# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





# CCD Signal Processor with V-Driver and Precision Timing Generator

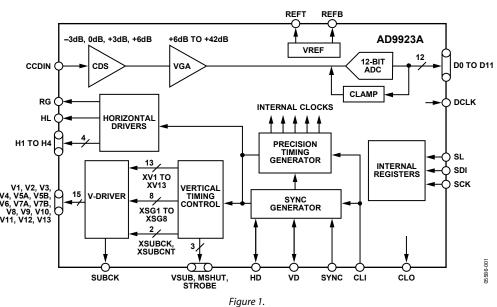
# AD9923A

#### **FEATURES**

Integrated 15-channel V-driver 12-bit, 36 MHz analog-to-digital converter (ADC) Similar register map to the AD9923 5-field, 10-phase vertical clock support Complete on-chip timing generator *Precision Timing* core with <600 ps resolution Correlated double sampler (CDS) 6 dB to 42 dB 10-bit variable gain amplifier (VGA) Black level clamp with variable level control On-chip 3 V horizontal and RG drivers 2-phase and 4-phase H-clock modes Electronic and mechanical shutter support On-chip driver for external crystal On-chip sync generator with external sync input 8 mm × 8 mm CSP\_BGA package with 0.65 mm pitch

#### **APPLICATIONS**

**Digital still cameras** 


### **GENERAL DESCRIPTION**

The AD9923A is a complete 36 MHz front-end solution for digital still cameras and other CCD imaging applications. Similar to the AD9923 product, the AD9923A includes the analog front end (AFE), a fully programmable timing generator (TG), and a 15-channel vertical driver (V-driver). A *Precision Timing*<sup>ast</sup> core allows adjustment of high speed clocks with approximately 600 ps resolution at 36 MHz operation.

The on-chip V-driver supports up to 15 channels for use with 5-field, 10-phase CCDs.

The analog front end includes black level clamping, CDS, VGA, and a 12-bit ADC. The timing generator and V-driver provide all the necessary CCD clocks: RG, H-clocks, vertical clocks, sensor gate pulses, substrate clock, and substrate bias control. The internal registers are programmed using a 3-wire serial interface.

Packaged in an 8 mm  $\times$  8 mm CSP\_BGA, the AD9923A is specified over an operating temperature range of  $-25^{\circ}$ C to  $+85^{\circ}$ C.



### FUNCTIONAL BLOCK DIAGRAM

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2006-2010 Analog Devices, Inc. All rights reserved.

# AD9923A\* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

### 

View a parametric search of comparable parts.

### **DOCUMENTATION**

### **Data Sheet**

• AD9923A: CCD Signal Processor with V-Driver and Precision Timing Generator Data Sheet

### DESIGN RESOURCES

- AD9923A Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

### DISCUSSIONS

View all AD9923A EngineerZone Discussions.

### SAMPLE AND BUY

Visit the product page to see pricing options.

### TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

### DOCUMENT FEEDBACK

Submit feedback for this data sheet.

## TABLE OF CONTENTS

| Features 1                                   |
|----------------------------------------------|
| Applications                                 |
| General Description                          |
| Functional Block Diagram 1                   |
| Revision History                             |
| Specifications                               |
| Digital Specifications                       |
| H-Driver Specifications                      |
| Vertical Driver Specifications               |
| Analog Specifications                        |
| Timing Specifications                        |
| Absolute Maximum Ratings                     |
| Thermal Resistance                           |
| ESD Caution                                  |
| Pin Configuration and Function Descriptions9 |
| Typical Performance Characteristics          |
| Equivalent Circuits                          |
| Terminology 13                               |

### **REVISION HISTORY**

#### 1/10—Rev. 0 to Rev. A

| Changes to Table 6                                | 6  |
|---------------------------------------------------|----|
| Added Table 8; Renumbered Sequentially            | 8  |
| Changes to Individual HBLK Patterns Section       | 20 |
| Changes to Table 13                               | 20 |
| Change to SUBCK: High Precision Operation Section | 45 |
| Changes to Manual Control Section                 | 49 |
|                                                   |    |

#### 10/06—Revision 0: Initial Version

| Theory of Operation                                    |
|--------------------------------------------------------|
| Precision Timing High Speed Timing Generation 15       |
| Horizontal Clamping and Blanking18                     |
| Vertical Timing Generation                             |
| Vertical Timing Example                                |
| Vertical Driver Signal Configuration                   |
| Shutter Timing Control                                 |
| Example of Exposure and Readout of Interlaced Frame 53 |
| FG_TRIG Operation                                      |
| Analog Front End Description/Operation                 |
| Standby Mode Operation 60                              |
| Circuit Layout Information                             |
| Serial Interface Timing65                              |
| Layout of Internal Registers                           |
| Updating New Register Values 67                        |
| Complete Register Listing                              |
| Outline Dimensions                                     |
| Ordering Guide                                         |

### **SPECIFICATIONS**

Table 1

| Parameter                               | Conditions/Comments                                                                                   | Min   | Тур   | Max   | Unit |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|------|
| TEMPERATURE RANGE                       |                                                                                                       |       |       |       |      |
| Operating                               |                                                                                                       | -25   |       | +85   | °C   |
| Storage                                 |                                                                                                       | -65   |       | +150  | °C   |
| AFETG POWER SUPPLY VOLTAGES             |                                                                                                       |       |       |       |      |
| AVDD                                    | AFE analog supply                                                                                     | 2.7   | 3.0   | 3.6   | V    |
| TCVDD                                   | Timing Core Analog Supply                                                                             | 2.7   | 3.0   | 3.6   | V    |
| RGVDD                                   | RG Driver                                                                                             | 2.7   | 3.0   | 3.6   | V    |
| HVDD                                    | HL, H1 to H4 Drivers                                                                                  | 2.7   | 3.0   | 3.6   | V    |
| DRVDD                                   | Data Output Drivers                                                                                   | 2.7   | 3.0   | 3.6   | V    |
| DVDD                                    | Digital                                                                                               | 2.7   | 3.0   | 3.6   | V    |
| V-DRIVER POWER SUPPLY                   |                                                                                                       |       |       |       |      |
| VOLTAGES                                |                                                                                                       |       |       |       |      |
| VDD1, VDD2                              | V-Driver Logic                                                                                        | +2.7  | +3.0  | +3.6  | V    |
| VH1, VH2                                | V-Driver High Supply                                                                                  | +11.5 | +15.0 | +16.5 | V    |
| VL1, VL2                                | V-Driver Low Supply                                                                                   | -8.5  | -7.5  | -5.5  | V    |
| VM1, VM2                                | V-Driver Mid Supply                                                                                   | -1.5  | 0.0   | +1.5  | V    |
| VLL                                     | SUBCK Low Supply                                                                                      | -8.5  | -7.5  | -5.5  | V    |
| VMM                                     | SUBCK Mid Supply                                                                                      | -4.0  | 0.0   | +1.5  | V    |
| AFETG POWER DISSIPATION                 |                                                                                                       |       |       |       |      |
| Total                                   | 36 MHz, 3.0 V supply, 400 pF total H-load, 20 pF RG load                                              |       | 335   |       | mW   |
| Standby 1 Mode                          |                                                                                                       |       | 105   |       | mW   |
| Standby 2 Mode                          |                                                                                                       |       | 1     |       | mW   |
| Standby 3 Mode                          |                                                                                                       |       | 1     |       | mW   |
| Power from HVDD Only <sup>1</sup>       |                                                                                                       |       | 130   |       | mW   |
| Power from RGVDD Only                   |                                                                                                       |       | 10    |       | mW   |
| Power from AVDD Only                    |                                                                                                       |       | 75    |       | mW   |
| Power from TCVDD Only                   |                                                                                                       |       | 40    |       | mW   |
| Power from DVDD Only                    |                                                                                                       |       | 75    |       | mW   |
| Power from DRVDD Only                   |                                                                                                       |       | 5     |       | m٧   |
| V-DRIVER POWER DISSIPATION <sup>2</sup> | VH1, VH2 = +15 V; VL1, VL2 = -7.5 V; VM1, VM2 = 0 V; VDD1, VDD2 = 3.3 V; all V-driver inputs tied low |       |       |       |      |
| VH1, VH2                                |                                                                                                       |       | 5     |       | mW   |
| VL1, VL2                                |                                                                                                       |       | 2.5   |       | mW   |
| VM1, VM2                                |                                                                                                       |       | 0     |       | m٧   |
| VDD1, VDD2                              |                                                                                                       |       | 0.5   |       | m٧   |
| MAXIMUM CLOCK RATE (CLI)                |                                                                                                       | 36    |       |       | МН   |

<sup>1</sup> The total power dissipated by the HVDD supply can be approximated using the equation *Total HVDD Power* = [C<sub>LOAD</sub> × HVDD × Pixel Frequency] × HVDD

 Reducing the H-load and/or using a lower HVDD supply reduces the power dissipation. C<sub>LOAD</sub> is the total capacitance seen by all H-outputs.
 <sup>2</sup> V-driver power dissipation depends on the frequency of operation and the load they are driving. All inputs to the V-driver were tied low for the measurements in Table 1.

