: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

4-Channel, 500 MSPS DDS with 10-Bit DACs

FEATURES

4 synchronized DDS channels @ 500 MSPS
Independent frequency/phase/amplitude control between channels
Matched latencies for frequency/phase/amplitude changes
Excellent channel-to-channel isolation (>65 dB)
Linear frequency/phase/amplitude sweeping capability
Up to 16 levels of frequency/phase/amplitude modulation (pin-selectable)
4 integrated 10-bit digital-to-analog converters (DACs) Individually programmable DAC full-scale currents
0.12 Hz or better frequency tuning resolution

14-bit phase offset resolution
10-bit output amplitude scaling resolution
Serial I/O port interface (SPI) with enhanced data throughput

Software-/hardware-controlled power-down
Dual supply operation (1.8 V DDS core/3.3 V serial I/O)
Multiple device synchronization
Selectable $4 \times$ to $20 \times$ REFCLK multiplier (PLL)
Selectable REFCLK crystal oscillator 56-lead LFCSP package

APPLICATIONS

Agile local oscillators
Phased array radars/sonars
Instrumentation
Synchronized clocking
RF source for AOTF

Figure 1.

Rev. B

AD9959* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- AD9959 Evaluation Board

DOCUMENTATION

Application Notes

- AN-237: Choosing DACs for Direct Digital Synthesis
- AN-280: Mixed Signal Circuit Technologies
- AN-342: Analog Signal-Handling for High Speed and Accuracy
- AN-345: Grounding for Low-and-High-Frequency Circuits
- AN-419: A Discrete, Low Phase Noise, 125 MHz Crystal Oscillator for the AD9850
- AN-423: Amplitude Modulation of the AD9850 Direct Digital Synthesizer
- AN-543: High Quality, All-Digital RF Frequency Modulation Generation with the ADSP-2181 and the AD9850 DDS
- AN-557: An Experimenter's Project:
- AN-587: Synchronizing Multiple AD9850/AD9851 DDSBased Synthesizers
- AN-605: Synchronizing Multiple AD9852 DDS-Based Synthesizers
- AN-621: Programming the AD9832/AD9835
- AN-632: Provisionary Data Rates Using the AD9951 DDS as an Agile Reference Clock for the ADN2812 ContinuousRate CDR
- AN-769: Generating Multiple Clock Outputs from the AD9540
- AN-823: Direct Digital Synthesizers in Clocking Applications Time
- AN-837: DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance
- AN-851: A WiMax Double Downconversion IF Sampling Receiver Design
- AN-927: Determining if a Spur is Related to the DDS/DAC or to Some Other Source (For Example, Switching Supplies)
- AN-939: Super-Nyquist Operation of the AD9912 Yields a High RF Output Signal
- AN-953: Direct Digital Synthesis (DDS) with a Programmable Modulus

Data Sheet

- AD9959: 4 Channel 500 MSPS DDS with 10-Bit DACs Data Sheet

Product Highlight

- Introducing Digital Up/Down Converters: VersaCOMM ${ }^{\text {™ }}$ Reconfigurable Digital Converters

TOOLS AND SIMULATIONS

- ADIsimDDS (Direct Digital Synthesis)
- AD9959 IBIS Models

REFERENCE DESIGNS

- CN0109
- CN0186

REFERENCE MATERIALS

Product Selection Guide

- RF Source Booklet

Technical Articles

- 400-MSample DDSs Run On Only +1.8 VDC
- ADI Buys Korean Mobile TV Chip Maker
- Basics of Designing a Digital Radio Receiver (Radio 101)
- DDS Applications
- DDS Circuit Generates Precise PWM Waveforms
- DDS Design
- DDS Device Produces Sawtooth Waveform
- DDS Device Provides Amplitude Modulation
- DDS IC Initiates Synchronized Signals
- DDS IC Plus Frequency-To-Voltage Converter Make LowCost DAC
- DDS Simplifies Polar Modulation
- Digital Potentiometers Vary Amplitude In DDS Devices
- Digital Up/Down Converters: VersaCOMM ${ }^{\text {TM }}$ White Paper
- Digital Waveform Generator Provides Flexible Frequency Tuning for Sensor Measurement
- Improved DDS Devices Enable Advanced Comm Systems
- Integrated DDS Chip Takes Steps To 2.7 GHz
- Simple Circuit Controls Stepper Motors
- Speedy A/Ds Demand Stable Clocks
- Synchronized Synthesizers Aid Multichannel Systems
- The Year of the Waveform Generator
- Two DDS ICs Implement Amplitude-shift Keying
- Video Portables and Cameras Get HDMI Outputs

DESIGN RESOURCES

- AD9959 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD9959 EngineerZone Discussions.

