: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

12-Bit CCD Signal Processor with V-Driver and Precision Timing Generator

FEATURES

Integrated 19-channel V-driver

1.8 V AFETG core

24 programmable vertical clock signals
Correlated double sampler (CDS) with -3 dB, 0 dB , +3 dB , and +6 dB gain
12-bit, 40.5 MHz analog-to-digital converter (ADC)
Black level clamp with variable level control
Complete on-chip timing generator
Precision Timing core with $\mathbf{\sim} \mathbf{4 0 0}$ ps resolution
On-chip 3 V horizontal and RG drivers

General-purpose outputs (GPOs) for shutter and

 system supportOn-chip sync generator with external sync input
On-chip 1.8 V low dropout (LDO) regulator
105-ball, $8 \mathrm{~mm} \times 8 \mathrm{~mm}$ CSP_BGA package

APPLICATIONS

Digital still cameras

GENERAL DESCRIPTION

The AD9920A is a highly integrated charge-coupled device (CCD) signal processor for digital still camera applications. It includes a complete analog front end (AFE) with analog-to-digital conversion, combined with a full-function programmable timing generator and 19-channel vertical driver (V-driver). The timing generator is capable of supporting up to 24 vertical clock signals to control advanced CCDs. The on-chip V-driver supports up to 19 channels for use with six-field CCDs. A Precision Timing ${ }^{\text {® }}$ core allows adjustment of high speed clocks with approximately 400 ps resolution at 40.5 MHz operation. The AD9920A also contains six GPOs that can be used for shutter and system functions.
The analog front end includes black level clamping, variable gain CDS, and a 12 -bit ADC. The timing generator provides all the necessary CCD clocks: RG, H-clocks, V-clocks, sensor gate pulses, substrate clock, and substrate bias control.

The AD9920A is specified over an operating temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Rev. B

COMPARABLE PARTS

View a parametric search of comparable parts.

DOCUMENTATION \square

Data Sheet

- AD9920A: 12-Bit CCD Signal Processor with V-Driver and Precision Timing Generator Data Sheet

DESIGN RESOURCES

- AD9920A Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD9920A EngineerZone Discussions.
SAMPLE AND BUY \square
Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

AD9920A

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 3
Specifications 4
Digital Specifications 5
Analog Specifications 5
Timing Specifications 7
Vertical Driver Specifications 8
Absolute Maximum Ratings 10
Thermal Resistance 10
ESD Caution 10
Pin Configuration and Function Descriptions 11
Typical Performance Characteristics 14
Equivalent Circuits 15
Terminology 16
Theory of Operation 17
H-Counter Behavior in Slave Mode 17
High Speed Precision Timing Core 18
Digital Data Outputs 22
Horizontal Clamping and Blanking 23
Horizontal Timing Sequence Example. 30
Vertical Timing Generation 32
Vertical Sequences (VSEQ) 34
Vertical Timing Example. 51
Internal Vertical Driver Connections (18-Channel Mode).. 53
Internal Vertical Driver Connections (19-Channel Mode).. 54
Output Polarity of Vertical Transfer Clocks and Substrate Clock 55
V-Driver Slew Rate Control 60
Shutter Timing Control 60
Substrate Clock Operation (SUBCK) 60
Field Counters 63
General-Purpose Outputs (GPOs) 64
GP Lookup Table (LUT) 68
Complete Exposure/Readout Operation Using Primary Counter and GPO Signals 69
SG Control Using GPO 71
Manual Shutter Operation Using Enhanced SYNC Modes 73
Analog Front End Description and Operation 77
Applications Information 79
Power-Up Sequence for Master Mode 79
Power-Up Sequence for Slave Mode 81
Power-Down Sequence for Master and Slave Modes 83
Additional Restrictions in Slave Mode 84
Vertical Toggle Position Placement Near Counter Reset 85
Standby Mode Operation 86
CLI Frequency Change 86
Circuit Layout Information 88
Typical 3 V System 88
External Crystal Application 88
Circuit Configurations 89
Serial Interface 93
Serial Interface Timing 93
Layout of Internal Registers 94
Updating New Register Values 95
Complete Register Listing 96
Outline Dimensions 112
Ordering Guide 112

REVISION HISTORY

6/10—Rev. A to Rev. B
Changes to Figure 1... 1
Changes to Figure 9, Figure 10, Figure 12, and Figure 13 15
Moved Terminology Section... 16
Changes to Figure 15 .. 17
Moved Generating HBLK Line Alternation Section 24
Moved Figure 32... 25
Moved Figure 33... 27
Changes to Vertical Sequences (VSEQ) Section 34
Changes to Special Vertical Sequence Alternation
(SVSA) Mode Section.. 38
Added Table 18; Renumbered Tables Sequentially.................... 44
Deleted Figure 77; Renumbered Figures Sequentially 61
Changes to SUBCK Low Speed Operation Section
and Table 43 ... 61
and Table 43 .. 61
Changes to Figure 81 .. 62
Changes to Table 45 .. 64
Changes to Scheduled Toggles Section and Figure 85 66
Changes to Figure 86, ShotTimer Sequences Section,
and Figure 87 .. 67
Changes to Complete Exposure/Readout Operation
Using Primary Counter and GPO Signals Section 69
Changes to Triggered Control of GPO5 Section........................ 71
Changes to Figure 96 75
Changes to Figure 100 77
Changes to Figure 102 80
Changes to Power-Up Sequence for Slave Mode Section 81
Changes to Figure 103 82
Changes to Power-Down Sequence for Master and Slave Modes Section 83
Added Table 48; Renumbered Tables Sequentially 86
Changes to Figure 108 88
Changes to Figure 109 89
Changes to Figure 110 90
Changes to Figure 111 91
Changes to Figure 112 92
Changes to Layout of Internal Registers Section and Figure 115 94
Changes to Table 53 97
Changes to Table 57 99
Changes to Table 59 101
Changes to Table 61 105
Changes to Table 63 108
Updated Outline Dimensions. 112
6/09—Revision A: Initial Version