### **DIGITAL SPECIFICATIONS**

DRVDD = 2.7 V to 3.6 V,  $C_{\text{L}}$  = 20 pF,  $T_{\text{MIN}}$  to  $T_{\text{MAX}}$  unless otherwise noted.

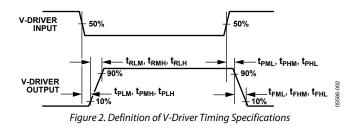
| Table 2.                  |                            |        |                         |     |     |      |
|---------------------------|----------------------------|--------|-------------------------|-----|-----|------|
| Parameter                 | <b>Conditions/Comments</b> | Symbol | Min                     | Тур | Max | Unit |
| LOGIC INPUTS              |                            |        |                         |     |     |      |
| High Level Input Voltage  |                            | VIH    | 2.1                     |     |     | V    |
| Low Level Input Voltage   |                            | VIL    |                         |     | 0.6 | V    |
| High Level Input Current  |                            | Iн     |                         | 10  |     | μΑ   |
| Low Level Input Current   |                            | lı.    |                         | 10  |     | μΑ   |
| Input Capacitance         |                            | CIN    |                         | 10  |     | рF   |
| LOGIC OUTPUTS             | Powered by DVDD, DRVDD     |        |                         |     |     |      |
| High Level Output Voltage | At $I_{OH} = 2 \text{ mA}$ | Vон    | DVDD – 0.5, DRVDD – 0.5 |     |     | V    |
| Low Level Output Voltage  | At $I_{OL} = 2 \text{ mA}$ | Vol    |                         |     | 0.5 | V    |

### **H-DRIVER SPECIFICATIONS**

HVDD = RGVDD = 2.7 V to 3.6 V,  $C_L$  = 20 pF,  $T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted.

Table 3.

| Parameter                 | Conditions/Comments                         | Min                     | Тур | Max | Unit |
|---------------------------|---------------------------------------------|-------------------------|-----|-----|------|
| RG and H-DRIVER OUTPUTS   | RG, HL, and H1 to H4 powered by RGVDD, HVDD |                         |     |     |      |
| High Level Output Voltage | At maximum current                          | RGVDD – 0.5, HVDD – 0.5 |     |     | V    |
| Low Level Output Voltage  | At maximum current                          |                         |     | 0.5 | V    |
| Maximum Output Current    | Programmable                                | 30                      |     |     | mA   |
| Maximum Load Capacitance  | For each output                             | 100                     |     |     | рF   |


### VERTICAL DRIVER SPECIFICATIONS

VDD1 = VDD2 = 3.3 V, VH1 = VH2 = 15 V, VM1 = VM2 = VMM = 0 V, VL1 = VL2 = VLL = -7.5 V, 25°C.

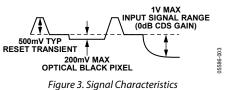
Table 4.

| Parameter             | Conditions/Comments                           | Symbol                  | Min | Тур | Max | Unit |
|-----------------------|-----------------------------------------------|-------------------------|-----|-----|-----|------|
| V-DRIVER OUTPUTS      | Simplified load conditions, 3000 pF to ground |                         |     |     |     |      |
| Delay Time            |                                               |                         |     |     |     |      |
| VL to VM and VM to VH | Rising edges                                  | tplm, tpmh              |     | 35  |     | ns   |
| VM to VL and VH to VM | Falling edges                                 | tpml, tphm              |     | 35  |     | ns   |
| Rise Time             |                                               |                         |     |     |     |      |
| VL to VM              |                                               | t <sub>RLM</sub>        |     | 125 |     | ns   |
| VM to VH              |                                               | t <sub>RMH</sub>        |     | 260 |     | ns   |
| Fall Time             |                                               |                         |     |     |     |      |
| VM to VL              |                                               | t <sub>FML</sub>        |     | 220 |     | ns   |
| VH to VM              |                                               | <b>t</b> <sub>FHM</sub> |     | 125 |     | ns   |
| Output Currents       |                                               |                         |     |     |     |      |
| at –7.25 V            |                                               |                         |     | +10 |     | mA   |
| at –0.25 V            |                                               |                         |     | -22 |     | mA   |
| at +0.25 V            |                                               |                         |     | +22 |     | mA   |
| at +14.75 V           |                                               |                         |     | -10 |     | mA   |
| Ron                   |                                               |                         |     |     | 35  | Ω    |
| SUBCK OUTPUT          | Simplified load conditions, 1000 pF to ground |                         |     |     |     |      |
| Delay Time            |                                               |                         |     |     |     |      |
| VLL to VH             |                                               | t <sub>PLH</sub>        |     | 25  |     | ns   |
| VH to VLL             |                                               | <b>t</b> PHL            |     | 30  |     | ns   |
| VLL to VMM            |                                               | t <sub>PLM</sub>        |     | 25  |     | ns   |

| Parameter       | Conditions/Comments | Symbol           | Min | Тур | Max | Unit |
|-----------------|---------------------|------------------|-----|-----|-----|------|
| VMM to VH       |                     | tрмн             |     | 25  |     | ns   |
| VH to VMM       |                     | tрнм             |     | 30  |     | ns   |
| VMM to VLL      |                     | tpml             |     | 25  |     | ns   |
| Rise Time       |                     |                  |     |     |     |      |
| VLL to VH       |                     | t <sub>RLH</sub> |     | 40  |     | ns   |
| VLL to VMM      |                     | t <sub>RLM</sub> |     | 45  |     | ns   |
| VMM to VH       |                     | t <sub>RMH</sub> |     | 30  |     | ns   |
| Fall Time       |                     |                  |     |     |     |      |
| VH to VLL       |                     | t <sub>FHL</sub> |     | 40  |     | ns   |
| VH to VMM       |                     | t <sub>FHM</sub> |     | 90  |     | ns   |
| VMM to VLL      |                     | t <sub>FML</sub> |     | 25  |     | ns   |
| Output Currents |                     |                  |     |     |     |      |
| at –7.25 V      |                     |                  |     | 20  |     | mA   |
| at –0.25 V      |                     |                  |     | 12  |     | mA   |
| at +0.25 V      |                     |                  |     | 12  |     | mA   |
| at +14.75 V     |                     |                  |     | 20  |     | mA   |
| R <sub>on</sub> |                     |                  |     |     | 35  | Ω    |



### ANALOG SPECIFICATIONS


AVDD = 3.0 V,  $f_{\rm CLI}$  = 36 MHz, typical timing specifications,  $T_{\rm MIN}$  to  $T_{\rm MAX}$ , unless otherwise noted.

| Table 5 | 5. |
|---------|----|
|---------|----|

| Parameter                             | Conditions/Comments                           | Min  | Тур        | Мах  | Unit  |
|---------------------------------------|-----------------------------------------------|------|------------|------|-------|
| CDS                                   | Input characteristics definition <sup>1</sup> |      |            |      |       |
| Allowable CCD Reset Transient         |                                               |      | 0.5        | 1.2  | V     |
| CDS Gain Accuracy                     | VGA gain = 6 dB (Code 15, default value)      |      |            |      |       |
| –3 dB CDS Gain                        |                                               | -3   | -2.5       | -2   | dB    |
| 0 dB CDS Gain                         | Default                                       | 0    | +0.5       | +1   | dB    |
| +3 dB CDS Gain                        |                                               | +3   | +3.5       | +4   | dB    |
| +6 dB CDS Gain                        |                                               | +5.5 | +6         | +6.5 | dB    |
| Maximum Input Range Before Saturation |                                               |      |            |      |       |
| 0 dB CDS Gain                         | Default setting                               |      | 1.0        |      | V p-p |
| –3 dB CDS Gain                        |                                               |      | 1.4        |      | V p-p |
| +6 dB CDS Gain                        |                                               |      | 0.5        |      | Vp-p  |
| Maximum CCD Black Pixel Amplitude     | Positive offset definition <sup>1</sup>       |      |            |      |       |
| 0 dB CDS Gain (Default)               |                                               | -100 |            | +200 | mV    |
| +6 dB CDS Gain                        |                                               | -50  |            | +100 | mV    |
| VARIABLE GAIN AMPLIFIER (VGA)         |                                               |      |            |      |       |
| Gain Control Resolution               |                                               |      | 1024       |      | Steps |
| Gain Monotonicity                     |                                               |      | Guaranteed |      |       |
| Gain Range                            |                                               |      |            |      |       |
| Minimum Gain (VGA Code 15)            |                                               |      | 6          |      | dB    |
| Maximum Gain (VGA Code 1023)          |                                               |      | 42         |      | dB    |

| Parameter                              | Conditions/Comments                  | Min  | Тур        | Max  | Unit    |
|----------------------------------------|--------------------------------------|------|------------|------|---------|
| BLACK LEVEL CLAMP                      | Measured at ADC output               |      |            |      |         |
| Clamp Level Resolution                 |                                      |      | 1024       |      | Steps   |
| Minimum Clamp Level (Code 0)           |                                      |      | 0          |      | LSB     |
| Maximum Clamp Level (Code 1023)        |                                      |      | 255        |      | LSB     |
| ANALOG-TO-DIGITAL CONVERTER (ADC)      |                                      |      |            |      |         |
| Resolution                             |                                      | 12   |            |      | Bits    |
| Differential Nonlinearity (DNL)        |                                      | -1.0 | ±0.5       | +1.0 | LSB     |
| No Missing Codes                       |                                      |      | Guaranteed |      |         |
| Full-Scale Input Voltage               |                                      |      | 2.0        |      | V       |
| VOLTAGE REFERENCE                      |                                      |      |            |      |         |
| Reference Top Voltage (REFT)           |                                      |      | 2.0        |      | V       |
| Reference Bottom Voltage (REFB)        |                                      |      | 1.0        |      | V       |
| SYSTEM PERFORMANCE                     | Includes entire signal chain         |      |            |      |         |
| Gain Accuracy                          |                                      |      |            |      |         |
| Low Gain (VGA Code 15)                 | Default CDS gain (0 dB)              | 6.0  | 6.5        | 7.0  | dB      |
| Maximum Gain (VGA Code 1023)           |                                      | 42.0 | 42.5       | 43.0 | dB      |
| Peak Nonlinearity, 500 mV Input Signal | 12 dB gain applied                   |      | 0.1        |      | %       |
| Total Output Noise                     | AC-grounded input, 6 dB gain applied |      | 1.0        |      | LSB rms |
| Power Supply Rejection (PSR)           | Measured with step change on supply  |      | 50         |      | dB      |

<sup>1</sup> Input signal characteristics are defined as shown in Figure 3.



