutrs for each DAC can be set independently using two external resistors, or Ioutes for both DACs can be set by using a single external resistor. See the Gain Control Mode section for important date code information on this feature.

Figure 1.
The DACs utilize a segmented current source architecture combined with a proprietary switching technique to reduce glitch energy and maximize dynamic accuracy. Each DAC provides differential current output, thus supporting single-ended or differential applications. Both DACs of the AD9763, AD9765, or AD9767 can be simultaneously updated and can provide a nominal full-scale current of 20 mA . The full-scale currents between each DAC are matched to within 0.1%.
The AD9763/AD9765/AD9767 are manufactured on an advanced, low cost CMOS process. They operate from a single supply of 3.3 V to 5 V and consume 380 mW of power.

PRODUCT HIGHLIGHTS

1. The AD9763/AD9765/AD9767 are members of a pincompatible family of dual TxDACs providing 8-, 10-, 12-, and 14-bit resolution.
2. Dual 10-/12-/14-Bit, 125 MSPS DACs. A pair of high performance DACs for each part is optimized for low distortion performance and provides flexible transmission of I and Q information.
3. Matching. Gain matching is typically 0.1% of full scale, and offset error is better than 0.02%.
4. Low Power. Complete CMOS dual DAC function operates on 380 mW from a 3.3 V to 5 V single supply. The DAC full-scale current can be reduced for lower power operation, and a sleep mode is provided for low power idle periods.
5. On-Chip Voltage Reference. The AD9763/AD9765/AD9767 each include a 1.20 V temperature-compensated band gap voltage reference.
6. Dual 10-/12-/14-Bit Inputs. The AD9763/AD9765/AD9767 each feature a flexible dual-port interface, allowing dual or interleaved input data.
[^0]Tel: 781.329.4700
www.analog.com Fax: 781.461.3113 ©1999-2011 Analog Devices, Inc. All rights reserved.

AD9763/AD9765/AD9767

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Product Highlights 1
Revision History 2
Specifications 5
DC Specifications 5
Dynamic Specifications 6
Digital Specifications 7
Absolute Maximum Ratings 8
Thermal Resistance 8
ESD Caution 8
Pin Configuration and Function Descriptions 9
Typical Performance Characteristics 11
AD9763 11
AD9765 14
AD9767 17
Terminology 20
Theory of Operation 21
Functional Description 21
Reference Operation 22
Gain Control Mode 22
Setting the Full-Scale Current 22
DAC Transfer Function 23
Analog Outputs 23
REVISION HISTORY
Revision History: AD9763/AD9765/AD9767
8/11—Rev. F to Rev. G
Changes to Gain Control Mode Section and Setting the Full- Scale Current Section 22
Changes to DAC Transfer Function Section 23
Changes to Power Supply Rejection Section 29
6/09—Rev. E to Rev. F
Replaced Figure 86 to Figure 90 with Figure 86 to Figure 91, Deleted Original Figure 91 to Figure 94 34
1/08-Revision E: Initial Combined Version
Digital Inputs 24
DAC Timing. 24
Sleep Mode Operation 26
Power Dissipation 26
Applying the AD9763/AD9765/AD9767 28
Output Configurations 28
Differential Coupling Using a Transformer 28
Differential Coupling Using an Op Amp 28
Single-Ended, Unbuffered Voltage Output 29
Single-Ended, Buffered Voltage Output Configuration 29
Power and Grounding Considerations 29
Applications Information 31
VDSL Example Applications Using the AD9765 and AD9767 31
Quadrature Amplitude Modulation (QAM) Example Using the AD9763 32
CDMA 33
Evaluation Board 34
General Description 34
Schematics 34
Evaluation Board Layout 40
Outline Dimensions 42
Ordering Guide 42
Revision History: AD9763
1/08—Rev. D to Rev. E
Combined with AD9765 and AD9767 Data Sheets.......UniversalChanges to Figure 1. 1
Changes to Applications Section 1
Changes to Timing Diagram Section 7
Added Figure 4 and Figure 5 9
Changes to Table 6 10
Change to Typical Performance Characteristics Section Conditions Statement 11
Added Figure 23 to Figure 56 14
Added Note to Figure 58 20
Changes to Functional Description Section 22
Changes to Figure 59 and Figure 60 22
Changes to Gain Control Mode Section 22
Replaced Reference Control Amplifier Section with Setting the Full-Scale Current Section 22
Changes to DAC Transfer Section 23
Change to Analog Outputs Section 24
Changes to Dual-Port Mode Timing 24
Changes to Interleaved Mode Timing Section 25
Added Figure 64 25
Change to Differential Coupling Using a Transformer Section 28
Changes to Power and Grounding Considerations Section 30
Added VDSL Example Applications Using the AD9765 andAD9767 Section31
Added Figure 79 to Figure 82 31
Changes to Figure 84 32
Changes to CDMA Section 33
Changes to Figure 85 Caption 33
Changes to Figure 86 34
Changes to Figure 88 36
Changes to Ordering Guide 40
9/06-Rev. C to Rev. D
Updated Format Universal
Renumbered Figures Universal
Changes to Specifications Section 3
Changes to Applications Section 21
Updated Outline Dimensions 32
Changes to Ordering Guide 32
10/01-Rev. B to Rev. C
Changes to Figure 29 21
2/00—Rev. A to Rev. B
12/99—Rev. 0 to Rev. A
Revision History: AD9765
1/08—Rev. C to Rev. E
Combined with AD9763 and AD9767 Data Sheets UniversalChanges to Figure 1 1
Changes to Applications Section.1
Changes to Timing Diagram Section 7
Change to Absolute Maximum Ratings 8
Added Figure 3 and Figure 5 9
Changes to Table 6 10
Added Figure 6 to Figure 22 11
Added Figure 40 to Figure 56 17
Added Note to Figure 58 20
Changes to Functional Description Section 22
Changes to Reference Operation Section 22
Changes to Figure 59 and Figure 60 22
Changes to Gain Control Mode Section 22
Replaced Reference Control Amplifier Section with Setting the Full-Scale Current Section 22
Changes to DAC Transfer Section 23
Changes to Interleaved Mode Timing Section 25
Added Figure 64 25
Changes to Power and Grounding Considerations Section30
Added Figure 80 and Figure 82 31
Changes to Quadrature Amplitude Modulation (QAM)
Example Using the AD9763 Section 32
Changes to Figure 83 and Figure 84 32
Changes to CDMA Section 33
Changes to Figure 85 Caption. 33
Changes to Figure 86 34
Changes to Figure 88 36
Changes to Ordering Guide 40
9/06-Rev. B to Rev. C
Updated Format Universal
Changes to Figure 2 5
Changes to Figure 3 7
Changes to Functional Description Section 12
Changes to Figure 25 and Figure 26 15
Changes to Figure 28 and Figure 29 16
Changes to Power Dissipation Section. 17
Changes to Power and Grounding Considerations Section 19
Changes to Figure 39 19
Changes to Figure 45 22
Changes to Evaluation Board Section 24
Changes to Figure 47 24
Updated Outline Dimensions. 30
Changes to Ordering Guide 30
2/00—Rev. A to Rev. B
12/99—Rev. 0 to Rev. A
8/99—Revision 0: Initial Version
Revision History: AD9767
1/08—Rev. C to Rev. E
Combined with AD9763 and AD9765 Data Sheets Universal Changes to Figure 1 1
Changes to Features Section 1
Changes to Applications Section 1
Changes to Timing Diagram Section 7
Change to Absolute Maximum Ratings 8
Added Figure 3 and Figure 4 9
Changes to Table 6 10
Added Figure 6 to Figure 39 11
Added Note to Figure 58 20
Changes to Functional Description Section. 22
Changes to Reference Operation Section 22
Changes to Figure 59 and Figure 60 22
Changes to Gain Control Mode Section 22
Replaced Reference Control Amplifier Section with Setting the Full-Scale Current Section 22
Changes to DAC Transfer Section 23