AD9920A

SPECIFICATIONS

Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
TEMPERATURE RANGE Operating Storage		$\begin{aligned} & -25 \\ & -65 \end{aligned}$		$\begin{aligned} & +85 \\ & +150 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
POWER SUPPLY VOLTAGE INPUTS AVDD TCVDD CLIVDD RGVDD HVDD1 and HVDD2 DVDD DRVDD IOVDD	AFE analog supply Timing core supply CLI input supply RG, HL driver supply H1 to H8 driver supplies Digital logic supply Parallel data output driver supply Digital I/O supply	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 2.1 \\ & 2.1 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 1.8 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 3.6 \\ & 3.6 \\ & 3.6 \\ & 2.0 \\ & 3.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V-DRIVER POWER SUPPLY VOLTAGES VDVDD VH1, VH2 VL1, VL2 VM1, VM2 VLL VH1, VH2 to VL1, VL2, VLL VMM ${ }^{1}$	V-driver/logic supply V-driver high supply V-driver low supply V-driver midsupply SUBCK low supply SUBCK midsupply	1.6 11.0 -8.5 -1.5 -11.0 VLL	$\begin{aligned} & 3.0 \\ & 15.0 \\ & -7.5 \\ & 0.0 \\ & -7.5 \\ & \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 16.5 \\ & -5.5 \\ & +1.5 \\ & -5.5 \\ & 23.5 \\ & \text { VDVDD } \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
LDO 2 LDOIN Output Voltage Output Current	LDO supply input	$\begin{aligned} & 2.5 \\ & 1.8 \\ & 60 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.9 \\ & 100 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 2.05 \end{aligned}$	V mA
	```1.8V 1.8V 3V 3.3 V, 20 pF RG load, 20 pF HL load 3.3 V,480 pF total load on H1 to H8 1.8V 3V,10 pF load on each data output pin (D0 to D11) 3V, depends on load and output frequency of digital I/O```		$\begin{aligned} & 27 \\ & 5 \\ & 1.5 \\ & 10 \\ & 59 \\ & 9.5 \\ & 6 \\ & 2 \end{aligned}$		mA   mA
POWER SUPPLY CURRENTS—STANDBY MODE OPERATION   Standby1 Mode   Standby2 Mode   Standby3 Mode			$\begin{aligned} & 20 \\ & 5 \\ & 1.5 \end{aligned}$		mA   mA   mA
MAXIMUM CLOCK RATE (CLI)		40.5			MHz
MINIMUM CLOCK RATE (CLI)			10		MHz

[^0]
## DIGITAL SPECIFICATIONS

$\mathrm{IOVDD}=1.6 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{RGVDD}=\mathrm{HVDD} 1$ and $\mathrm{HVDD} 2=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
LOGIC INPUTS (IOVDD) High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{LL}} \\ & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{LL}} \\ & \mathrm{C}_{1 N} \end{aligned}$		$V_{D D}-0.6$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	0.6	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$
LOGIC OUTPUTS (IOVDD, DRVDD) High Level Output Voltage Low Level Output Voltage	$\begin{aligned} & \text { Vон } \\ & \text { VoL } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} \end{aligned}$	$V_{D D}-0.5$		0.5	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
RG and H-DRIVER OUTPUTS (HVDD1,   HVDD2, and RGVDD)   High Level Output Voltage   Low Level Output Voltage   Maximum H1 to H8 Output Current   Maximum HL and RG Output Current   Maximum Load Capacitance	$\begin{aligned} & \text { Vон } \\ & \text { VoL } \end{aligned}$	Maximum current   Maximum current   Programmable   Programmable   Each output	$\begin{aligned} & V_{D D}-0.5 \\ & 30 \\ & 17 \\ & 60 \end{aligned}$		0.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{pF} \\ & \hline \end{aligned}$
CLI INPUT   High Level Input Voltage   Low Level Input Voltage	VIHCL   Vicul	With CLO oscillator disabled	CLIVDD/2 + 0.5		CLIVDD/2-0.5	

## ANALOG SPECIFICATIONS

AVDD $=1.8 \mathrm{~V}, \mathrm{f}_{\mathrm{fLI}}=40.5 \mathrm{MHz}$, typical timing specifications, $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 3.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
CDS ${ }^{1}$					
DC Restore	AVDD - 0.5 V	1.21	1.3	1.44	V
Allowable CCD Reset Transient	Limit is the lower of AVDD + 0.3 V or 2.2 V		0.5	0.8	V
CDS Gain Accuracy	VGA gain $=6.3 \mathrm{~dB}$ (Code 15, default value)				
-3 dB CDS Gain		-3.1	-2.6	-2.1	dB
0 dB CDS Gain		-0.6	-0.1	+0.4	dB
+3 dB CDS Gain		2.7	3.2	3.7	dB
+6 dBCDS Gain		5.2	5.7	6.2	dB
Maximum Input Range Before Saturation					
$-3 \mathrm{~dB} \mathrm{CDS} \mathrm{Gain}$			1.4		$\checkmark \mathrm{p}$-p
0 dB CDS Gain			1.0		$\vee p-p$
+3 dB CDS Gain			0.7		$\vee p-p$
$+6 \mathrm{~dB} \mathrm{CDS} \mathrm{Gain}$			0.5		$\vee p-p$
Allowable OB Pixel Amplitude ${ }^{1}$					
0 dB CDS Gain (Default)		-100		+200	mV
+6 dB CDS Gain				+100	
VARIABLE GAIN AMPLIFIER (VGA)					
Gain Control Resolution					Steps
Gain Monotonicity			Guaranteed		
Gain Range					
Low Gain	VGA Code 15, default		6.3		dB
Maximum Gain	VGA Code 1023		42.4		dB

## AD9920A

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
BLACK LEVEL CLAMP   Clamp Level Resolution Clamp Level Minimum Clamp Level Maximum Clamp Level	Measured at ADC output   Code 0   Code 1023		$\begin{aligned} & 1024 \\ & 0 \\ & 255 \end{aligned}$		$\begin{aligned} & \text { Steps } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
ADC   Resolution   Differential Nonlinearity (DNL) ${ }^{2}$   No Missing Codes Integral Nonlinearity (INL) ${ }^{2}$   Full-Scale Input Voltage		12	$\begin{aligned} & \pm 0.5 \\ & \text { Guar } \\ & \pm 3.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \text { Bits } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { V } \end{aligned}$
VOLTAGE REFERENCE   Reference Top Voltage (REFT)   Reference Bottom Voltage (REFB)			$\begin{aligned} & 1.4 \\ & 0.4 \end{aligned}$		