### TIMING SPECIFICATIONS

 $C_L$  = 20 pF, AVDD = DVDD = DRVDD = 3.0 V,  $f_{CLI}$  = 36 MHz, unless otherwise noted.

| Table 6 |  |
|---------|--|
|---------|--|

| Parameter                                                  | <b>Conditions/Comments</b> | Symbol                   | Min  | Тур  | Max                 | Unit             |
|------------------------------------------------------------|----------------------------|--------------------------|------|------|---------------------|------------------|
| MASTER CLOCK, CLI                                          |                            |                          |      |      |                     |                  |
| CLI Clock Period                                           |                            | <b>t</b> CONV            | 27.8 |      |                     | ns               |
| CLI High/Low Pulse Width                                   |                            |                          | 11.2 | 13.9 | 16.6                | ns               |
| Delay from CLI Rising Edge to Internal Pixel<br>Position 0 |                            |                          |      | 6    |                     | ns               |
| AFE CLPOB Pulse Width <sup>1, 2</sup>                      |                            |                          | 2    | 20   |                     | Pixels           |
| Allowable Region for HD Falling Edge to CLI<br>Rising Edge | Only valid in slave mode   | <b>t</b> hdcli           | 4    |      | $t_{\text{CONV}}-2$ | ns               |
| SHP Inhibit Region                                         | Only valid in slave mode   | tshpinh                  | 30   |      | 39                  | Edge<br>location |
| AFE SAMPLE LOCATION <sup>1</sup>                           |                            |                          |      |      |                     |                  |
| SHP Sample Edge to SHD Sample Edge                         |                            | t <sub>S1</sub>          | 11.6 | 13.9 |                     | ns               |
| DATA OUTPUTS                                               |                            |                          |      |      |                     |                  |
| Output Delay from DCLK Rising Edge <sup>1</sup>            |                            | tod                      |      | 8    |                     | ns               |
| Inhibited Area for DOUTPHASE Edge<br>Location              |                            |                          | SHD  |      | SHD + 11            | Edge<br>location |
| Pipeline Delay from SHP/SHD Sampling to<br>Data Output     |                            |                          | 16   |      |                     | Cycles           |
| SERIAL INTERFACE                                           |                            |                          |      |      |                     |                  |
| Maximum SCK Frequency                                      |                            | <b>f</b> <sub>SCLK</sub> | 36   |      |                     | MHz              |
| SL to SCK Setup Time                                       |                            | t <sub>LS</sub>          | 10   |      |                     | ns               |
| SCK to SL Hold Time                                        |                            | t <sub>LH</sub>          | 10   |      |                     | ns               |
| SDATA Valid to SCK Rising Edge Setup                       |                            | t <sub>DS</sub>          | 10   |      |                     | ns               |

| Parameter                                                               | <b>Conditions/Comments</b> | Symbol              | Min       | Тур | Max        | Unit             |
|-------------------------------------------------------------------------|----------------------------|---------------------|-----------|-----|------------|------------------|
| SCK Falling Edge to SDATA Valid Hold                                    |                            | t <sub>DH</sub>     | 10        |     |            | ns               |
| SCK Falling Edge to SDATA Valid Read                                    |                            | t <sub>DV</sub>     | 10        |     |            | ns               |
| INHIBIT REGION FOR SHP AND SHD WITH<br>RESPECT TO H-CLOCK EDGE LOCATION |                            |                     |           |     |            |                  |
| HxMASK = 0, HxRETIME = 0, HxPOLARITY = 0                                |                            | tshdinh             | HxPOS – 9 |     | HxPOS – 18 | Edge<br>location |
| HxMASK = 0, HxRETIME = 0, HxPOLARITY = 1                                |                            | t <sub>shdinh</sub> | HxNEG – 9 |     | HxNEG – 18 | Edge<br>location |
| HxMASK = 0, HxRETIME = 1, HxPOLARITY = 0                                |                            | tshpinh             | HxPOS – 7 |     | HxPOS – 16 | Edge<br>location |
| HxMASK = 0, HxRETIME = 1, HxPOLARITY = 1                                |                            | tshpinh             | HxNEG – 7 |     | HxNEG – 16 | Edge<br>location |
| HxMASK = 1, HxRETIME = 0, HxPOLARITY = 0                                |                            | t <sub>shdinh</sub> | HxNEG – 9 |     | HxNEG – 18 | Edge<br>location |
| HxMASK = 1, HxRETIME = 0, HxPOLARITY = 1                                |                            | tshdinh             | HxPOS – 9 |     | HxPOS – 18 | Edge<br>location |
| HxMASK = 1, HxRETIME = 1, HxPOLARITY = 0                                |                            | tshpinh             | HxNEG – 7 |     | HxNEG – 16 | Edge<br>location |
| HxMASK = 1, HxRETIME = 1, HxPOLARITY = 1                                |                            | tshpinh             | HxPOS – 7 |     | HxPOS – 16 | Edge<br>location |

<sup>1</sup> Parameter is programmable. <sup>2</sup> Minimum CLPOB pulse width is for functional operation only. Wider typical pulses are recommended to achieve good clamp performance.

### **ABSOLUTE MAXIMUM RATINGS**

Table 7.

| Table 7.                 |            |                          |
|--------------------------|------------|--------------------------|
| Parameter                | То         | Rating                   |
| AVDD                     | AVSS       | –0.3 V to +3.9 V         |
| TCVDD                    | TCVSS      | –0.3 V to +3.9 V         |
| HVDD                     | HVSS       | –0.3 V to +3.9 V         |
| RGVDD                    | RGVSS      | –0.3 V to +3.9 V         |
| DVDD                     | DVSS       | –0.3 V to +3.9 V         |
| DRVDD                    | DRVSS      | –0.3 V to +3.9 V         |
| VDD1, VDD2               | VSS1, VSS2 | –0.3 V to +6 V           |
| VH1, VH2                 | VL1, VL2   | –0.3 V to +25 V          |
| VH1, VH2                 | VSS1, VSS2 | –0.3 V to +17 V          |
| VL1, VL2                 | VSS1, VSS2 | –17 V to +0.3 V          |
| VM1, VM2                 | VSS1, VSS2 | –6 V to +6 V             |
| VLL                      | VSS1, VSS2 | –17 V to +0.3 V          |
| VMM                      | VSS1, VSS2 | –6 V to + VH             |
| VDR_EN                   | VSS1, VSS2 | –0.3 V to +6 V           |
| V1 to V15                | VSS1, VSS2 | VL – 0.3 V to VH + 0.3 V |
| RG Output                | RGVSS      | -0.3 V to RGVDD + 0.3 V  |
| H1 to H4 Output          | HVSS       | -0.3 V to HVDD + 0.3 V   |
| Digital Outputs          | DVSS       | -0.3 V to DVDD + 0.3 V   |
| Digital Inputs           | DVSS       | -0.3 V to DVDD + 0.3 V   |
| SCK, SL, SDATA           | DVSS       | -0.3 V to DVDD + 0.3 V   |
| REFT/REFB, CCDIN         | AVSS       | –0.3 V to AVDD + 0.3 V   |
| Junction Temperature     |            | 150°C                    |
| Lead Temperature, 10 sec |            | 350℃                     |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### THERMAL RESISTANCE

Table 8. Thermal Resistance

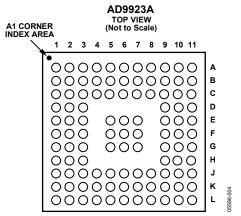
| Package Type | Αιθ  | Unit |
|--------------|------|------|
| CSP_BGA      | 40.3 | °C/W |