AD9763/AD9765/AD9767

Changes to Dual-Port Mode Timing ... 24
Changes to Interleaved Mode Timing Section 25
Added Figure 64... 25
Change to Differential Coupling Using a Transformer Section...... 28
Changes to Power and Grounding Considerations Section............ 30
Added Figure 79 and Figure 81... 31
Added to Quadrature Amplitude Modulation (QAM)
Example Using the AD9763 Section .. 32
Added Figure 83 and Figure 84.. 32
Changes to CDMA Section .. 33
Changes to Figure 85 Caption.. 33
Changes to Figure 86... 34
Changes to Figure 88.. 36
Changes to Ordering Guide ... 40
10/06-Rev. B to Rev. C
Updated Format
\qquad
\qquad Universal
Changes to Figure 2 5
Changes to Figure 3 7
Changes to Functional Description Section 12
Changes to Figure 25 and Figure 26 15
Changes to Figure 28 and Figure 29. 16
Changes to Power Dissipation Section. 18
Changes to Figure 39 19
Changes to Power and Grounding Considerations Section 19
Changes to Figure 45 22
Changes to Figure 47 24
Updated Outline Dimensions 28
Changes to Ordering Guide 28
2/00-Rev. A to Rev. B
12/99—Rev. 0 to Rev. A

SPECIFICATIONS
 DC SPECIFICATIONS

$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{AVDD}=3.3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{DVDD} 1=\mathrm{DVDD} 2=3.3 \mathrm{~V}$ or 5 V , Ioutfs $=20 \mathrm{~mA}$, unless otherwise noted.
Table 1.

Parameter	AD9763			AD9765			AD9767			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
RESOLUTION	10			12			14			Bits
DC ACCURACY ${ }^{1}$										
Integral Linearity Error (INL)	-1	± 0.1	+1							LSB
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-1.5	± 0.4	+1.5	-3.5	± 1.5	+3.5	LSB
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				-2.0		+2.0	-4.0		+4.0	LSB
Differential Nonlinearity (DNL)										LSB
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.5	± 0.07	+0.5	-0.75	± 0.3	+0.75	-2.5	± 1.0	+2.5	LSB
$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$				-1.0		+1.0	-3.0		+3.0	LSB
ANALOG OUTPUT										
Offset Error	-0.02		+0.02	-0.02		+0.02	-0.02		+0.02	\% of FSR
Gain Error Without Internal Reference	-2	± 0.25	+2	-2	± 0.25	+2	-2	± 0.25	+2	\% of FSR
Gain Error with Internal Reference	-5	± 1	+5	-5	± 1	+5	-5	± 1	+5	\% of FSR
Gain Match	-1.6	± 0.1	+1.6	-1.6	± 0.1	+1.6	-1.6	± 0.1	+1.6	\% of FSR
	-0.14		+0.14	-0.14		+0.14	-0.14		+0.14	dB
Full-Scale Output Current ${ }^{2}$	2.0		20.0	2.0		20.0	2.0		20.0	mA
Output Compliance Range	-1.0		+1.25	-1.0		+1.25	-1.0		+1.25	v
Output Resistance		100			100			100		k Ω
Output Capacitance		5			5			5		pF
REFERENCE OUTPUT										
Reference Voltage	1.14	1.20	1.26	1.14	1.20	1.26	1.14	1.20	1.26	v
Reference Output Current ${ }^{3}$		100			100			100		nA
REFERENCE INPUT										
Input Compliance Range	0.1		1.25	0.1		1.25	0.1		1.25	v
Reference Input Resistance		1			1			1		M Ω
Small-Signal Bandwidth		0.5			0.5			0.5		MHz
TEMPERATURE COEFFICIENTS										
Offset Drift		0			0			0		ppm of FSR/ $/{ }^{\circ} \mathrm{C}$
Gain Drift Without Internal Reference		± 50			± 50			± 50		ppm of FSR/ $/{ }^{\circ} \mathrm{C}$
Gain Drift with Internal Reference		± 100			± 100			± 100		ppm of FSR/ $/{ }^{\circ} \mathrm{C}$
Reference Voltage Drift		± 50			± 50			± 50		ppm $/{ }^{\circ} \mathrm{C}$
POWER SUPPLY										
Supply Voltages										
AVDD	3	5	5.5	3	5	5.5	3	5	5.5	v
DVDD1, DVDD2	2.7	5	5.5	2.7	5	5.5	2.7	5	5.5	v
Analog Supply Current (lavod)		71	75		71	75		71	75	mA
Digital Supply Current (Iovod) ${ }^{4}$		5	7		5	7		5	7	mA
Digital Supply Current (IDvod) ${ }^{5}$			15			15			15	mA
Supply Current Sleep Mode (lavod)		8	12.0		8	12.0		8	12.0	mA
Power Dissipation ${ }^{4}(5 \mathrm{~V}$, loutrs $=20 \mathrm{~mA}$)		380	410		380	410		380	410	mW
Power Dissipation ${ }^{5}(5 \mathrm{~V}$, loutes $=20 \mathrm{~mA}$)		420	450		420	450		420	450	mW
Power Dissipation ${ }^{6}(5 \mathrm{~V}$, loutrs $=20 \mathrm{~mA})$		450			450			450		mW
Power Supply Rejection Ratio ${ }^{7}$-AVDD	-0.4		+0.4	-0.4		+0.4	-0.4		+0.4	\% of FSR/V
Power Supply Rejection Ratio ${ }^{7}$-DVDD	-0.025		+0.025	-0.025		+0.025	-0.025		+0.025	\% of FSR/V
OPERATING RANGE	-40		+85	-40		+85	-40		+85	${ }^{\circ} \mathrm{C}$