SYSTEM PERFORMANCE   Gain Accuracy Low Gain   Maximum Gain   Peak Nonlinearity, 1 V Input Signal ${ }^{2}$ Total Output Noise ${ }^{2}$   Power Supply Rejection (PSR) ${ }^{2}$	Includes entire signal chain   0 dB CDS gain   VGA Code 15   Gain $=(0.0358 \times$ code $)+5.76 \mathrm{~dB}$   VGA Code 1023   6 dB VGA gain, 0 dB CDS gain applied   AC-grounded input, 6 dB VGA gain applied   Measured with step change on supply	5.7 41.8	$\begin{aligned} & 6.2 \\ & 42.3 \\ & 0.1 \\ & 0.6 \\ & 40 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 42.8 \\ & 0.3 \end{aligned}$	dB   dB   \%   LSB rms   dB

${ }^{1}$ Input signal characteristics are defined as shown in Figure 2.
${ }^{2}$ See the Terminology section.


Figure 2. Input Signal Characteristics

## TIMING SPECIFICATIONS

$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{AVDD}=\mathrm{DVDD}=\mathrm{TCVDD}=1.8 \mathrm{~V}, \mathrm{f}_{\mathrm{CLI}}=40.5 \mathrm{MHz}$, unless otherwise noted.
Table 4.

Parameter	Test Conditions/ Comments	Symbol	Min Typ	Max	Unit
MASTER CLOCK   CLI Clock Period   CLI High/Low Pulse Width   Delay from CLI Rising Edge to Internal Pixel Position 0	See Figure 18	tconv   tcuily	$\begin{array}{ll} 24.7 & \\ 0.8 \times \text { tconv/2 } & \text { tconv/2 } \\ & 6 \end{array}$	$1.2 \times$ tconv/2	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
SLAVE MODE SPECIFICATIONS VD Falling Edge to HD Falling Edge HD Falling Edge to CLI Rising Edge HD Falling Edge to CLO Rising Edge CLI Rising Edge to SHPLOC	See Figure 105   Only valid if OSC_ $\overline{\mathrm{RST}}=0$   Only valid if OSC_ $\overline{\mathrm{RST}}=1$   Internal sample edge	tvoho   thoclu   thdclo   tcushp	$\begin{aligned} & 0 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { VD period - tconv } \\ & \text { tconv - } 2 \\ & \text { tconv - } 2 \\ & \text { tconv }-2 \end{aligned}$	ns   ns   ns ns
AFE   SHPLOC Sample Edge to SHDLOC Sample Edge   SHDLOC Sample Edge to SHPLOC Sample Edge   AFE Pipeline Delay AFE CLPOB Pulse Width	See Figure 23   See Figure 23   See Figure 26	ts1   $\mathrm{t}_{\mathrm{s} 2}$	$\begin{array}{ll} 0.8 \times \mathrm{tconv} / 2 & \text { tconv/2 } \\ 0.8 \times \mathrm{tconv} / 2 & \text { tconv/2 } \\ & 16 \\ 2 & 20 \end{array}$	$\begin{aligned} & \mathrm{t}_{\mathrm{CONv}}-\mathrm{t}_{52} \\ & \mathrm{t}_{\mathrm{CONv}}-\mathrm{t}_{\mathrm{s} 1} \end{aligned}$	ns ns Cycles Pixels
DATA OUTPUTS   Output Delay from DCLK Rising Edge Pipeline Delay from SHP/SHD Sampling to Data Output	See Figure 25	tod	$\begin{aligned} & 1 \\ & 16 \end{aligned}$		ns Cycles
SERIAL INTERFACE   Maximum SCK Frequency   SL to SCK Setup Time SCK to SL Hold Time SDATA Valid to SCK Rising Edge Setup SCK Falling Edge to SDATA Valid Hold	Must not exceed CLI frequency	fsclk   tıs   $\mathrm{t}_{\mathrm{LH}}$   tos   $\mathrm{t}_{\mathrm{DH}}$	$\begin{aligned} & 40.5 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \text { ns } \end{aligned}$
TIMING CORE SETTING RESTRICTIONS   Inhibited Region for SHP Edge Location ${ }^{1}$   Inhibited Region for SHP or SHD with Respect to H-Clocks ${ }^{2,3,4}$ RETIME $=0$, MASK $=0$ RETIME $=0$, MASK $=1$ $\text { RETIME }=1, \text { MASK }=0$ $\text { RETIME }=1, \text { MASK = } 1$   Inhibited Region for DOUTPHASE Edge Location	See Figure 23   See Figure 23 and Figure 24   See Figure 23	$\mathrm{t}_{\text {SHPINH }}$   tshdinh   $\mathrm{t}_{\mathrm{SHDINH}}$   $\mathrm{t}_{\text {SHPINH }}$   tshPinh   $t_{\text {doutinh }}$	50   HxNEGLOC - 14   HxPOSLOC - 14   HxNEGLOC - 14   HxPOSLOC - 14   SHDLOC + 1	62   HxNEGLOC - 2   HxPOSLOC - 2   HxNEGLOC - 2   HxPOSLOC - 2   SHDLOC + 12	Edge location   Edge location Edge location Edge location Edge location Edge location

[^1]
## AD9920A

## VERTICAL DRIVER SPECIFICATIONS

$\mathrm{VH} 1, \mathrm{VH} 2=12 \mathrm{~V} ; \mathrm{VM} 1, \mathrm{VM} 2, \mathrm{VMM}=0 \mathrm{~V} ; \mathrm{VL} 1, \mathrm{VL} 2, \mathrm{VLL}=-6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}$ shown in load model; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Table 5.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
V1A TOV13		Simplified load conditions, 3000 pF to ground $+30 \Omega$ in series, SRSW $=$ VSS				
Delay Time, VL to VM and VM to VH	$\mathrm{tPLM}^{\text {P }}$ PMM			40		ns
Delay Time, VM to VL and VH to VM	$\mathrm{t}_{\text {PML, }} \mathrm{t}_{\text {PHM }}$			40		ns
Rise Time, VL to VM	$\mathrm{t}_{\text {RLM }}$			150		ns
Rise Time, VM to VH	$\mathrm{trMH}^{\text {frem }}$			315		ns
Fall Time, VM to VL	$\mathrm{t}_{\text {fML }}$			250		ns
Fall Time, VH to VM	$\mathrm{t}_{\text {FHM }}$			165		ns
Output Currents						
At -7.25 V				10		mA
At -0.25 V				-22		mA
At +0.25 V				22		mA
At +14.75 V				-10		mA
Ron					35	$\Omega$
V14, V15, V16		Simplified load conditions, 3000 pF to ground $+30 \Omega$ in series				
Delay Time, VL to VM	tPLM			45		ns
Delay Time, VM to VL	$\mathrm{t}_{\text {PML }}$			45		ns
Rise Time, VL to VM	$\mathrm{t}_{\text {RLM }}$			345		ns
Fall Time, VM to VL	$\mathrm{t}_{\text {fmL }}$			280		ns
Output Currents						
At -7.25V				10		mA
At -0.25 V				-7		mA
Ron					55	$\Omega$
SUBCK OUTPUT		Simplified load conditions, 1000 pF to ground				
Delay Time, VLL to VH	tpLH			50		ns
Delay Time, VH to VLL	$\mathrm{t}_{\text {PHL }}$			50		ns
Delay Time, VLL to VMM	tPLM			50		ns
Delay Time, VMM to VH	$\mathrm{t}_{\text {PM }}$			50		ns
Delay Time, VH to VMM	$\mathrm{t}_{\text {PHM }}$			50		ns
Delay Time, VMM to VLL	$\mathrm{t}_{\text {PML }}$			50		ns
Rise Time, VLL to VH	$\mathrm{trLH}^{\text {l }}$			50		ns