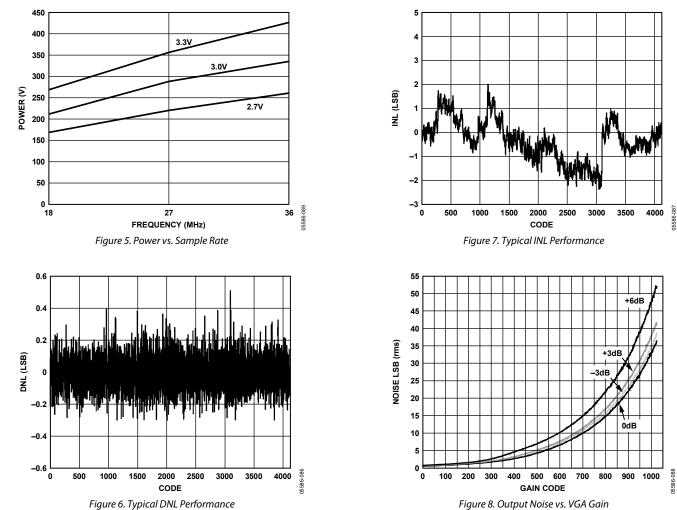
### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

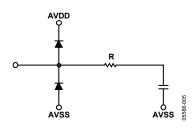
### **PIN CONFIGURATION AND FUNCTION DESCRIPTIONS**





Figure 4. 105-Lead CSPBGA Package Pin Configuration

### Table 9. Pin Function Descriptions

| Pin No.                        | Mnemonic | Type <sup>1</sup> | Description                            |
|--------------------------------|----------|-------------------|----------------------------------------|
| A7                             | AVDD     | Р                 | Analog Supply for AFE.                 |
| A1, A4, B2, B3, B4, B5, B6, B7 | AVSS     | Р                 | Analog Ground for AFE.                 |
| B8                             | TCVDD    | Р                 | Analog Supply for Timing Core.         |
| B9                             | TCVSS    | Р                 | Analog Ground for Timing Core.         |
| E1                             | DVDD1    | Р                 | Digital Logic Power Supply 1.          |
| F2                             | DVSS1    | Р                 | Digital Logic Ground 1.                |
| K8, L7, L8                     | DVDD2    | Р                 | Digital Logic Power Supply 2.          |
| К9                             | DVSS2    | Р                 | Digital Logic Ground 2.                |
| D9                             | HVDD     | Р                 | H1 to H4, HL Driver Supply.            |
| D10                            | HVSS     | Р                 | H1 to H4, HL Driver Ground.            |
| B10                            | RGVDD    | Р                 | RG Driver Supply.                      |
| A10                            | RGVSS    | Р                 | RG Driver Ground.                      |
| L4                             | DRVDD    | Р                 | Data Output Driver Supply.             |
| L5                             | DRVSS    | Р                 | Data Output Driver Ground.             |
| J4                             | VDD1     | Р                 | V-Driver Logic Supply 1.               |
| K5                             | VSS1     | Р                 | V-Driver Logic Ground 1.               |
| L10                            | VDD2     | Р                 | V-Driver Logic Supply 2.               |
| K10                            | VSS2     | Р                 | V-Driver Logic Ground 2.               |
| F9                             | VH1      | Р                 | V-Driver High Supply 1.                |
| D1                             | VH2      | Р                 | V-Driver High Supply 2.                |
| E9                             | VL1      | Р                 | V-Driver Low Supply 1.                 |
| C1                             | VL2      | Р                 | V-Driver Low Supply 2.                 |
| С9                             | VM1      | Р                 | V-Driver Mid Supply 1.                 |
| D3                             | VM2      | Р                 | V-Driver Mid Supply 2.                 |
| F3                             | VLL      | Р                 | SUBCK Driver Low Supply.               |
| E3                             | VMM      | Р                 | SUBCK Driver Mid Supply.               |
| A6                             | CCDIN    | AI                | CCD Signal Input.                      |
| A5                             | CCDGND   | AI                | CCD Signal Ground.                     |
| A3                             | REFT     | AO                | Voltage Reference Top Bypass.          |
| A2                             | REFB     | AO                | Voltage Reference Bottom Bypass.       |
| С3                             | SL       | DI                | 3-Wire Serial Load Pulse.              |
| C2                             | SCK      | DI                | 3-Wire Serial Clock.                   |
| B1                             | SDI      | DI                | 3-Wire Serial Data Input.              |
| G7                             | SYNC     | DI                | External System Synchronization Input. |
| E5                             | RSTB     | DI                | Reset Bar, Active Low Pulse.           |


| Pin No.                                              | Mnemonic | Type <sup>1</sup> | Description                                                        |
|------------------------------------------------------|----------|-------------------|--------------------------------------------------------------------|
| A8                                                   | CLI      | DI                | Reference Clock Input (Master Clock).                              |
| A9                                                   | CLO      | DO                | Clock Output for Crystal.                                          |
| F11                                                  | H1       | DO                | CCD Horizontal Clock 1.                                            |
| E11                                                  | H2       | DO                | CCD Horizontal Clock 2.                                            |
| D11                                                  | H3       | DO                | CCD Horizontal Clock 3.                                            |
| C11                                                  | H4       | DO                | CCD Horizontal Clock 4.                                            |
| B11                                                  | HL       | DO                | CCD Last Horizontal Clock.                                         |
| C10                                                  | RG       | DO                | CCD Reset Gate Clock.                                              |
| K6                                                   | VSUB     | DO                | CCD Substrate Bias.                                                |
| F5                                                   | MSHUT    | DO                | Mechanical Shutter Pulse.                                          |
| G5                                                   | STROBE   | DO                | Strobe Pulse.                                                      |
| G6                                                   | SUBCK    | DO                | CCD Substrate Clock (E Shutter).                                   |
| F1                                                   | DCLK     | DO                | Data Clock Output.                                                 |
| G1                                                   | D0       | DO                | Data Output (LSB).                                                 |
| H3                                                   | D1       | DO                | Data Output.                                                       |
| H2                                                   | D2       | DO                | Data Output.                                                       |
| H1                                                   | D3       | DO                | Data Output.                                                       |
| J3                                                   | D4       | DO                | Data Output.                                                       |
| J2                                                   | D5       | DO                | Data Output.                                                       |
| J1                                                   | D6       | DO                | Data Output.                                                       |
| K3                                                   | D7       | DO                | Data Output.                                                       |
| K2                                                   | D8       | DO                | Data Output.                                                       |
| K1                                                   | D9       | DO                | Data Output.                                                       |
| L3                                                   | D10      | DO                | Data Output.                                                       |
| L2                                                   | D11      | DO                | Data Output (MSB).                                                 |
| D2                                                   | VD       | DIO               | Vertical Sync Pulse. Input in slave mode, output in master mode.   |
| E2                                                   | HD       | DIO               | Horizontal Sync Pulse. Input in slave mode, output in master mode. |
| <br>C8                                               | V1       | VO3               | CCD Vertical Transfer Clock.                                       |
| G10                                                  | V2       | VO2               | CCD Vertical Transfer Clock.                                       |
| E7                                                   | V3       | VO3               | CCD Vertical Transfer Clock.                                       |
| G9                                                   | V4       | VO2               | CCD Vertical Transfer Clock.                                       |
| C4                                                   | V5A      | VO3               | CCD Vertical Transfer Clock.                                       |
| C5                                                   | V5B      | VO3               | CCD Vertical Transfer Clock.                                       |
| F10                                                  | V6       | VO2               | CCD Vertical Transfer Clock.                                       |
| C6                                                   | V7A      | VO3               | CCD Vertical Transfer Clock.                                       |
| C7                                                   | V7B      | VO3               | CCD Vertical Transfer Clock.                                       |
| G11                                                  | V8       | VO2               | CCD Vertical Transfer Clock.                                       |
| H11                                                  | V9       | VO2               | CCD Vertical Transfer Clock.                                       |
| H10                                                  | V10      | VO2               | CCD Vertical Transfer Clock.                                       |
| F6                                                   | V11      | VO3               | CCD Vertical Transfer Clock.                                       |
| F7                                                   | V12      | VO3               | CCD Vertical Transfer Clock.                                       |
| E10                                                  | V13      | VO2               | CCD Vertical Transfer Clock.                                       |
| K11                                                  | VDR_EN   | DI                | V-Driver Output Enable pin.                                        |
| J5                                                   | TEST0    | DI                | Test Input. Must be tied to VSS1 or VSS2.                          |
| J7                                                   | TEST1    | DI                | Test Input. Must be tied to VSS1 of VSS2.                          |
| 8L                                                   | TEST3    | DI                | Test Input. Must be tied to VDD1 or VDD2.                          |
| јо<br>А11, Еб, Н9, Јб, Ј9, Ј10, Ј11, К4, К7, L1, L6, | NC       |                   | No Connect.                                                        |
| L9, L11, G2, G3                                      |          |                   | No connect.                                                        |

<sup>1</sup> AI = analog input, AO = analog output, DI = digital input, DO = digital output, DIO = digital input/output, P = power, VO2 = Vertical Driver Output 2 level, VO3 = Vertical Driver Output 3 level.