[^1]
AD9763/AD9765/AD9767

DYNAMIC SPECIFICATIONS

$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{AVDD}=3.3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{DVDD} 1=\mathrm{DVDD} 2=3.3 \mathrm{~V}$ or 5 V , I , , $=20 \mathrm{~mA}$, differential transformer-coupled output, 50Ω doubly terminated, unless otherwise noted.

Table 2.

Parameter	AD9763			AD9765			AD9767			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
DYNAMIC PERFORMANCE										
Maximum Output Update Rate (fcık	125			125			125			MSPS
Output Settling Time ($\mathrm{tsT}^{\text {) }}$ to 0.1\% ${ }^{1}$		35			35			35		ns
Output Propagation Delay (tpd)		1			1			1		ns
Glitch Impulse		5			5			5		pV -s
Output Rise Time (10\% to 90\%) ${ }^{1}$		2.5			2.5			2.5		ns
Output Fall Time (90% to 10\%) ${ }^{1}$		2.5			2.5			2.5		ns
Output Noise (loutrs $=20 \mathrm{~mA}$)		50			50			50		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Output Noise (loutrs $=2 \mathrm{~mA}$)		30			30			30		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
AC LINEARITY										
Spurious-Free Dynamic Range to Nyquist										
$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}, \mathrm{f}_{\text {fut }}=1.00 \mathrm{MHz}$										
0 dBFS Output	69	78		70	81		71	82		dBc
-6 dBFS Output		74			77			77		dBC
-12 dBFS Output		69			72			73		dBc
-18 dBFS Output		61			70			70		dBc
$\mathrm{f}_{\text {CLK }}=65 \mathrm{MSPS}, \mathrm{fout}=1.00 \mathrm{MHz}$		79			81			82		dBc
$\mathrm{fcLk}^{\text {a }}$ = 65 MSPS , fout $=2.51 \mathrm{MHz}$		78			79			80		dBC
$\mathrm{f}_{\text {CLK }}=65 \mathrm{MSPS}$, fout $=5.02 \mathrm{MHz}$		75			78			79		dBC
$\mathrm{f}_{\text {CLK }}=65 \mathrm{MSPS}, \mathrm{f}_{\text {OUT }}=14.02 \mathrm{MHz}$		66			68			70		dBC
$\mathrm{f}_{\text {cLK }}=65 \mathrm{MSPS}, \mathrm{f}_{\text {Out }}=25 \mathrm{MHz}$		55			55			55		dBC
$\mathrm{fCLK}=125 \mathrm{MSPS}$, fout $=25 \mathrm{MHz}$		67			67			67		dBc
$\mathrm{f}_{\text {CLK }}=125 \mathrm{MSPS}, \mathrm{fout}=40 \mathrm{MHz}$		60			60			70		dBc
Spurious-Free Dynamic Range Within a Window										
$\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{MSPS} \text {, fout }=1.00 \mathrm{MHz} ; 2 \mathrm{MHz} \text { Span }$	78	85		80	90		82	91		dBc
$\mathrm{f}_{\text {LLK }}=50 \mathrm{MSPS}$, fout $=5.02 \mathrm{MHz} ; 10 \mathrm{MHz} \mathrm{Span}$		80			88			88		dBC
$\mathrm{f}_{\text {cLK }}=65 \mathrm{MSPS}$, fout $=5.03 \mathrm{MHz} ; 10 \mathrm{MHz} \mathrm{Span}$		82			88			88		dBc
$\mathrm{fCLK}^{\text {= }} 125 \mathrm{MSPS}$, fout $=5.04 \mathrm{MHz} ; 10 \mathrm{MHz}$ Span		82			88			88		dBc
Total Harmonic Distortion										
$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}, \mathrm{f}_{\text {OUT }}=1.00 \mathrm{MHz}$		-77	-69		-80	-70		-81	-71	dBc
$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}, \mathrm{f}_{\text {OUT }}=2.00 \mathrm{MHz}$		-77			-78			-79		dBC
$\mathrm{f}_{\text {CLK }}=125 \mathrm{MSPS}$, fout $=4.00 \mathrm{MHz}$		-74			-75			-83		dBc
$\mathrm{f}_{\text {CLK }}=125 \mathrm{MSPS}$, $\mathrm{foUt}=10.00 \mathrm{MHz}$		-72			-75			-80		dBC
Multitone Power Ratio (Eight Tones at 110 kHz Spacing) $\mathrm{f}_{\mathrm{CLK}}=65 \mathrm{MSPS}, \text { fout }=2.00 \mathrm{MHz} \text { to } 2.99 \mathrm{MHz}$										
0 dBFS Output		76			80			80		dBc
-6 dBFS Output		74			79			79		dBc
-12 dBFS Output		71			77			78		dBC
-18 dBFS Output		67			75			76		dBC
Channel Isolation										
$\mathrm{f}_{\text {CLK }}=125 \mathrm{MSPS}, \mathrm{fout}=10 \mathrm{MHz}$		85			85			85		dBc
$\mathrm{fCLK}^{\text {= }} 125 \mathrm{MSPS}$, fout $=40 \mathrm{MHz}$		77			77			77		dBc

[^2]
AD9763/AD9765/AD9767

DIGITAL SPECIFICATIONS

$\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{AVDD}=3.3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{DVDD} 1=\mathrm{DVDD} 2=3.3 \mathrm{~V}$ or 5 V , Ioutfs $=20 \mathrm{~mA}$, unless otherwise noted.
Table 3.