Rise Time, VLL to VMM	trim			55		ns
Rise Time, VMM to VH	$\mathrm{t}_{\text {RMH }}$			50		ns
Fall Time, VH to VLL	$\mathrm{t}_{\text {FHL }}$			55		ns
Fall Time, VH to VMM	$\mathrm{t}_{\text {FHM }}$			100		ns
Fall Time, VMM to VLL	$\mathrm{t}_{\text {fmL }}$			40		ns
Output Currents						
At -7.25V				20		mA
At -0.25 V				-12		mA
At +0.25 V				12		mA
At +14.75 V				-20		mA
Ron					35	$\Omega$
SRCTL INPUT RANGE		Valid only when SRSW is high	0.8		VDVDD	V



Figure 3. Definition of $V$-Driver Timing Specifications

## AD9920A

ABSOLUTE MAXIMUM RATINGS
Table 6.

Parameter	Rating
AVDD to AVSS	-0.3 V to +2.2 V
TCVDD to TCVSS	-0.3 V to +2.2 V
HVDD1, HVDD2 to HVSS1, HVSS2	-0.3 V to +3.9 V
RGVDD to RGVSS	-0.3 V to +3.9 V
DVDD to DVSS	-0.3 V to +2.2 V
DRVDD to DRVSS/LDOVSS	-0.3 V to +3.9 V
IOVDD to IOVSS	-0.3 V to +3.9 V
VDVDD to VDVSS	-0.3 V to +3.9 V
CLIVDD to TCVSS	-0.3 V to +3.9 V
VH1, VH2 to VL1, VL2, VLL	-0.3 V to +25.0 V
VH1, VH2 to VDVSS	-0.3 V to +17.0 V
VL1, VL2 to VDVSS	-17.0 V to +0.3 V
VM1, VM2 to VDVSS	-6.0 V to +3.0 V
VLL to VDVSS	-17.0 V to +0.3 V
VMM to VDVSS	VLL - 0.3 V to VDVDD +0.3 V
V1A to V16 to VDVSS	$\mathrm{VLx}-0.3 \mathrm{~V}$ to $\mathrm{VHx}+0.3 \mathrm{~V}$
RG and HL Outputs to RGVSS	-0.3 V to RGVDD +0.3 V
H1 to H8 Outputs to HVSSx	-0.3 V to HVDDx +0.3 V
VDR_EN, XSUBCNT, SRCTL, SRSW to VDVSS	-0.3 V to VDVDD +0.3 V
Digital Outputs to IOVSS	-0.3 V to IOVDD +0.3 V
Digital Inputs to IOVSS	-0.3 V to IOVDD +0.3 V
SCK, SL, SDATA to DVSS	-0.3 V to DVDD +0.3 V
REFT, REFB, CCDIN to AVSS	-0.3 V to AVDD +0.3 V
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )	$350^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
THERMAL RESISTANCE
$\theta_{\text {JA }}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 7. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
CSP_BGA (BC-105-1)	40.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Type ${ }^{1}$	Description
L6	AVDD	P	Analog Supply.
J7, K8	AVSS	P	Analog Supply Ground.
A10	DVDD	P	Digital Logic Supply.
A9	DVSS	P	Digital Logic Ground.
L5	CLIVDD	P	CLI Input Supply.
K6	TCVDD	P	Analog Timing Core Supply.
K4	TCVSS	P	Analog Timing Core Ground.
A2	DRVDD	P	Data Driver Supply.
B2	DRVSS/LDOVSS	P	Data Driver and LDO Ground.
E1	HVDD1	P	H-Driver Supply.
E2	HVSS1	P	H-Driver Ground.
G1	HVDD2	P	H-Driver Supply.
G2	HVSS2	P	H-Driver Ground.
J1	HVDD2	P	H-Driver Supply.
J2	HVSS2	P	H-Driver Ground.
L3	RGVDD	P	RG, HL Driver Supply.
K3	RGVSS	P	RG, HL Driver Ground.
B1	LDOIN	P	LDO 3.3 V Input.
C1	LDOOUT	P	LDO Output Voltage.
H11	IOVDD	P	Digital I/O Supply.
G11	IOVSS	P	Digital I/O Ground.
C11	VDVDD	P	V-Driver Logic Supply (3 V).
C10	VDVSS	P	V-Driver Ground.
E3	VM1	P	V-Driver Midsupply.
D3	VL1	P	V-Driver Low Supply.
C3	VH1	P	V-Driver High Supply.
J3	VH2	P	V-Driver High Supply.
H3	VL2	P	V-Driver Low Supply.
F3	VM2	P	V-Driver Midsupply.
G3	VMM	P	V-Driver Midsupply for SUBCK Output.
J4	VLL	P	V-Driver Low Supply for SUBCK Output.
L7	CCDIN	AI	CCD Signal Input.
K7	CCDGND	AI	CCD Ground.
C2	SRCTL	AI	Slew Rate Control Pin. Tie to VDVSS if not used.
L8	REFT	AO	Voltage Reference Top Bypass.
L9	REFB	AO	Voltage Reference Bottom Bypass.
D11	VD	DIO	Vertical Sync Pulse.
		DIO	Horizontal Sync Pulse.

## AD9920A

Pin No.	Mnemonic	Type ${ }^{1}$	Description
E11	SYNC/ $\overline{\mathrm{RST}}$	DO	SYNC Pin (Internal Pull-Up Resistor)/External Reset Input (Active Low).
K9	SL	DI	3-Wire Serial Load Pulse (Internal Pull-Up Resistor).
K10	SDATA	DI	3-Wire Serial Data.
L10	SCK	DI	3-Wire Serial Clock.
B11	VDR_EN	DI	Enable V-Outputs When High.
K11	XSUBCNT	DI	XSUBCNT Input to SUBCK Buffer.
C9	SRSW	DI	Slew Rate Control Enable. Tie to ground to disable.
J6	$\overline{\text { LEGEN }}$	DI	Legacy Mode Enable Bar. Tie to ground for legacy 18-channel mode.
J5	CLI	DI	Reference Clock Input.
K5	CLO	DO	Clock Output for Crystal.
F10	GPO1	DO	General-Purpose Output.
H9	GPO2	DO	General-Purpose Output.
G10	GPO3	DO	General-Purpose Output.
F11	GPO4	DO	General-Purpose Output.
H10	GPO7	DO	General-Purpose Output.
J11	GPO8	DO	General-Purpose Output.
B9	D0	DO	Data Output (LSB).
C6	D1	DO	Data Output.
C7	D2	DO	Data Output.
A8	D3	DO	Data Output.
A7	D4	DO	Data Output.
B7	D5	DO	Data Output.
B6	D6	DO	Data Output.
A6	D7	DO	Data Output.
A5	D8	DO	Data Output.
B4	D9	DO	Data Output.
A4	D10	DO	Data Output.
A3	D11	DO	Data Output (MSB).
B3	DCLK	DO	Data Clock Output.
D1	H1	DO	CCD Horizontal Clock.
D2	H2	DO	CCD Horizontal Clock.
F1	H3	DO	CCD Horizontal Clock.
F2	H4	DO	CCD Horizontal Clock.
H1	H5	DO	CCD Horizontal Clock.
H2	H6	DO	CCD Horizontal Clock.
K1	H7	DO	CCD Horizontal Clock.
K2	H8	DO	CCD Horizontal Clock.
L2	HL	DO	CCD Horizontal Clock.
L4	RG	DO	CCD Reset Gate Clock.
G9	V1A	VO3	CCD Vertical Transfer Clock. Three-level output (XV1 + XV16).
G6	V1B	VO3	CCD Vertical Transfer Clock. Three-level output (XV1 + XV17).
G5	V2A	VO3	CCD Vertical Transfer Clock. Three-level output (XV2 + XV18).
E9	V2B	VO3	CCD Vertical Transfer Clock. Three-level output (XV2 + XV19).
J9	V3A	VO3	CCD Vertical Transfer Clock. Three-level output (XV3 + XV20).
F6	V3B	VO3	CCD Vertical Transfer Clock. Three-level output. $\overline{\mathrm{LEGEN}}$ is low, XV3 $+\mathrm{XV} 21 . \overline{\mathrm{LEGEN}}$ is high, XV23 + XV21.
F5	V4	VO3	CCD Vertical Transfer Clock. Three-level output (XV4 + XV22).
E5	V5	VO3	CCD Vertical Transfer Clock. Three-level output. $\overline{\mathrm{LEGEN}}$ is low, XV5 $+\mathrm{XV} 23 . \overline{\mathrm{LEGEN}}$ is high, XV5 + GPO5.