## **TYPICAL PERFORMANCE CHARACTERISTICS**

# **EQUIVALENT CIRCUITS**



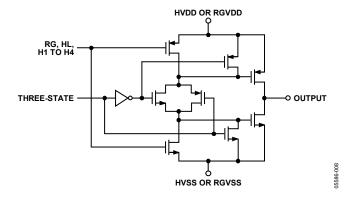



Figure 9. CCDIN, CCDGND

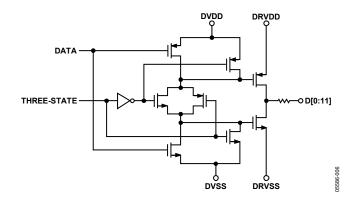



Figure 10. Digital Data Outputs

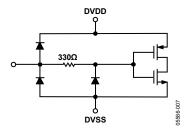
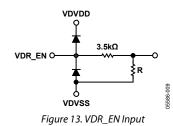




Figure 11. Digital Inputs

Figure 12. HL, H1 to H4, and RG Drivers



### TERMINOLOGY

#### Differential Nonlinearity (DNL)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Therefore, every code must have a finite width. No missing codes guaranteed to 12-bit resolution indicates that all 4096 codes, respectively, must be present over all operating conditions.

#### Integral Nonlinearity (INL)

The deviation of each code measured from a true straight line between the zero and full-scale values. The point used as zero scale occurs 0.5 LSB before the first code transition. Positive full scale is defined as a level 1.5 LSB beyond the last code transition. The deviation is measured from the middle of each output code to the true straight line.

#### Peak Nonlinearity

Peak nonlinearity, a full signal chain specification, refers to the peak deviation of the AD9923A output from a true straight line. The point used as zero scale occurs 0.5 LSB before the first code transition. Positive full scale is defined as a level 1.5 LSB beyond the last code transition. The deviation is measured from the middle of each output code to the true straight line. The error is expressed as a percentage of the 2 V ADC full-scale signal. The input signal is always appropriately gained up to fill the full-scale range of the ADC.

#### **Total Output Noise**

The rms output noise is measured using histogram techniques. The standard deviation of the ADC output codes is calculated in LSB, and represents the rms noise level of the total signal chain at the specified gain setting. The output noise can be converted to an equivalent voltage, using the relationship

1 LSB = (ADC full scale/2<sup>n</sup> codes)

where *n* is the bit resolution of the ADC and *1 LSB* is 0.488 mV.

#### Power Supply Rejection (PSR)

The PSR is measured with a step change applied to the supply pins. The PSR specification is calculated from the change in the data outputs for a given step change in the supply voltage.

### THEORY OF OPERATION

Figure 14 shows the typical system block diagram for the AD9923A in master mode. The CCD output is processed by the AD9923A AFE circuitry, which consists of a CDS, VGA, black level clamp, and ADC. The digitized pixel information is sent to the digital image processor chip that performs the post-processing and compression. To operate the CCD, CCD timing parameters are programmed into the AD9923A from the system microprocessor through the 3-wire serial interface. The AD9923A generates the CCD horizontal, vertical, and the internal AFE clocks from the system master clock CLI. The CLI is provided by the image processor or external crystal. External synchronization is provided by a sync pulse from the microprocessor, which resets internal counters and resyncs the VD and HD outputs.

Alternatively, the AD9923A can be operated in slave mode, in which the VD and HD are provided externally from the image processor. In this mode, the AD9923A timing is synchronized with VD and HD.

The H-drivers for HL, H1 to H4, and RG are included in the AD9923A, allowing these clocks to be directly connected to the CCD. An H-driver voltage, HVDD, of up to 3.3 V is supported. An external V-driver is required for the vertical transfer clocks, the sensor gate pulses, and the substrate clock.

The AD9923A also includes programmable MSHUT and STROBE outputs that can be used to trigger mechanical shutter and strobe (flash) circuitry.

Figure 15 and Figure 16 show the maximum horizontal and vertical counter dimensions for the AD9923A. Internal horizontal and vertical clocking is controlled by these counters to specify line and pixel locations. The maximum HD length is 8192 pixels per line, and the maximum VD length is 4096 lines per field.

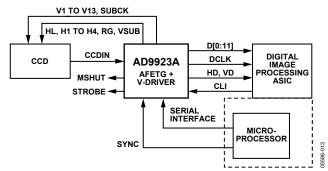
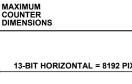




Figure 14. Typical System Block Diagram, Master Mode



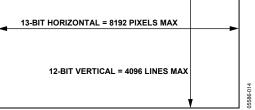



Figure 15. Vertical and Horizontal Counters

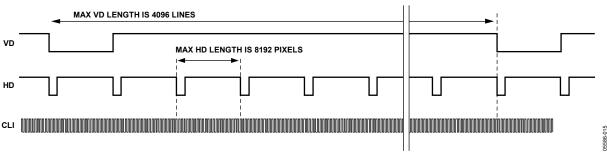



Figure 16. Maximum VD/HD Dimensions

### PRECISION TIMING HIGH SPEED TIMING GENERATION

The AD9923A generates high speed timing signals using the flexible *Precision Timing* core. This core is the foundation for generating the timing used for both the CCD and the AFE. It consists of the reset gate (RG), horizontal drivers (H1 to H4 and HL), and sample clocks (SHP and SHD). A unique architecture makes it routine for the system designer to optimize image quality by providing precise control over the horizontal CCD readout and the AFE-correlated double sampling.

The high speed timing of the AD9923A operates the same in master and slave modes. For more information on synchronization and pipeline delays, see the Power-Up and Synchronization in Slave Mode section.

### **Timing Resolution**

The *Precision Timing* core uses a  $1 \times$  master clock input (CLI) as a reference. The frequency of this clock should match the CCD pixel clock frequency. Figure 17 illustrates how the internal timing core divides the master clock period into 48 steps, or edge positions. Using a 36 MHz CLI frequency, the edge resolution of the *Precision Timing* core is approximately 0.6 ns. If a  $1 \times$  system clock is not available, a  $2 \times$  reference clock can be used by programming the CLIDIVIDE register (Address 0x30). The AD9923A then internally divides the CLI frequency by 2.

The AD9923A includes a master clock output (CLO) which is the inverse of CLI. This output is intended to be used as a crystal driver. A crystal can be placed between the CLI and CLO pins to generate the master clock for the AD9923A. For more information on using a crystal, see Figure 80.

### High Speed Clock Programmability

Figure 18 shows how the RG, HL, H1 to H4, SHP, and SHD high speed clocks are generated. The RG pulse has programmable rising and falling edges and can be inverted using the polarity control. The HL, H1, and H3 horizontal clocks have programmable rising and falling edges and polarity control. The H2 and H4 clocks are inverses of the H1 and H3 clocks, respectively. Table 10 summarizes the high speed timing registers and their parameters. Figure 19 shows the typical 2-phase, H-clock operation, in which H3 and H4 are programmed for the same edge location as H1 and H2. The edge location registers are six bits wide, but there are only 48 valid edge locations available. Therefore, the register values are mapped into four quadrants, each of which contains 12 edge locations. Table 11 shows the correct register values for the corresponding edge locations. Figure 20 shows the default timing locations for high speed clock signals.

### H-Driver and RG Outputs

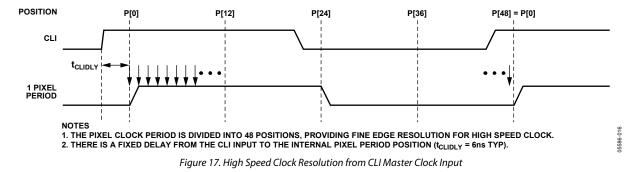
In addition to the programmable timing positions, the AD9923A features on-chip output drivers for the RG and H1 to H4 outputs. These drivers are powerful enough to directly drive the CCD inputs. The H-driver and RG current can be adjusted for optimum rise/fall times in a particular load by using the H1 to H4, HL, and RGDRV registers (Address 0x36). The 3-bit drive setting for each output can be adjusted in 4.1 mA increments, with the minimum setting of 0 equal to 0 mA or three-state, and the maximum setting of 7 equal to 30.1 mA.

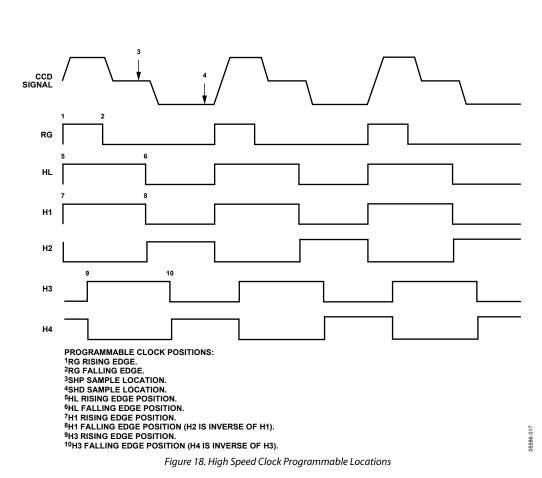
As shown in Figure 18, Figure 19, and Figure 20, the H2 and H4 outputs are inverses of H1 and H3 outputs, respectively. The H1/H2 crossover voltage is approximately 50% of the output swing. The crossover voltage is not programmable.