Parameter	Min	Typ	Max	Unit
DIGITAL INPUTS				
Logic 1 Voltage @ DVDD1 = DVDD2 $=5 \mathrm{~V}$	3.5	5		V
Logic 1 Voltage @ DVDD1 = DVDD2 $=3.3 \mathrm{~V}$	2.1	3		V
Logic 0 Voltage @ DVDD1 = DVDD2 $=5 \mathrm{~V}$		0	1.3	V
Logic 0 Voltage @ DVDD1 = DVDD2 $=3.3 \mathrm{~V}$	0		0.9	V
Logic 1 Current	-10		+10	$\mu \mathrm{A}$
Logic 0 Current	-10		+10	$\mu \mathrm{A}$
Input Capacitance		5		pF
Input Setup Time ($\mathrm{ts}_{\text {s }}$)	2.0			ns
Input Hold Time (t_{H})	1.5			ns
Latch Pulse Width (tıpw, $\mathrm{t}_{\text {cPw }}$)	3.5			ns

Timing Diagram

See Table 3 and the DAC Timing section for more information about the timing specifications.

Figure 2. Timing Diagram for Dual and Interleaved Modes

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	With Respect To	Rating
AVDD	ACOM	-0.3 V to +6.5 V
DVDD1, DVDD2	DCOM1/DCOM2	-0.3 V to +6.5 V
ACOM	DCOM1/DCOM2	-0.3 V to +0.3 V
AVDD	DVDD1/DVDD2	-6.5 V to +6.5 V
MODE, CLK1/IQCLK, CLK2/IQRESET, WRT1/IQWRT, WRT2/IQSEL	DCOM1/DCOM2	$\begin{aligned} & -0.3 \mathrm{~V} \text { to DVDD1/ } \\ & \text { DVDD2 }+0.3 \mathrm{~V} \end{aligned}$
Digital Inputs	DCOM1/DCOM2	$\begin{aligned} & -0.3 \mathrm{~V} \text { to DVDD1/ } \\ & \text { DVDD2 + 0.3 V } \end{aligned}$
loutai/loutaz, loutbi/loutb2	ACOM	-1.0 V to AVDD +0.3 V
REFIO, FSADJ1, FSADJ2	ACOM	-0.3 V to AVDD +0.3 V
GAINCTRL, SLEEP	ACOM	-0.3 V to AVDD +0.3 V
Junction Temperature		$150^{\circ} \mathrm{C}$
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (10 sec)		$300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 5. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
48-Lead LQFP	91	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. AD9763 Pin Configuration

AD9763/AD9765/AD9767

Table 6. Pin Function Descriptions

Pin No.			Mnemonic	Description
AD9763	AD9765	AD9767		
1 to 10	1 to 12	1 to 14	DBxP1	Data Bit Pins (Port 1)
$\begin{aligned} & 11 \text { to } 14, \\ & 33 \text { to } 36 \end{aligned}$	$\begin{aligned} & 13,14, \\ & 35,36 \end{aligned}$	N/A	NC	No Connect
15, 21	15, 21	15, 21	DCOM1, DCOM2	Digital Common
16,22	16, 22	16, 22	DVDD1, DVDD2	Digital Supply Voltage
17	17	17	WRT1/IQWRT	Input Write Signal for PORT 1 (IQWRT in Interleaving Mode)
18	18	18	CLK1/IQCLK	Clock Input for DAC1 (IQCLK in Interleaving Mode)
19	19	19	CLK2/IQRESET	Clock Input for DAC2 (IQRESET in Interleaving Mode)
20	20	20	WRT2/IQSEL	Input Write Signal for PORT 2 (IQSEL in Interleaving Mode)
23 to 32	23 to 34	23 to 36	DBxP2	Data Bit Pins (Port 2)
37	37	37	SLEEP	Power-Down Control Input
38	38	38	ACOM	Analog Common
39,40	39,40	39,40	loutar, loutb2	Port 2 Differential DAC Current Outputs
41	41	41	FSADJ2	Full-Scale Current Output Adjust for DAC2
42	42	42	GAINCTRL	Master/Slave Resistor Control Mode
43	43	43	REFIO	Reference Input/Output
44	44	44	FSADJ1	Full-Scale Current Output Adjust for DAC1
45,46	45,46	45,46	loutbi, loutal	Port 1 Differential DAC Current Outputs
47	47	47	AVDD	Analog Supply Voltage
48	48	48	MODE	Mode Select ($1=$ dual port, $0=$ interleaved)

TYPICAL PERFORMANCE CHARACTERISTICS

AD9763

$\mathrm{AVDD}=3.3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}$, Ioutrs $=20 \mathrm{~mA}, 50 \Omega$ doubly terminated load, differential output, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, SFDR up to Nyquist, unless otherwise noted.

Figure 6. SFDR vs. fout @ 0 dBFS

Figure 7. SFDR vs.fout @ 5 MSPS

Figure 8. SFDR vs. fout @ 25 MSPS

Figure 9. SFDR vs. fout @ 65 MSPS

Figure 10. SFDR vs.fout @ 125 MSPS

Figure 11. SFDR vs. fout and loutrs @ 65 MSPS and 0 dBFS

Figure 12. Single-Tone SFDR vs. A out @ $f_{\text {Out }}=f_{\text {CLK }} 11$

Figure 13. Single-Tone SFDR vs. Aout @ fout $=f_{\text {CLIK }} / 5$

Figure 14. Dual-Tone SFDR vs. Aout @ $f_{\text {out }}=f_{\text {CLK }} / 7$

Figure 15. SINAD vs. f fLK and loutfs @ fout $=5 \mathrm{MHz}$ and 0 dBFS

Figure 16. Typical INL

Figure 17. Typical DNL

Figure 18. SFDR vs. Temperature @ $f_{\text {CLK }}=125$ MSPS, 0 dBFS

Figure 19. Gain and Offset Error vs. Temperature @ $f_{C L K}=125$ MSPS

Figure 21. Dual-Tone SFDR @ $f_{\text {CLK }}=125$ MSPS

Figure 22. Four-Tone SFDR @ $f_{C L K}=125$ MSPS

Figure 20. Single-Tone SFDR @ $f_{C L K}=125$ MSPS

AD9765

$\mathrm{AVDD}=3.3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}$ or 5 V , Ioutrs $=20 \mathrm{~mA}, 50 \Omega$ doubly terminated load, differential output, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, SFDR up to Nyquist, unless otherwise noted.