D10	V6	VO3	CCD Vertical Transfer Clock. Three-level output. $\overline{\mathrm{LEGEN}}$ is low, XV6 $+\mathrm{XV} 24 . \overline{\mathrm{LEGEN}}$ is high, XV6 + GPO6.
F9	V7	VO2	CCD Vertical Transfer Clock. Two-level output (XV7).
F7	V8	VO2	CCD Vertical Transfer Clock. Two-level output (XV8).

## AD9920A

Pin No.	Mnemonic	Type 1	Description
D9	V9	VO2	CCD Vertical Transfer Clock. Two-level output (XV9).
C4	V10	VO2	CCD Vertical Transfer Clock. Two-level output (XV10).
C5	V11	VO2	CCD Vertical Transfer Clock. Two-level output (XV11).
B5	V12	VO2	CCD Vertical Transfer Clock. Two-level output (XV12).
E6	V13	VO2	CCD Vertical Transfer Clock. Two-level output (XV13).
E7	V14	VO2	CCD Vertical Transfer Clock. Two-level output (XV14).
C8	V15	VO2	CCD Vertical Transfer Clock. Two-level output (XV15).
J8	V16	VO2	CCD Vertical Transfer Clock. Two-level output (XV24). Available only when $\overline{\text { LEGEN is high }}$
			(19-channel mode).
G7	SUBCK	VO3	CCD Substrate Clock Output.
A1, A11, B8,	NC		Not Internally Connected.
B10, J10, L1,			
L11			

[^2]
## AD9920A

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 5. AFETG Power vs. Frequency (V-Driver Not Included); $A V D D=T C V D D=D V D D=1.8 \mathrm{~V}$, All Other Supplies at $2.7 \mathrm{~V}, 3.0 \mathrm{~V}$, or 3.3 V


Figure 6. Typical Differential Nonlinearity (DNL) Performance


Figure 7. Typical System Integral Nonlinearity (INL) Performance


Figure 8. Output Noise vs. Total Gain (CDS + VGA)

## EQUIVALENT CIRCUITS



Figure 9. CCDIN


Figure 10. Digital Data Outputs


Figure 11. XSUBCNT


Figure 12. Digital Inputs


Figure 13. H1 to H8, HL, RG Drivers


Figure 14. VDR_EN

## AD9920A

## TERMINOLOGY

## Differential Nonlinearity (DNL)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. It is often specified in terms of resolution for which no missing codes are guaranteed. No missing codes guaranteed to 12 -bit resolution indicates that all 4096 codes, each for its respective input, must be present over all operating conditions.

## Integral Nonlinearity (INL)

INL is defined as the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero scale to full scale.

## Peak Nonlinearity

Peak nonlinearity, a full signal chain specification, refers to the peak deviation of the output of the AD9920A from a true straight line. The point used as zero scale occurs 0.5 LSB before the first code transition. Positive full scale is defined as a level 1 LSB and 0.5 LSB beyond the last code transition. The deviation is measured from the middle of each particular output code to the true straight line. The error is then expressed as a percentage of the 2 V ADC full-scale signal. The input signal is always appropriately amplified to fill the ADC full-scale range.

## Power Supply Rejection (PSR)

The PSR is measured with a step change applied to the supply pins. The PSR specification is calculated from the change in the data outputs for a given step change in the supply voltage.

## Total Output Noise

The rms output noise is measured using histogram techniques. The standard deviation of the ADC output codes is calculated in LSB and represents the rms noise level of the total signal chain at the specified gain setting. The output noise can be converted to an equivalent voltage using the relationship

$$
1 \text { LSB }=\left(\text { ADC Full Scale } / 2^{n} \text { Codes }\right)
$$

where $n$ is the bit resolution of the ADC.
For the AD9920A, 1 LSB $=0.244 \mathrm{mV}$.

## THEORY OF OPERATION

Figure 15 shows the typical system block diagram for the AD9920A in master mode. The CCD output is processed by the AD9920A AFE circuitry, which consists of a CDS, black level clamp, and ADC. The digitized pixel information is sent to the digital image processor chip, which performs the postprocessing and compression. To operate the CCD, all CCD timing parameters are programmed into the AD9920A from the system microprocessor through the 3-wire serial interface. From the master clock, CLI, provided by the image processor or external crystal, the AD9920A generates the CCD horizontal and vertical clocks and the internal AFE clocks. External synchronization is provided by a sync pulse from the microprocessor, which resets the internal counters and resyncs the VD and HD outputs.


Figure 15. Typical System Block Diagram, Master Mode
Alternatively, the AD9920A can be operated in slave mode. In this mode, the VD and HD are provided externally from the image processor, and all AD9920A timing is synchronized with VD and HD.

The H -drivers for H 1 to $\mathrm{H} 8, \mathrm{HL}$, and RG are included in the AD9920A, allowing these clocks to be directly connected to the CCD. An H-driver voltage of up to 3.6 V is supported. V1A to V16 and SUBCK vertical clocks are included as well, allowing the AD9920A to provide all horizontal and vertical clocks necessary to clock data out of a CCD.

The AD9920A includes programmable general-purpose outputs (GPOs) that can trigger mechanical shutter and strobe (flash) circuitry.
Figure 16 and Figure 17 show the maximum horizontal and vertical counter dimensions for the AD9920A. All internal horizontal and vertical clocking is controlled by these counters, which specify line and pixel locations. Maximum HD length is 16,384 pixels per line, and maximum VD length is 8192 lines per field.


Figure 16. Vertical and Horizontal Counters