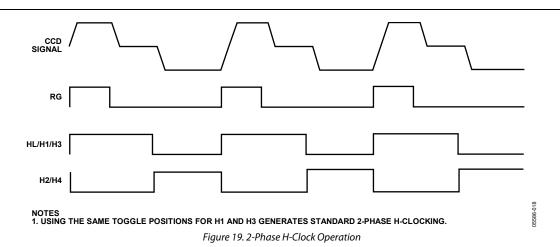
### Digital Data Outputs

The AD9923A data output and DCLK phase are programmable using the DOUTPHASE register (Address 0x38, Bits[5:0]). Any edge from 0 to 47 can be programmed, as shown in Figure 21. Normally, the DOUT and DCLK signals track in phase, based on the DOUTPHASE register contents. The DCLK output phase can also be held fixed with respect to the data outputs by setting the DCLKMODE register to high (Address 0x38, Bit[8]). In this mode, the DCLK output remains at a fixed phase equal to a delayed version of CLI, and the data output phase remains programmable. For more detail, see the Analog Front End Description/Operation section.

There is a fixed output delay from the DCLK rising edge to the DOUT transition, called  $t_{OD}$ . This delay can be programmed to four values between 0 ns and 12 ns, using the DOUTDELAY register (Address 0x38, Bits[10:9]). The default value is 8 ns.


The pipeline delay through the AD9923A is shown in Figure 22. After the CCD input is sampled by SHD, there is a 16-cycle delay before the data is available.


| Parameter            | Length<br>(Bits) | Range                 | Description                                                                               |
|----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------|
| Polarity             | 1                | High/low              | Polarity control for HL, H1, H3, and RG (0 = no inversion, 1 = inversion)                 |
| Positive Edge        | 6                | 0 to 47 edge location | Positive edge location for HL, H1, H3, and RG (H2/H4 are inverses of H1/H3, respectively) |
| Negative Edge        | 6                | 0 to 47 edge location | Negative edge location for HL, H1, H3, and RG (H2/H4 are inverses of H1/H3, respectively) |
| Sampling<br>Location | 6                | 0 to 47 edge location | Sampling location for internal SHP and SHD signals                                        |
| Drive Strength       | 3                | 0 to 7 current steps  | Drive current for HL, H1 to H4, and RG outputs (4.1 mA per step)                          |


Table 10. Timing Core Register Parameters for HL, H1 to H4, RG, SHP/SHD

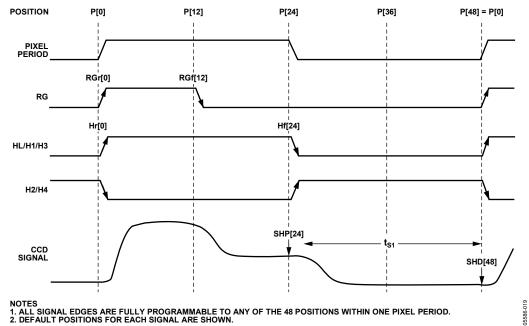

| Quadrant | Edge Location (Decimal) | Register Value (Decimal) | Register Value (Binary) |  |  |
|----------|-------------------------|--------------------------|-------------------------|--|--|
| 1        | 0 to 11                 | 0 to 11                  | 000000 to 001011        |  |  |
| II       | 12 to 23                | 16 to 27                 | 010000 to 011011        |  |  |
| III      | 24 to 35                | 32 to 43                 | 100000 to 101011        |  |  |
| IV       | 36 to 47                | 48 to 59                 | 110000 to 111011        |  |  |

 Table 11. Precision Timing Edge Locations









NOTES 1. ALL SIGNAL EDGES ARE FULLY PROGRAMMABLE TO ANY OF THE 48 POSITIONS WITHIN ONE PIXEL PERIOD. 2. DEFAULT POSITIONS FOR EACH SIGNAL ARE SHOWN.

Figure 20. High Speed Timing Default Locations

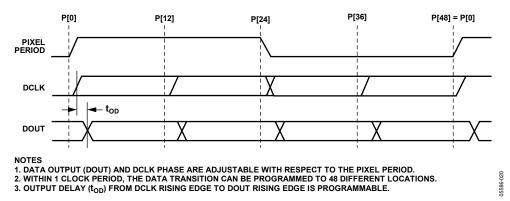
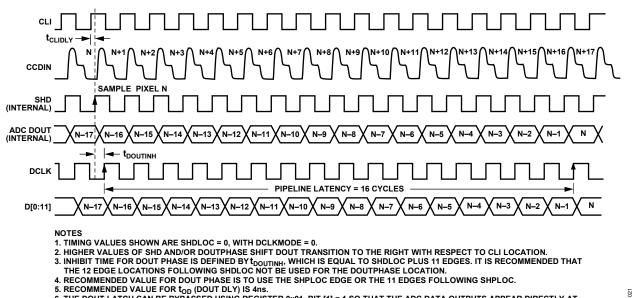




Figure 21. Digital Output Phase Adjustment



THE DOUT LATCH CAN BE BYPASSED USING REGISTER 0x01, BIT [1] = 1 SO THAT THE ADC DATA OUTPUTS APPEAR DIRECTLY AT THE DATA OUTPUT PINS. THIS CONFIGURATION IS RECOMMENDED IF THE ADJUSTABLE DOUT PHASE IS NOT REQUIRED.

Figure 22. Digital Data Output Pipeline Delay

### HORIZONTAL CLAMPING AND BLANKING

The AD9923A horizontal clamping and blanking pulses are fully programmable to suit a variety of applications. Individual controls are provided for CLPOB, PBLK, and HBLK during different regions of each field. This allows dark pixel clamping and blanking patterns to be changed at each stage of the readout to accommodate different image transfer timing and high speed line shifts.

#### Individual CLPOB and PBLK Patterns

The AFE horizontal timing consists of CLPOB and PBLK, as shown in Figure 23. These two signals are independently programmed using the registers in Table 12. SPOL is the start polarity for the signal, and TOG1 and TOG2 are the first and second toggle positions of the pulse. Both signals are active low and should be programmed accordingly.

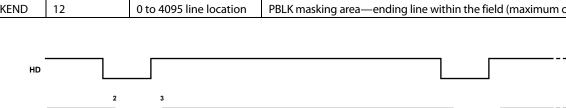
A separate pattern for CLPOB and PBLK can be programmed for each V-sequence. As described in the Vertical Timing Generation section, several V-sequences can be created, each containing a unique pulse pattern for CLPOB and PBLK.

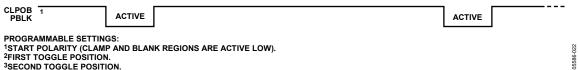
Figure 46 shows how the sequence change positions divide the readout field into regions. A different V-sequence can be assigned to each region, allowing the CLPOB and PBLK signals to change with each change in the vertical timing. Unused CLPOB and PBLK toggle positions should be set to 8191.

#### **CLPOB and PBLK Masking Area**

The AD9923A allows the CLPOB and/or PBLK signals to be disabled during certain lines in the field without changing the existing CLPOB and/or PBLK pattern settings.

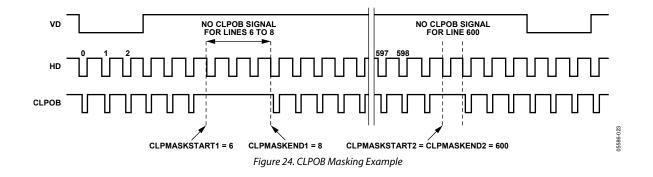
5586-

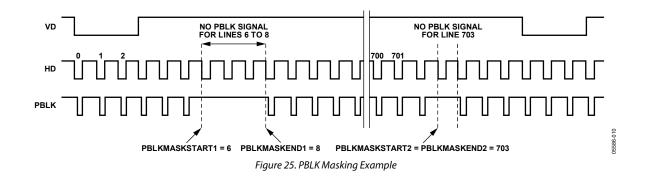

To use CLPOB masking, the CLPMASKSTART and CLPMASKEND registers are programmed to specify the starting and ending lines in the field where the CLPOB patterns are ignored. There are three sets of CLPMASKSTART and CLPMASKEND registers, allowing up to three CLPOB masking areas to be created.


CLPOB masking registers are not specific to a given V-sequence; they are active for any existing field of timing. To disable the CLPOB masking feature, set these registers to the maximum value, 0xFFF (default value).

To use PBLK masking, the PBLKMASKSTART and PBLKMASKEND registers are programmed to specify the starting and ending lines in the field where the PBLK patterns are ignored. There are three sets of PBLKMASKSTART and PBLKMASKEND registers, allowing the creation of up to three PBLK masking areas.