Figure 23. SFDR vs. fout @ 0 dBFS

Figure 24. SFDR vs. fout @ 5 MSPS

Figure 25. SFDR vs. fout @ 25 MSPS

Figure 26. SFDR vs.fout @ 65 MSPS

Figure 27. SFDR vs. fout @ 125 MSPS

Figure 28. SFDR vs. fout and loutrs @ 65 MSPS and 0 dBFS

Figure 29. Single-Tone SFDR vs. Aout @ fout = fCLK 11

Figure 30. Single-Tone SFDR vs. A out @ fout $=f_{\text {CLK }} / 5$

Figure 31. Dual-Tone SFDR vs. Aout @ fout $=f_{\text {CLK }} / 7$

Figure 32. SINAD vs. f fLK and loutfs @ fout $=5 \mathrm{MHz}$ and 0 dBFS

Figure 33. Typical INL

Figure 34. Typical DNL

Figure 35. SFDR vs. Temperature @ 125 MSPS, 0 dBFS

Figure 36. Gain and Offset Error vs. Temperature @ $f_{C L K}=125$ MSPS

Figure 38. Dual-Tone SFDR @ $f_{\text {CLK }}=125$ MSPS

Figure 39. Four-Tone SFDR @ $f_{C L K}=125$ MSPS

Figure 37. Single-Tone SFDR @ $f_{C L K}=125$ MSPS

AD9767

AVDD $=3.3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{DVDD}=3.3 \mathrm{~V}$ or 5 V , Ioutrs $=20 \mathrm{~mA}, 50 \Omega$ doubly terminated load, differential output, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, SFDR up to Nyquist, unless otherwise noted.

Figure 41. SFDR vs. fout @ 5 MSPS

Figure 42. SFDR vs. fout @ 25 MSPS

Figure 43. SFDR vs. fout @ 65 MSPS

Figure 44. SFDR vs. fout @ 125 MSPS

Figure 45. SFDR vs. fout and loutrs @ 65 MSPS and 0 dBFS

AD9763/AD9765/AD9767

Figure 46. Single-Tone SFDR vs. Aout @ fout $=f_{\text {CLK }} 11$

Figure 47. Single-Tone SFDR vs. Aout @ fout $=f_{\text {CLK }} / 5$

Figure 48. Dual-Tone SFDR vs. Aout @ fout = fCLK/7

Figure 49. SINAD vs. f fLK and loutfs @ fout $=5 \mathrm{MHz}$ and 0 dBFS

Figure 50. Typical INL

Figure 51. Typical DNL

Figure 52. SFDR vs. Temperature @ 125 MSPS, 0 dBFS

Figure 53. Gain and Offset Error vs. Temperature @ $f_{C L K}=125$ MSPS

Figure 55. Dual-Tone SFDR @ $f_{\text {CLK }}=125$ MSPS

Figure 56. Four-Tone SFDR @ $f_{C L K}=125$ MSPS

Figure 54. Single-Tone SFDR @ $f_{C L K}=125$ MSPS

TERMINOLOGY

Linearity Error (Integral Nonlinearity or INL)

Linearity error is defined as the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero to full scale.

Differential Nonlinearity (DNL)

DNL is the measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code.

Monotonicity

A DAC is monotonic if the output either increases or remains constant as the digital input increases.

Offset Error

Offset error is the deviation of the output current from the ideal of zero. For Iouta, 0 mA output is expected when the inputs are all 0 s . For Ioutb, 0 mA output is expected when all inputs are set to 1 s .

Gain Error

Gain error is the difference between the actual and ideal output spans. The actual span is determined by the output when all inputs are set to 1 s minus the output when all inputs are set to 0 s .

Output Compliance Range

The output compliance range is the range of allowable voltage at the output of a current-output DAC. Operation beyond the maximum compliance limits may cause either output stage saturation or breakdown resulting in nonlinear performance.

Temperature Drift

Temperature drift is specified as the maximum change from the ambient $\left(25^{\circ} \mathrm{C}\right)$ value to the value at either $\mathrm{T}_{\text {min }}$ or $\mathrm{T}_{\text {max. }}$. For offset and gain drift, the drift is reported in part per million (ppm) of full-scale range (FSR) per degree Celsius. For reference drift, the drift is reported in ppm per degree Celsius ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$).

Power Supply Rejection (PSR)

PSR is the maximum change in the full-scale output as the supplies are varied from nominal to minimum and maximum specified voltages.

Settling Time

Settling time is the time required for the output to reach and remain within a specified error band about its final value, measured from the start of the output transition.

Glitch Impulse

Asymmetrical switching times in a DAC give rise to undesired output transients that are quantified by a glitch impulse. It is specified as the net area of the glitch in picovolts per second ($\mathrm{pV}-\mathrm{s}$).

Spurious-Free Dynamic Range (SFDR)

The difference, in decibels (dB), between the rms amplitude of the output signal and the peak spurious signal over the specified bandwidth.

Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal. It is expressed as a percentage or in decibels (dB).

THEORY OF OPERATION

Figure 57. Basic AC Characterization Test Setup for AD9763/AD9765/AD9767, Testing Port 1 in Dual-Port Mode, Using Independent GAINCTRL Resistors on FSADJ1 and FSADJ2

NOTES

Figure 58. Simplified Block Diagram

FUNCTIONAL DESCRIPTION

Figure 58 shows a simplified block diagram of the AD9763/ AD9765/AD9767. The AD9763/AD9765/AD9767 consist of two DACs, each one with its own independent digital control logic and full-scale output current control. Each DAC contains a PMOS current source array capable of providing up to 20 mA of full-scale current (Ioutrs).