## H-COUNTER BEHAVIOR IN SLAVE MODE

In the AD9920A, the internal H -counter holds at its maximum count of 16,383 instead of rolling over. This feature allows the AD9920A to be used in applications that contain a line length greater than 16,384 pixels. Although no programming values for the vertical and horizontal signals are available beyond 8191, the $H, R G$, and AFE clocking continues to operate, sampling the remaining pixels on the line.


Figure 17. Maximum VD/HD Dimensions

## AD9920A

## HIGH SPEED PRECISION TIMING CORE

The AD9920A generates high speed timing signals using the flexible Precision Timing core. This core is the foundation for generating the timing used for both the CCD and the AFE; it includes the reset gate (RG), horizontal drivers (H1 to H8, HL), and SHP/SHD sample clocks. A unique architecture makes it routine for the system designer to optimize image quality by providing precise control over the horizontal CCD readout and the AFE correlated double sampling.
The high speed timing of the AD9920A operates the same way in either master or slave mode configuration. For more information on synchronization and pipeline delays, see the Power-Up Sequence for Master Mode section.

## Timing Resolution

The Precision Timing core uses a $1 \times$ master clock input as a reference (CLI). This clock should be the same as the CCD pixel clock frequency. Figure 18 illustrates how the internal timing core
divides the master clock period into 64 steps or edge positions. Using a 40.5 MHz CLI frequency, the edge resolution of the Precision Timing core is approximately 0.4 ns. If a $1 \times$ system clock is not available, it is possible to use a $2 \times$ reference clock by programming the CLIDIVIDE register (AFE Register Address 0x0D). The AD9920A then internally divides the CLI frequency by 2.

## High Speed Clock Programmability

Figure 19 shows when the high speed clocks RG, H1 to H8, HL, SHP, and SHD are generated. The RG pulse has programmable rising and falling edges and can be inverted using the polarity control. Horizontal Clock H1 has programmable rising and falling edges and polarity control. In HCLK Mode 1, H3, H5, and H7 are equal to $\mathrm{H} 1 . \mathrm{H} 2, \mathrm{H} 4, \mathrm{H} 6$, and H 8 are always inverses of H 1 .

The edge location registers are each six bits wide, allowing the selection of all 64 edge locations. Figure 23 shows the default timing locations for all of the high speed clock signals.


Figure 18. High Speed Clock Resolution from CLI, Master Clock Input


Figure 19. High Speed Clock Programmable Locations $(H C L K M O D E=0 \times 01)$

## H-Driver and RG Outputs

In addition to the programmable timing positions, the AD9920A features on-chip output drivers for the RG, HL, and H1 to H8 outputs. These drivers are powerful enough to drive the CCD inputs directly. The H-driver and RG current can be adjusted for optimum rise/fall time for a particular load by using the drive strength control registers (Address 0x36 and Address 0x37). The 3-bit drive setting for each H 1 to H 8 output is adjustable in 4.3 mA increments: $0=\mathrm{off}, 1=4.3 \mathrm{~mA}, 2=8.6 \mathrm{~mA}, 3=12.9 \mathrm{~mA}$, $4=17.3 \mathrm{~mA}, 5=21.6 \mathrm{~mA}, 6=25.9 \mathrm{~mA}$, and $7=30.2 \mathrm{~mA}$.
The 3-bit drive settings for the HL and RG outputs are also adjustable in 4.3 mA increments, but with a maximum drive strength of $17.3 \mathrm{~mA}: 0=$ off, $1=4.3 \mathrm{~mA}, 2=8.6 \mathrm{~mA}, 3=12.9 \mathrm{~mA}$, $4=4.3 \mathrm{~mA}, 5=8.6 \mathrm{~mA}, 6=12.9 \mathrm{~mA}$, and $7=17.3 \mathrm{~mA}$.

As shown in Figure 19, when HCLK Mode 1 is used, the H2, $\mathrm{H} 4, \mathrm{H} 6$, and H 8 outputs are inverses of the H1, H3, H5, and H7 outputs. Using the HCLKMODE register (Address 0x24, Bits[4:0]), it is possible to select a different configuration.

Table 10 shows a comparison of the different programmable settings for each HCLK mode. Figure 20 and Figure 21 show the settings for HCLK Mode 2 and HCLK Mode 3, respectively.
It is recommended that all H 1 to H 8 outputs on the AD9920A be used together for maximum flexibility in drive strength settings. A typical CCD with H 1 and H 2 inputs should have only the AD9920A H1, H3, H5, and H7 outputs connected together to drive the CCD H1 and should have only the AD9920A H2, H4, H6, and H8 outputs connected together to drive the CCD H2.
In 3-phase HCLK mode, only six of the HCLK outputs are used, with two outputs driving each of the three phases:

- $\quad \mathrm{H} 1$ and H 2 are connected to CCD Phase 1.
- H 5 and H6 are connected to CCD Phase 2.
- H 7 and H8 are connected to CCD Phase 3.

Table 9. Timing Core Register Parameters for H1, H2, HL, RG, SHP, and SHD

Parameter	Length (Bits)	Range	Description
Positive Edge	6	0 to 63 edge location	Positive edge location for $\mathrm{H} 1, \mathrm{H} 2, \mathrm{HL}, \mathrm{H} 3 \mathrm{P} 1$, and RG.
Negative Edge	6	0 to 63 edge location	Negative edge location for $\mathrm{H} 1, \mathrm{H} 2, \mathrm{HL}, \mathrm{H} 3 \mathrm{P} 1$, and RG.
Sampling Location	6	0 to 63 edge location	Sampling location for internal SHP and SHD signals.
Drive Strength	3	0 to 7 current steps	Drive current for H 1 to $\mathrm{H} 8, \mathrm{HL}$, and RG outputs (4.3 mA per step).

Table 10. HCLK Modes, Selected by Address 0x24, Bits[4:0]

HCLKMODE	Register Value	Description
Mode 1	$0 \times 01$	H1 edges are programmable with $\mathrm{H} 3=\mathrm{H} 5=\mathrm{H} 7=\mathrm{H} 1, \mathrm{H} 2=\mathrm{H} 4=\mathrm{H} 6=\mathrm{H} 8=$ inverse of H 1.
Mode 2	$0 \times 02$	H 1 edges are programmable with $\mathrm{H} 3=\mathrm{H} 5=\mathrm{H} 7=\mathrm{H} 1$.   H 2 edges are programmable with $\mathrm{H} 4=\mathrm{H} 6=\mathrm{H} 8=\mathrm{H} 2$.