PBLK masking registers are not specific to a given V-sequence; they are active for any existing field of timing. To disable the PBLK masking feature, set these registers to the maximum value, 0xFFF (default value).


| Register      | Length (Bits) | Range                    | Description                                                                |
|---------------|---------------|--------------------------|----------------------------------------------------------------------------|
| CLPOBPOL      | 1             | High/low                 | Starting polarity of CLPOB for each V-sequence                             |
| PBLKPOL       | 1             | High/low                 | Starting polarity of PBLK for each V-sequence                              |
| CLPOBTOG1     | 13            | 0 to 8191 pixel location | First CLPOB toggle position within the line for each V-sequence            |
| CLPOBTOG2     | 13            | 0 to 8191 pixel location | Second CLPOB toggle position within the line for each V-sequence           |
| PBLKTOG1      | 13            | 0 to 8191 pixel location | First PBLK toggle position within the line for each V-sequence             |
| PBLKBTOG2     | 13            | 0 to 8191 pixel location | Second PBLK toggle position within the line for each V-sequence            |
| CLPMASKSTART  | 12            | 0 to 4095 line location  | CLPOB masking area—starting line within the field (maximum of three areas) |
| CLPMASKEND    | 12            | 0 to 4095 line location  | CLPOB masking area—ending line within the field (maximum of three areas)   |
| PBLKMASKSTART | 12            | 0 to 4095 line location  | PBLK masking area—starting line within the field (maximum of three areas)  |
| PBLKMASKEND   | 12            | 0 to 4095 line location  | PBLK masking area—ending line within the field (maximum of three areas)    |






**3SECOND TOGGLE POSITION.** 

Figure 23. Clamp and Preblank Pulse Placement



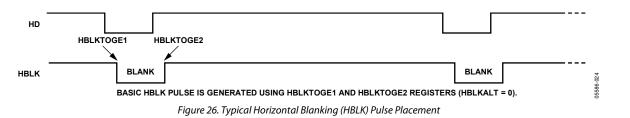


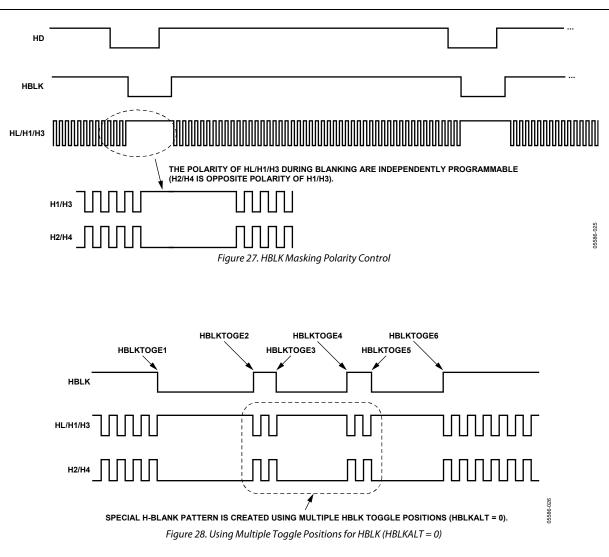
#### Table 12. CLPOB and PBLK Pattern Registers

#### Individual HBLK Patterns

The HBLK programmable timing shown in Figure 26 is similar to CLPOB and PBLK; however, there is no start polarity control. Only the toggle positions are used to designate the start and end positions of the blanking period. Additionally, there is a polarity control register, HBLKMASK, that designates the polarity of the horizontal clock signals during the blanking period. Setting HBLKMASK high sets H1 = H3 = high and H2 = H4 = low during blanking, as shown in Figure 27. As with CLPOB and PBLK registers, HBLK registers are available in each V-sequence, allowing different blanking signals to be used with different vertical timing sequences.

Note that 8189 is the recommended setting for any unused HBLK toggle locations on the AD9923A, regardless of the

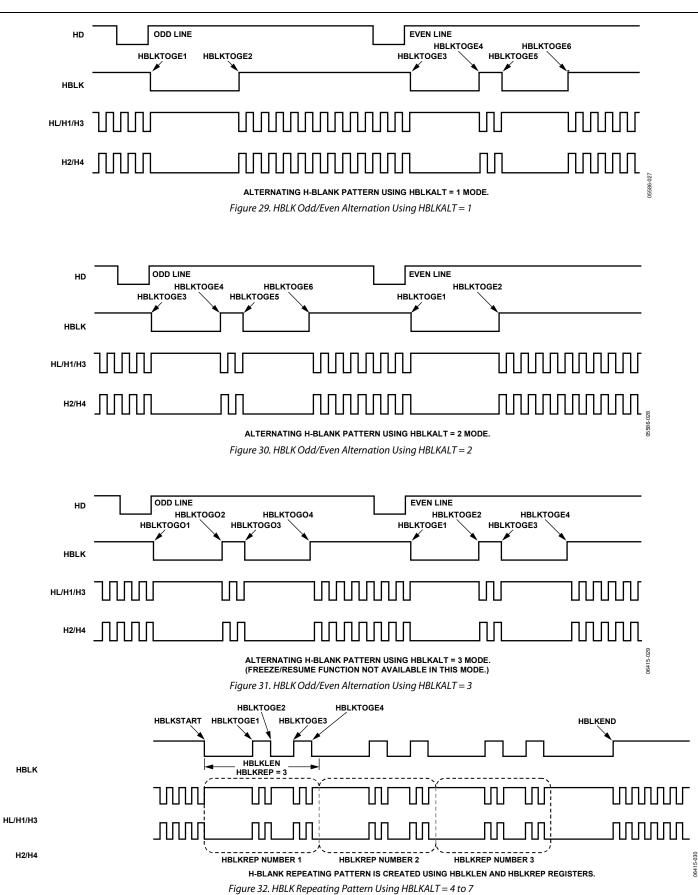

setting for HBLKALT. 8190 and 8191 are not valid settings for HBLK toggle positions that are unused and causes undesired HBLK toggle activity.


#### **Generating Special HBLK Patterns**

There are six toggle positions available for HBLK. Normally, only two of the toggle positions are used to generate the standard HBLK interval. However, additional toggle positions can be used to generate special HBLK patterns, as shown in Figure 28. The pattern in this example uses all six toggle positions to generate two extra groups of pulses during the HBLK interval. By changing the toggle positions, different patterns can be created.

| Donistor  | Length | Bango                    | Description                                                                          |
|-----------|--------|--------------------------|--------------------------------------------------------------------------------------|
| Register  | (Bits) | Range                    | Description                                                                          |
| HBLKMASK  | 1      | High/low                 | Masking polarity for H1, H3, HL (0 = mask low, 1 = mask high)                        |
| HBLKALT   | 3      | 0 to 7 alternation modes | Enables different odd/even alternation of HBLK toggle positions                      |
|           |        |                          | 0: disable alternation (HBLKTOGE1 to HBLKTOGE6 registers are used for each line)     |
|           |        |                          | 1: TOGE1 and TOGE2 odd lines, TOGE3 to TOGE6 even lines                              |
|           |        |                          | 2: TOGE1 and TOGE2 even lines, TOGE3 to TOGE6 odd lines                              |
|           |        |                          | 3: TOGE1 to TOGE6 even lines, TOGO1 to TOGE6 odd lines (FREEZE/RESUME not available) |
|           |        |                          | 4 to 7: HBLKSTART, HBLKEND, HBLKLEN, and HBLKREP registers are used for each line    |
| HBLKTOGE1 | 13     | 0 to 8189 pixel location | HBLK first toggle position (for even lines only when HBLKALT = 3)                    |
| HBLKTOGE2 | 13     | 0 to 8189 pixel location | HBLK second toggle position (for even lines only when HBLKALT = 3)                   |
| HBLKTOGE3 | 13     | 0 to 8189 pixel location | HBLK third toggle position (for even lines only when HBLKALT = 3)                    |
| HBLKTOGE4 | 13     | 0 to 8189 pixel location | HBLK fourth toggle position (for even lines only when HBLKALT = 3)                   |
| HBLKTOGE5 | 13     | 0 to 8189 pixel location | Fifth toggle position, even lines (HBLKSTART when HBLKALT = 4 to 7)                  |
| HBLKTOGE6 | 13     | 0 to 8189 pixel location | Sixth toggle position, even lines (HBLKEND when HBLKALT = 4 to 7)                    |
| HBLKLEN   | 13     | 0 to 8189 pixels         | HBLK pattern length, only used when HBLKALT = 4 to 7                                 |
| HBLKREP   | 8      | 0 to 255 repetitions     | Number of HBLK pattern repetitions, only used when HBLKALT = 4 to 7                  |
| HBLKTOGO1 | 13     | 0 to 8189 pixel location | First toggle position for odd lines when HBLKALT = 3 (usually VREPA_3)               |
| HBLKTOGO2 | 13     | 0 to 8189 pixel location | Second toggle position for odd lines when HBLKALT = 3 (usually VREPA_4)              |
| HBLKTOGO3 | 13     | 0 to 8189 pixel location | Third toggle position for odd lines when HBLKALT = 3 (usually FREEZE1)               |
| HBLKTOGO4 | 13     | 0 to 8189 pixel location | Fourth toggle position for odd lines when HBLKALT = 3 (usually RESUME1)              |
| HBLKTOGO5 | 13     | 0 to 8189 pixel location | Fifth toggle position for odd lines when HBLKALT = 3 (usually FREEZE2)               |
| HBLKTOGO6 | 13     | 0 to 8189 pixel location | Sixth toggle position for odd lines when HBLKALT = 3 (usually RESUME2)               |

#### Table 13. HBLK Pattern Registers






#### **Generating HBLK Line Alternation**

The AD9923A can alternate different HBLK toggle positions on odd and even lines. This feature can be used in conjunction with V-pattern odd/even alternation, or on its own. When 1 is written to the HBLKALT register, HBLKTOGE1 and HBLKTOGE2 are used on odd lines, and HBLKTOGE3 to HBLKTOGE6 are used on even lines. Writing 2 to the HBLKALT register gives the opposite result: HBLKTOGE1 and HBLKTOGE2 are used on even lines, and HBLKTOGE3 to HBLKTOGE6 are used on even lines, written to the HBLKALT register, all six even toggle positions, HBLKTOGE1 to HBLKTOGE6, are used on even lines. There are also six additional toggle positions, HBLKTOGO1 to HBLKTOGE6, for odd lines. These registers are normally used for VPAT Group A, VPAT Group B, and freeze/resume functions, but when HBLKALT = 3, these registers become the odd line toggle positions for HBLK.