The array is divided into 31 equal currents that make up the five most significant bits (MSBs). The next four bits, or middle bits, consist of 15 equal current sources whose value is $1 / 16$ th of an MSB current source. The remaining LSB is a binary weighted fraction of the middle bit current sources. Implementing the middle and lower bits with current sources, instead of an R-2R ladder, enhances the dynamic performance for multitone or low amplitude signals and helps maintain the high output impedance of each DAC (that is, $>100 \mathrm{k} \Omega$).

All of these current sources are switched to one of the two output nodes (that is, Iouta or Ioutb) via the PMOS differential current switches. The switches are based on a new architecture that drastically improves distortion performance. This new switch architecture reduces various timing errors and provides matching complementary drive signals to the inputs of the differential current switches.

The analog and digital sections of the AD9763/AD9765/AD9767 have separate power supply inputs (that is, AVDD and DVDD1/ DVDD2) that can operate independently at 3.3 V or 5 V . The digital section, which is capable of operating up to a 125 MSPS clock rate, consists of edge-triggered latches and segment decoding logic circuitry. The analog section includes the PMOS current sources, the associated differential switches, a 1.20 V band gap voltage reference, and two reference control amplifiers.

AD9763/AD9765/AD9767

The full-scale output current of each DAC is regulated by separate reference control amplifiers and can be set from 2 mA to 20 mA via an external network connected to the full scale adjust (FSADJ) pin. The external network, in combination with both the reference control amplifier and voltage reference ($\mathrm{V}_{\text {refio }}$) sets the reference current $\mathrm{I}_{\text {Ref, }}$ which is replicated to the segmented current sources with the proper scaling factor. The full-scale current (Ioutrs) is $32 \times \mathrm{I}_{\text {REF }}$.

REFERENCE OPERATION

The AD9763/AD9765/AD9767 contain an internal 1.20 V band gap reference. This can easily be overridden by a low noise external reference with no effect on performance. REFIO serves as either an input or output, depending on whether the internal or an external reference is used. To use the internal reference, simply decouple the REFIO pin to ACOM with a $0.1 \mu \mathrm{~F}$ capacitor. The internal reference voltage is present at REFIO. If the voltage at REFIO is used elsewhere in the circuit, an external buffer amplifier with an input bias current of less than 100 nA should be used. An example of the use of the internal reference is shown in Figure 59.

Figure 59. Internal Reference Configuration
An external reference can be applied to REFIO as shown in Figure 60. The external reference can provide either a fixed reference voltage to enhance accuracy and drift performance or a varying reference voltage for gain control. The $0.1 \mu \mathrm{~F}$ compensation capacitor is not required because the internal reference is overridden and the relatively high input impedance of REFIO minimizes any loading of the external reference.

Figure 60. External Reference Configuration Gain Control Mode

GAIN CONTROL MODE

The AD9763/AD9765/AD9767 has two gain control modes, independent and master/slave. If the GAINCTRL terminal is low (connected to ground), the full-scale currents of DAC1 and DAC2 are set separately using two different $\mathrm{R}_{\text {SET }}$ resistors. One resistor is connected to the FSADJ1 terminal, and the other resistor is connected to the FSADJ2 terminal. This is independent mode. If the GAINCTRL terminal is set high (connected to AVDD), the full-scale currents of DAC1 and DAC2 are set to the same value using one $\mathrm{R}_{\text {SET }}$ resistor. In master/slave mode, full-scale current for both DAC1 and DAC2 is set via the FSADJ1 terminal.

SETTING THE FULL-SCALE CURRENT

Both of the DACs in the AD9763/AD9765/AD9767 contain a control amplifier that is used to regulate the full-scale output current (Ioutrs). The control amplifier is configured as a V-I converter, as shown in Figure 59, so that its current output (I $\mathrm{I}_{\mathrm{ReF}}$) is determined by the ratio of the $\mathrm{V}_{\text {refio }}$ and an external resistor, Rset.

$$
I_{\text {REF }}=V_{\text {REFII }} / R_{\text {SET }}
$$

The DAC full-scale current, Ioutrs, is an output current 32 times larger than the reference current, $\mathrm{I}_{\text {Ref. }}$.

$$
I_{\text {OUTFS }}=32 \times I_{\text {REF }}
$$

The control amplifier allows a wide (10:1) adjustment span of Ioutrs from 2 mA to 20 mA by setting $\mathrm{I}_{\text {Ref }}$ between $62.5 \mu \mathrm{~A}$ and $625 \mu \mathrm{~A}$. The wide adjustment range of Ioutrs provides several benefits. The first relates directly to the power dissipation of the AD9763/AD9765/AD9767, which is proportional to Ioutrs (refer to the Power Dissipation section). The second relates to the 20 dB adjustment, which is useful for system gain control purposes.
To ensure that the AD9763/AD9765/AD9767 performs properly, connect a 22 nF capacitor and 256Ω resistor network (shown in Figure 59 and Figure 60) from the FSADJ1 terminal to ground and from the FSADJ2 terminal to ground.

DAC TRANSFER FUNCTION

Both DACs in the AD9763/AD9765/AD9767 provide complementary current outputs, Iouta and Ioutb. Iouta provides a near full-scale current output (Ioutrs) when all bits are high (that is, DAC CODE $=1024 / 4095 / 16,384$ for the AD9763/AD9765/ AD9767, respectively), while IoutB, the complementary output, provides no current. The current output appearing at Iouta and Ioutb is a function of both the input code and Ioutfs. Iouta for the AD9763, AD9765, and AD9767, respectively, can be expressed as

$$
\begin{align*}
& I_{\text {oUTA }}=(D A C \text { CODE/1024 }) \times I_{\text {oUTFS }} \tag{1}\\
& I_{\text {OUTA }}=(D A C \text { CODE/4096 }) \times I_{\text {oUTFS }} \\
& I_{\text {OUTA }}=(D A C \text { CODE/16,384 }) \times I_{\text {oUTFS }}
\end{align*}
$$

Iouts for the AD9763, AD9765, and AD9767, respectively, can be expressed as

$$
\begin{align*}
& I_{\text {OUTB }}=((1023-D A C \text { CODE }) / 1024) \times I_{\text {OUTFS }} \tag{2}\\
& I_{\text {OUTB }}=((4095-D A C \text { CODE }) / 4096) \times I_{\text {OUTFS }} \\
& I_{\text {OUTB }}=((16,383-D A C \text { CODE }) / 16,384) \times I_{\text {OUTFS }}
\end{align*}
$$

where $D A C C O D E=0$ to 1024,0 to 4095 , or 0 to 16,384 (decimal representation).
Ioutrs is a function of the reference current ($\mathrm{I}_{\mathrm{REF}}$). This is nominally set by a reference voltage ($\mathrm{V}_{\text {REFIO }}$) and an external resistor ($\mathrm{R}_{\text {SET }}$). It can be expressed as

$$
\begin{equation*}
I_{O U T F S}=32 \times I_{R E F} \tag{3}
\end{equation*}
$$

where $I_{\text {REF }}$ is set as discussed in the Setting the Full-Scale Current section.