Mode 3	$0 \times 04$	H 1 edges are programmable with $\mathrm{H} 3=\mathrm{H} 1$ and $\mathrm{H} 2=\mathrm{H} 4=$ inverse of H 1.   H 5 edges are programmable with $\mathrm{H} 7=\mathrm{H} 5$ and $\mathrm{H} 6=\mathrm{H} 8=$ inverse of H5.
3-Phase Mode	$0 \times 10$	H 1 edges are programmable using Address $0 \times 33$ and $\mathrm{H} 2=\mathrm{H} 1$ (Phase 1).   H5 edges are programmable using Address $0 \times 31$ and $\mathrm{H} 6=\mathrm{H} 5$ (Phase 2).   H7 edges are programmable using Address $0 \times 30$ and $\mathrm{H} 8=\mathrm{H} 7$ (Phase 3).
Invalid Selection	All other values	Invalid register settings. Do not use.



Figure 20. HCLK Mode 2 Operation


Figure 21. HCLK Mode 3 Operation


H1 TO H8 PROGRAMMABLE LOCATIONS:
1H1 FALLING EDGE.
${ }^{2} \mathrm{H} 1$ RISING EDGE.
${ }^{3}$ H5 FALLING EDGE.
4H5 RISING EDGE.
${ }^{5}$ H7 RISING EDGE.
${ }^{6}$ H7 FALLING EDGE.
Figure 22. 3-Phase HCLK Mode Operation


NOTES

1. ALL SIGNAL EDGES ARE FULLY PROGRAMMABLE TO ANY OF THE 64 POSITIONS WITHIN ONE PIXEL PERIOD. TYPICAL POSITIONS FOR EACH SIGNAL ARE SHOWN. HCLK MODE 1 IS SHOWN.
2. CERTAIN POSITIONS SHOULD BE AVOIDED FOR EACH SIGNAL, SHOWN ABOVE AS INHIBIT REGIONS.
3. CERTAIN POSITIONS SHOULD BE AVOIDED FOR EACH SIGNAL, SHOWN ABOVE AS INHIBIT REGIONS.
4. IF A SETTING IN THE INHIBIT REGION IS USED, AN UNSTABLE PIXEL SHIFT CAN OCCUR IN THE HBLK LOCATION OR AFE PIPELINE.
5. THE t
6. THE tshdinh AREA WILL APPLY TO EITHER H1 RISING OR FALLING EDGE, DEPENDING ON THE VALUE OF THE H1HBLK MASKING POLARITY.
7. THE $t_{\text {SHDINH }}$ AREA CAN ALSO BE CHANGED TO A t SHPINH AREA IF THE H1HBLKRETIME BIT $=1$.

Figure 23. High Speed Timing Default Locations


NOTES
. ALL SIGNAL EDGES ARE FULLY PROGRAMMABLE TO ANY OF THE 64 POSITIONS WITHIN ONE PIXEL PERIOD.
TYPICAL POSITIONS FOR EACH SIGNAL ARE SHOWN USING 3-PHASE HBLK MODE.
2. THE RISING EDGE OF OACH HCLK PHAL ARE SAS AN ASSOCIATED SHDINB
3. WHEN THE HBLK RETIME BITS ( $0 \times 35$ [3:0]) ARE ENABLED, THE INHIBITED AREA BECOMES SHPINH.
4. WHEN THE HBLK MASK LEVEL FOR PHASE 1, 2, OR 3 IS CHANGED TO LOW, THE INHIBIT AREA IS

REFERENCED TO THE HCLK FALLING EDGE, INSTEAD OF THE HCLK RISING EDGE.
Figure 24. High Speed Timing Typical Locations, 3-Phase HCLK Mode

## AD9920A

## DIGITAL DATA OUTPUTS

The AD9920A data output and DCLK phase are programmable using the DOUTPHASE registers (Address 0x39, Bits[13:0]). DOUTPHASEP (Bits[5:0]) selects any edge location from 0 to 63, as shown in Figure 25. DOUTPHASEN (Bits[13:8]) does not actually program the phase of the data outputs but is used internally and should always be programmed to a value of DOUTPHASEP plus 32 edges. For example, if DOUTPHASEP is set to 0 , DOUTPHASEN should be set to 32 ( $0 \times 20$ ).

Normally, the data output and DCLK signals track in phase, based on the contents of the DOUTPHASE registers. The DCLK output phase can also be held fixed with respect to the data outputs by setting the DCLKMODE register high (Address 0x39, Bit 16). In this mode, the DCLK output remains at a fixed phase equal to a delayed version of CLI, and the data output phase remains programmable.

The pipeline delay through the AD9920A is shown in Figure 26. After the CCD input is sampled by SHD, there is a 16 -cycle delay until the data is available.


NOTES

1. DATA OUTPUT (DOUT) AND DCLK PHASE ARE ADJUSTABLE WITH RESPECT TO THE PIXEL PERIOD.
2. WITHIN ONE CLOCK PERIOD, THE DATATRANSITION CAN BE PROGRAMMEDTO 64 DIFFERENT LOCATIONS.
3. DCLK CAN EE INVERTED WITH RESPECT TO DOUT BY USING THE DCLKINV REGISTER.

Figure 25. Digital Output Phase Adjustment Using DOUTPHASEP Register


## HORIZONTAL CLAMPING AND BLANKING

The horizontal clamping and blanking pulses of the AD9920A are fully programmable to suit a variety of applications. Individual control is provided for CLPOB, PBLK, and HBLK in the different regions of each field. This allows the dark pixel clamping and blanking patterns to be changed at each stage of the readout to accommodate different image transfer timing and high speed line shifts.

## Individual CLPOB and PBLK Patterns

The AFE horizontal timing consists of CLPOB and PBLK, as shown in Figure 27. These two signals are programmed independently using the registers shown in Table 11. The start polarity for the CLPOB (or PBLK) signal is CLPOBPOL (PBLKPOL), and the first and second toggle positions of the pulse are CLPOBTOG1 (PBLKTOG1) and CLPOBTOG2 (PBLKTOG2). Both signals are active low and should be programmed accordingly.
A separate pattern for CLPOB and PBLK can be programmed for each vertical sequence. As described in the Vertical Timing Generation section, several V-sequences can be created, each containing a unique pulse pattern for CLPOB and PBLK.

Figure 57 shows how the sequence change positions divide the readout field into regions. By assigning a different V-sequence to each region, the CLPOB and PBLK signals can change with each change in the vertical timing.

## CLPOB and PBLK Masking Areas

Additionally, the AD9920A allows the CLPOB and PBLK signals to be disabled in certain lines in the field without changing any of the existing CLPOB pattern settings.

To use CLPOB (or PBLK) masking, the CLPMASKSTART (PBLKMASKSTART) and CLPMASKEND (PBLKMASKEND) registers are programmed to specify the start and end lines in the field where the CLPOB (PBLK) patterns are ignored. The three sets of start and end registers allow up to three CLPOB (PBLK) masking areas to be created.