Another HBLK feature is enabled by writing 4, 5, 6, or 7 to HBLKALT. In these modes, the HBLK pattern is generated using a different set of registers—HBLKSTART, HBLKEND, HBLKLEN, and HBLKREP—along with four toggle positions. This allows for multiple repeats of the HBLK signal, as shown in Figure 32.



#### Increasing H-Clock Width During HBLK

The AD9923A allows the H1 to H4 pulse width to be increased during the HBLK interval. The H-clock pulse width can increase by reducing the H-clock frequency (see Table 14).

The HBLKWIDTH register (Register 0x35, Bits[6:4]) is a 3-bit register that allows the H-clock frequency to be reduced by 1/2, 1/4, 1/6, 1/8, 1/10, 1/12, or 1/14. The reduced frequency only occurs for H1 to H4 pulses that are located within the HBLK area.

#### Horizontal Timing Sequence Example

Figure 33 shows an example of a CCD layout. The horizontal register contains 28 dummy pixels that occur on each line clocked from the CCD. In the vertical direction, there are 10 optical black (OB) lines at the front of the readout and two at the back of the readout. The horizontal direction has four OB pixels in the front and 48 OB pixels in the back.

Figure 34 shows the basic sequence layout to use during the effective pixel readout. The 48 OB pixels at the end of each line are used for CLPOB signals. PBLK is optional and it is often used to blank the digital outputs during the noneffective CCD pixels. HBLK is used during the vertical shift interval.

The HBLK, CLPOB, and PBLK parameters are programmed in the V-sequence registers. More elaborate clamping schemes can

#### Table 14. HBLK Width Register

be used, such as adding a separate sequence to clamp during the entire line of OB pixels. This requires configuring a separate V-sequence for reading the OB lines.

The CLPMASKSTART and CLPMASKEND registers can be used to disable the CLPOB on a few lines without affecting the setup of the clamp sequences.

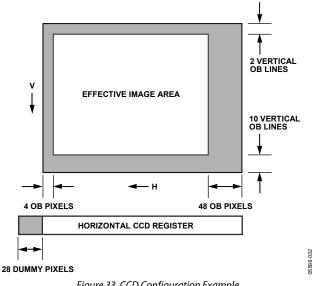



Figure 33. CCD Configuration Example

| legister                            | Lengt     | h (Bits) | Range       |                                                         | Description                                                                                                                                                                                                                                                                                                                                            |                                        |                                         |               |  |  |
|-------------------------------------|-----------|----------|-------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|---------------|--|--|
| IBLKWIDTH                           | 3         |          | 1× to 1/14× | pixel rate                                              | Controls H1 to H4 width during HBLK as a fraction of pixel rate                                                                                                                                                                                                                                                                                        |                                        |                                         |               |  |  |
|                                     |           |          |             |                                                         | 0: same frequency                                                                                                                                                                                                                                                                                                                                      | as the pixel rate                      |                                         |               |  |  |
|                                     |           |          |             |                                                         | 1: 1/2 pixel frequer                                                                                                                                                                                                                                                                                                                                   | cy, that is, double                    | s the H1 to H4 pulse v                  | width         |  |  |
|                                     |           |          |             |                                                         | 2: 1/4 pixel frequer                                                                                                                                                                                                                                                                                                                                   | су                                     |                                         |               |  |  |
|                                     |           |          |             |                                                         | 3: 1/6 pixel frequer                                                                                                                                                                                                                                                                                                                                   | су                                     |                                         |               |  |  |
|                                     |           |          |             |                                                         | 4: 1/8 pixel frequer                                                                                                                                                                                                                                                                                                                                   | су                                     |                                         |               |  |  |
|                                     |           |          |             |                                                         | 5: 1/10 pixel freque                                                                                                                                                                                                                                                                                                                                   |                                        |                                         |               |  |  |
|                                     |           |          |             |                                                         | 6: 1/12 pixel freque                                                                                                                                                                                                                                                                                                                                   | •                                      |                                         |               |  |  |
|                                     |           |          |             |                                                         | 7: 1/14 pixel freque                                                                                                                                                                                                                                                                                                                                   | ncy                                    |                                         |               |  |  |
| o                                   | PTICAL BL | АСК      |             | OPTICAL BL                                              | ACK                                                                                                                                                                                                                                                                                                                                                    |                                        |                                         |               |  |  |
|                                     | ———       | ſ        | -           | <u>_</u>                                                |                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         | -             |  |  |
| HD                                  |           | ·        |             | , \                                                     | 1                                                                                                                                                                                                                                                                                                                                                      |                                        | 1                                       |               |  |  |
| CCDIN                               |           | VERT     | ICAL SHIFT  |                                                         | EFFECTIVE PI                                                                                                                                                                                                                                                                                                                                           | YELS                                   | OPTICAL BLACK                           | VERT. SHIFT   |  |  |
|                                     |           | VERT     |             |                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                        | OF HOAE BEACK                           | VEICE OF IN T |  |  |
| SHP                                 |           |          |             |                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         |               |  |  |
|                                     |           |          |             |                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         |               |  |  |
|                                     |           |          |             |                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         |               |  |  |
|                                     |           |          |             |                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         | 0.00          |  |  |
| HL/H1/H3                            |           |          |             |                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         |               |  |  |
| HL/H1/H3                            |           |          |             |                                                         | 00/010/010/010/010/010/010/010/010/010/                                                                                                                                                                                                                                                                                                                | UUUUUUUU    UUUUUUUUUUUUUUUUUUUUUUUUUU | 197010000100000000000000000000000000000 | 100<br>NA     |  |  |
|                                     |           |          |             | 10000000000000000000000000000000000000                  |                                                                                                                                                                                                                                                                                                                                                        | UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU |                                         | 1001<br>1001  |  |  |
| Н∟/Н1/Н3 🛄                          |           |          |             | שמוניתיים שלייש איז |                                                                                                                                                                                                                                                                                                                                                        |                                        |                                         | UU<br>NU<br>  |  |  |
| HL/H1/H3 IIII<br>H2/H4 IIII<br>HBLK |           |          |             | 10000000000000000000000000000000000000                  | NOTATI NA MATATI NA M<br>Na manana mana<br>Manana manana |                                        |                                         | UUI<br>1001   |  |  |
| HL/H1/H3 🛄<br>H2/H4 🏢               |           |          |             |                                                         |                                                                                                                                                                                                                                                                                                                                                        | 00000000000000000000000000000000000000 |                                         |               |  |  |

Figure 34. Horizontal Sequence Example

### VERTICAL TIMING GENERATION

The AD9923A provides a very flexible solution for generating vertical CCD timing; it can support multiple CCDs and different system architectures. The 13-phase vertical transfer clocks, XV1 to XV13, are used to shift lines of pixels into the horizontal output register of the CCD. The AD9923A allows these outputs to be individually programmed into various readout configurations, using a four-step process as shown in Figure 35.

- 1. Use the vertical pattern group registers to create the individual pulse patterns for XV1 to XV13.
- 2. Use the V-pattern groups to build the sequences and add more information.
- 3. Construct the readout for an entire field by dividing the field into regions and assigning a sequence to each region. Each field can contain up to nine regions to accommodate different steps, such as high speed line shifts and unique vertical line transfers, of the readout. The total number of V-patterns, V-sequences, and fields are programmable and limited by the number of registers. High speed line shifts and unique vertical transfers are examples of the different steps required for readout.
- 4. Use the MODE register to combine fields in any order for various readout configurations.

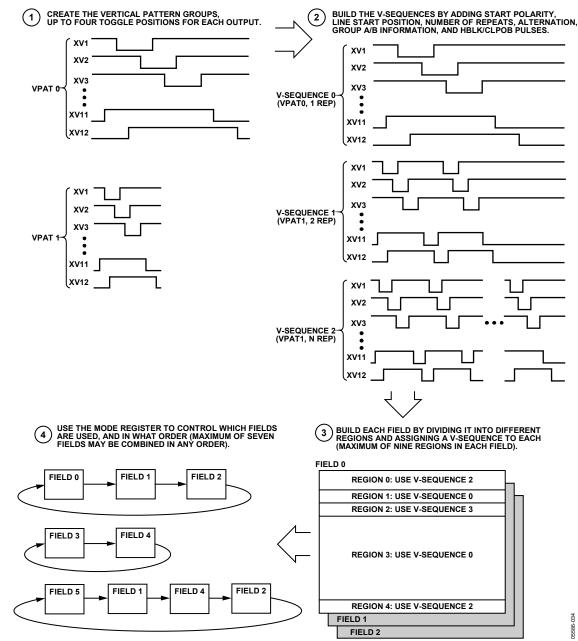



Figure 35. Summary of Vertical Timing Generation