The two current outputs typically drive a resistive load directly or via a transformer. If dc coupling is required, Iouta and Iоutв should be directly connected to matching resistive loads ($\mathrm{R}_{\text {LOAD }}$) that are tied to the analog common (ACOM). Note that R $\mathrm{R}_{\text {LOAD }}$ can represent the equivalent load resistance seen by Iouta or Ioutb, as is the case in a doubly terminated 50Ω or 75Ω cable. The singleended voltage output appearing at the Iouta and Iouts nodes is

$$
\begin{align*}
& V_{\text {OUTA }}=I_{\text {OUTA }} \times R_{\text {LOAD }} \tag{5}\\
& V_{\text {OUTB }}=I_{\text {IOUTB }} \times R_{\text {LOAAD }} \tag{6}
\end{align*}
$$

Note that the full-scale value of Vouta and Voutb must not exceed the specified output compliance range to maintain the specified distortion and linearity performance.

$$
\begin{equation*}
V_{\text {DIFF }}=\left(I_{\text {oUTA }}-I_{\text {OUTB }}\right) \times R_{\text {LOAD }} \tag{7}
\end{equation*}
$$

Equation 7 highlights some of the advantages of operating the AD9763/AD9765/AD9767 differentially. First, the differential operation helps cancel common-mode error sources associated with Iouta and Ioutb such as noise, distortion, and dc offsets. Second, the differential code-dependent current and subsequent voltage, $V_{\text {DIFF }}$, is twice the value of the single-ended voltage output (that is, Vouta or Voutb), thus providing twice the signal power to the load.

The gain drift temperature performance for a single-ended ($\mathrm{V}_{\text {outa }}$ and $\mathrm{V}_{\text {оutb }}$) or differential output ($\mathrm{V}_{\text {diff }}$) of the AD9763/AD9765/AD9767 can be enhanced by selecting temperature tracking resistors for $\mathrm{R}_{\mathrm{LOAD}}$ and $\mathrm{R}_{\text {SET }}$ due to their ratiometric relationship.

ANALOG OUTPUTS

The complementary current outputs, Iouta and Ioutb, in each DAC can be configured for single-ended or differential operation. Iouta and Ioutb can be converted into complementary single-ended voltage outputs, Vouta and Voutb, via a load resistor ($\mathrm{R}_{\text {LOAD }}$) as described in Equation 5 through Equation 7. The differential voltage ($V_{\text {diff }}$) existing between Vouta and Voutb can be converted to a single-ended voltage via a transformer or differential amplifier configuration. The ac performance of the AD9763/AD9765/AD9767 is optimum and specified using a differential transformer-coupled output in which the voltage swing at Iouta and $\mathrm{I}_{\text {outb }}$ is limited to $\pm 0.5 \mathrm{~V}$. If a single-ended unipolar output is desired, select IOUTA.

The distortion and noise performance of the AD9763/AD9765/ AD9767 can be enhanced when it is configured for differential operation. The common-mode error sources of both Iouta and Iоutв can be significantly reduced by the common-mode rejection of a transformer or differential amplifier. These common-mode error sources include even-order distortion products and noise. The enhancement in distortion performance becomes more significant as the frequency content of the reconstructed waveform increases. This is due to the first-order cancellation of various dynamic common-mode distortion mechanisms, digital feedthrough, and noise.

Performing a differential-to-single-ended conversion via a transformer also provides the ability to deliver twice the reconstructed signal power to the load, assuming no source termination. Because the output currents of Iouta and Ioutb are complementary, they become additive when processed differentially. A properly selected transformer allows the AD9763/AD9765/AD9767 to provide the required power and voltage levels to different loads.

The output impedance of Iouta and Ioutb is determined by the equivalent parallel combination of the PMOS switches associated with the current sources and is typically $100 \mathrm{k} \Omega$ in parallel with 5 pF . It is also slightly dependent on the output voltage (that is, Vouta and Voutb) due to the nature of a PMOS device. As a result, maintaining Iouta and/or Іоutв at a virtual ground via an I-V op amp configuration results in the optimum dc linearity. Note that the INL/DNL specifications for the AD9763/AD9765/AD9767 are measured with Iouta maintained at a virtual ground via an op amp.

AD9763/AD9765/AD9767

Iouta and Ioutr also have a negative and positive voltage compliance range that must be adhered to in order to achieve optimum performance. The negative output compliance range of -1.0 V is set by the breakdown limits of the CMOS process. Operation beyond this maximum limit may result in a breakdown of the output stage and affect the reliability of the AD9763/AD9765/AD9767.

The positive output compliance range is slightly dependent on the full-scale output current, Ioutrs. When Ioutrs is decreased from 20 mA to 2 mA , the positive output compliance range degrades slightly from its nominal 1.25 V to 1.00 V . The optimum distortion performance for a single-ended or differential output is achieved when the maximum full-scale signal at Iouta and Iоитв does not exceed 0.5 V . Applications requiring the AD9763/ AD9765/AD9767 output (that is, Vouta and/or Voutb) to extend its output compliance range must size $\mathrm{R}_{\mathrm{LOAD}}$ accordingly. Operation beyond this compliance range adversely affects the linearity performance of the AD9763/AD9765/AD9767 and subsequently degrades its distortion performance.