The CLPOB and PBLK masking registers are not specific to a certain V-sequence; they are always active for any existing field of timing. During operation, to disable the CLPOB masking feature, these registers must be set to the maximum value of $0 \times 1 \mathrm{FFF}$ or a value greater than the programmed VD length.
Note that to disable CLPOB (or PBLK) masking during power-up, it is recommended that CLPMASKSTART (PBLKMASKSTART) be set to 8191 and that CLPMASKEND (PBLKMASKEND) be set to 0 . This prevents any accidental masking caused by register update events.

Table 11. CLPOB and PBLK Pattern Registers

Register	Length   (Bits)	Range	Description
CLPOBPOL	1	High/low	Starting polarity of CLPOB for each V-sequence.
PBLKPOL	1	High/low	Starting polarity of PBLK for each V-sequence.
CLPOBTOG1	13	0 to 8191 pixel location	First CLPOB toggle position within line for each V-sequence.
CLPOBTOG2	13	0 to 8191 pixel location	Second CLPOB toggle position within line for each V-sequence.
PBLKTOG1	13	0 to 8191 pixel location	First PBLK toggle position within line for each V-sequence.
PBLKTOG2	13	0 to 8191 pixel location	Second PBLK toggle position within line for each V-sequence.
CLPMASKSTART	13	0 to 8191 line location	CLPOB masking area-starting line within field (maximum of three areas).
CLPMASKEND	13	0 to 8191 line location	CLPOB masking area-ending line within field (maximum of three areas).
PBLKMASKSTART	13	0 to 8191 line location	PBLK masking area-starting line within field (maximum of three areas).
PBLKMASKEND	13	0 to 8191 line location	PBLK masking area-ending line within field (maximum of three areas).

## AD9920A



Figure 27. Clamp and Preblank Pulse Placement


Figure 28. CLPOB Masking Example

## Individual HBLK Patterns

The HBLK programmable timing shown in Figure 29 is similar to the timing of CLPOB and PBLK; however, there is no start polarity control. Only the toggle positions are used to designate the start and stop positions of the blanking period. Additionally, separate masking polarity controls for each H-clock phase designate the polarity of the horizontal clock signals during the blanking period. Setting HBLKMASK_H1 high sets H1—and, therefore, H3, H5, and H7-low during the blanking, as shown in Figure 30. As with the CLPOB and PBLK signals, HBLK registers are available in each V-sequence, allowing different blanking signals to be used with different vertical timing sequences.
The AD9920A supports two modes of HBLK operation. HBLK Mode 0 supports basic operation and pixel mixing HBLK operation. HBLK Mode 1 supports advanced HBLK operation.

The following sections describe each mode in detail. Register parameters are described in detail in Table 12.

## HBLK Mode 0 Operation

There are six toggle positions available for HBLK. Normally, only two of the toggle positions are used to generate the standard HBLK interval. However, the additional toggle positions can be used to generate special HBLK patterns, as shown in Figure 31. The pattern in this example uses all six toggle positions to generate two extra groups of pulses during the HBLK interval. By changing the toggle positions, different patterns can be created.

Separate toggle positions are available for even and odd lines. If alternation is not needed, the same values should be loaded into the registers for even (HBLKTOGE) and odd (HBLKTOGO) lines.
Multiple repeats of the HBLK signal are enabled by setting the HBLKLEN and HBLKREP registers along with the six toggle positions (four are shown in Figure 32).

## Generating HBLK Line Alternation

HBLK Mode 0 provides the ability to alternate different HBLK toggle positions on even and odd lines. HBLK line alternation can be used alone or in conjunction with V-pattern odd/even alternation (see the Generating Line Alternation for V-Sequences and HBLK section). Separate toggle positions are available for even and odd lines. If even/odd line alternation is not needed, the same values should be loaded into the registers for even (HBLKTOGE) and odd (HBLKTOGO) lines.


[^0]:    ${ }^{1}$ VMM must be greater than VLL and less than VDVDD.
    ${ }^{2}$ LDO should be used only for the AD9920A 1.8 V supplies, not for external circuitry.
    ${ }^{3}$ The total power dissipated by the HVDD (or RGVDD) can be approximated using the following equation:
    Total HVDD Power $=\left(C_{L} \times H V D D \times\right.$ Pixel Frequency $) \times$ HVDD

[^1]:    ${ }^{1}$ Applies only to slave mode operation. The inhibited area for SHP is needed to meet the timing requirement for tcusHP for proper H -counter reset operation.
    ${ }^{2}$ When the HBLKRETIME bits (Address 0x35, Bits[3:0]) are enabled, the inhibit region for the SHD location changes to the inhibit region for the SHP location.
    ${ }^{3}$ When the HBLK masking polarity registers (V-sequence Register $0 \times 18[24: 21]$ ) are set to 0 , the H -edge reference becomes HxNEGLOC.
    ${ }^{4}$ The H-clock signals that have SHP/SHD inhibit regions depend on the HCLK mode: Mode $1=\mathrm{H} 1$; Mode $2=\mathrm{H} 1, \mathrm{H} 2$; Mode $3=\mathrm{H} 1$, H3; and 3-Phase Mode = Phase 1 , Phase 2, and Phase 3.

[^2]:    ${ }^{1} \mathrm{AI}=$ analog input; $\mathrm{AO}=$ analog output; $\mathrm{DI}=$ digital input; $\mathrm{DO}=$ digital output; $\mathrm{DIO}=$ digital input/output; $\mathrm{P}=$ power; $\mathrm{VO} 2=$ vertical driver output, two-level; VO3 = vertical driver output, three-level.