DIGITAL INPUTS

The digital inputs of the AD9763/AD9765/AD9767 consist of two independent channels. For the dual-port mode, each DAC has its own dedicated 10-/12-/14-bit data port: WRT line and CLK line. In the interleaved timing mode, the function of the digital control pins changes as described in the Interleaved Mode Timing section. The 10-/12-/14-bit parallel data inputs follow straight binary coding, where the most significant bits (MSBs) are DB9P1 and DB9P2 for the AD9763, DB11P1 and DB11P2 for the AD9765, and DB13P1 and DB13P2 for the AD9767, and the least significant bits (LSBs) are DB0P1 and DB0P2 for all three parts. Iouta produces a full-scale output current when all data bits are at Logic 1. Iоutв produces a complementary output with the full-scale current split between the two outputs as a function of the input code.
The digital interface is implemented using an edge-triggered master/slave latch. The DAC outputs are updated following either the rising edge or every other rising edge of the clock, depending on whether dual or interleaved mode is used. The DAC outputs are designed to support a clock rate as high as 125 MSPS. The clock can be operated at any duty cycle that meets the specified latch pulse width. The setup and hold times can also be varied within the clock cycle as long as the specified minimum times are met, although the location of these transition edges may affect digital feedthrough and distortion performance. Best performance is typically achieved when the input data transitions on the falling edge of a 50% duty cycle clock.

DAC TIMING

The AD9763/AD9765/AD9767 can operate in two timing modes, dual and interleaved, which are described in the following sections. The block diagram in Figure 61 represents the latch architecture in the interleaved timing mode.

Figure 61. Latch Structure in Interleaved Mode

Dual-Port Mode Timing

When the MODE pin is at Logic 1, the AD9763/AD9765/AD9767 operates in dual-port mode (refer to Figure 57). The AD9763/ AD9765/AD9767 functions as two distinct DACs. Each DAC has its own completely independent digital input and control lines.

The AD9763/AD9765/AD9767 features a double-buffered data path. Data enters the device through the channel input latches. This data is then transferred to the DAC latch in each signal path. After the data is loaded into the DAC latch, the analog output settles to its new value.

For general consideration, the WRT lines control the channel input latches, and the CLK lines control the DAC latches. Both sets of latches are updated on the rising edge of their respective control signals.
The rising edge of CLK must occur before or simultaneously with the rising edge of WRT. If the rising edge of CLK occurs after the rising edge of WRT, a minimum delay of 2 ns must be maintained from the rising edge of WRT to the rising edge of CLK.

Timing specifications for dual-port mode are shown in Figure 62 and Figure 63.

Figure 62. Dual-Port Mode Timing

Figure 63. Dual-Port Mode Timing

Interleaved Mode Timing

When the MODE pin is at Logic 0 , the AD9763/AD9765/AD9767 operate in interleaved mode (refer to Figure 61). In addition, WRT1 functions as IQWRT, CLK1 functions as IQCLK, WRT2 functions as IQSEL, and CLK2 functions as IQRESET.
Data enters the device on the rising edge of IQWRT. The logic level of IQSEL steers the data to either Channel Latch $1($ IQSEL $=1)$ or to Channel Latch $2(\mathrm{IQSEL}=0)$. For proper operation, IQSEL must change state only when IQWRT and IQCLK are low.
When IQRESET is high, IQCLK is disabled. When IQRESET goes low, the next rising edge on IQCLK updates both DAC latches with the data present at their inputs. In the interleaved mode, IQCLK is divided by 2 internally. Following this first rising edge, the DAC latches are only updated on every other rising edge of IQCLK. In this way, IQRESET can be used to synchronize the routing of the data to the DACs.
Similar to the order of CLK and WRT in dual-port mode, IQCLK must occur before or simultaneously with IQWRT.
Timing specifications for interleaved mode are shown in Figure 64 and Figure 66.
The digital inputs are CMOS compatible with logic thresholds, $\mathrm{V}_{\text {THRESHOLD }}$, set to approximately half the digital positive supply
(DVDDx), or
$V_{\text {THRESHOLD }}=D V D D x / 2(\pm 20 \%)$

*APPLIES TO FALLING EDGE OF IQCLKIIQWRT AND IQSEL ONLY.
Figure 64.5 V or 3.3 V Interleaved Mode Timing
At 5 V it is permissible to drive IQWRT and IQCLK together as shown in Figure 65, but at 3.3 V the interleaved data transfer is not reliable.

*APPLIES TO FALLING EDGE OF IQCLKIIQWRT AND IQSEL ONLY. $\stackrel{\stackrel{\rightharpoonup}{\circ}}{\circ}$
Figure 65.5 V Only Interleaved Mode Timing

Figure 66. Interleaved Mode Timing
The internal digital circuitry of the AD9763/AD9765/AD9767 is capable of operating at a digital supply of 3.3 V or 5 V . As a result, the digital inputs can also accommodate TTL levels when DVDD1/DVDD2 is set to accommodate the maximum high level voltage ($\mathrm{V}_{\mathrm{oh}(\mathrm{MAx})}$) of the TTL drivers. A DVDD1/DVDD2 of 3.3 V typically ensures proper compatibility with bipolar TTL logic families. Figure 67 shows the equivalent digital input circuit for the data and clock inputs. The sleep mode input is similar, with the exception that it contains an active pull-down circuit, thus ensuring that the AD9763/AD9765/AD9767 remains enabled if this input is left disconnected.

Figure 67. Equivalent Digital Input

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

[^1]: ${ }^{1}$ Measured at louta, driving a virtual ground.
 ${ }^{2}$ Nominal full-scale current, loutrs, is 32 times the $I_{\text {REF }}$ current.
 ${ }^{3}$ An external buffer amplifier with input bias current $<100 \mathrm{nA}$ should be used to drive any external load.
 ${ }^{4}$ Measured at $\mathrm{f}_{\text {CLK }}=25 \mathrm{MSPS}$ and $\mathrm{f}_{\text {out }}=1.0 \mathrm{MHz}$.
 ${ }^{5}$ Measured at $\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}$ and $\mathrm{f}_{\text {out }}=1 \mathrm{MHz}$.
 ${ }^{6}$ Measured as unbuffered voltage output with loutfs $=20 \mathrm{~mA}$ and R LOAD $=50 \Omega$ at louta and $l_{\text {OUTB, }}, \mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}$, and $\mathrm{f}_{\text {OUT }}=40 \mathrm{MHz}$.
 ${ }^{7} \pm 10 \%$ power supply variation.

[^2]: ${ }^{1}$ Measured single-ended into 50Ω load.