SAMPLE AND BUY \square

Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

AD9959

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 3
Specifications 4
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configuration and Function Descriptions 9
Typical Performance Characteristics 11
Application Circuits 14
Equivalent Input and Output Circuits 17
Theory of Operation 18
DDS Core 18
Digital-to-Analog Converter 18
Modes of Operation 19
Channel Constraint Guidelines 19
Power Supplies 19
Single-Tone Mode 19
Reference Clock Modes 20
Scalable DAC Reference Current Control Mode 21
Power-Down Functions 21
Modulation Mode 21
Modulation Using SDIO_x Pins for RU/RD. 24
REVISION HISTORY
7/08—Rev. A to Rev. B
Added Pin Profile Toggle Rate Parameter in Table 1 6
Changes to Figure 24. 14
Changes to Figure 31 17
Changes to Reference Clock Input Circuitry Section 20
Changes to Operation Section 29
Changes to Figure 40 30
Changes to Serial Data I/O (SDIO_0, SDIO_1, SDIO_3) Section. 32
Changes to Table 38 43
Added Exposed Pad Notation to Outline Dimensions 44
3/08-Rev. 0 to Rev. A
Changes to Features 1
Inserted Figure 1 1
Changes to Input Level Specification 4
Changes to Layout 8
Changes to Table 3 9
Linear Sweep Mode 25
Linear Sweep No-Dwell Mode 26
Sweep and Phase Accumulator Clearing Functions 27
Output Amplitude Control Mode 28
Synchronizing Multiple AD9959 Devices 29
Automatic Mode Synchronization 29
Manual Software Mode Synchronization. 29
Manual Hardware Mode Synchronization 29
I/O_UPDATE, SYNC_CLK, and System Clock Relationships 30
Serial I/O Port 31
Overview 31
Instruction Byte Description 32
Serial I/O Port Pin Description 32
Serial I/O Port Function Description 32
MSB/LSB Transfer Description 32
Serial I/O Modes of Operation 33
Register Maps and Bit Descriptions 36
Register Maps. 36
Descriptions for Control Registers 39
Descriptions for Channel Registers 41
Outline Dimensions 44
Ordering Guide 44
Added Equivalent Input and Output Circuits Section. 17
Changes to Figure 35 21
Changes to Setting the Slope of the Linear Sweep Section 25
Changes to Frequency Linear Sweep Example: AFP Bits $=10$
Section 26
Changes to Figure 37 26
Changes to Figure 38 and Figure 39 27
Added Table 25 31
Changes to Figure 41 31
Changes to Figure 42 32
Added Example Instruction Byte Section 32
Added Table 27 33
Changes to Figure 46, Figure 47, Figure 48, and Figure 49 35
Changes to Register Maps and Bit Descriptions Section 36
Added Endnote 1 to Table 30 38
Changes to Ordering Guide 44

GENERAL DESCRIPTION

The AD9959 consists of four direct digital synthesizer (DDS) cores that provide independent frequency, phase, and amplitude control on each channel. This flexibility can be used to correct imbalances between signals due to analog processing, such as filtering, amplification, or PCB layout-related mismatches. Because all channels share a common system clock, they are inherently synchronized. Synchronization of multiple devices is supported.
The AD9959 can perform up to a 16-level modulation of frequency, phase, or amplitude (FSK, PSK, ASK). Modulation is performed by applying data to the profile pins. In addition, the AD9959 also supports linear sweep of frequency, phase, or amplitude for applications such as radar and instrumentation.
The AD9959 serial I/O port offers multiple configurations to provide significant flexibility. The serial I/O port offers an SPIcompatible mode of operation that is virtually identical to the SPI operation found in earlier Analog Devices, Inc., DDS products. Flexibility is provided by four data pins (SDIO_0/SDIO_1/ SDIO_2/SDIO_3) that allow four programmable modes of serial I/O operation.
The AD9959 uses advanced DDS technology that provides low power dissipation with high performance. The device incorporates four integrated, high speed 10 -bit DACs with excellent wideband and narrow-band SFDR. Each channel has a dedicated 32-bit
frequency tuning word, 14 bits of phase offset, and a 10-bit output scale multiplier.
The DAC outputs are supply referenced and must be terminated into AVDD by a resistor or an AVDD center-tapped transformer. Each DAC has its own programmable reference to enable different full-scale currents for each channel.

The DDS acts as a high resolution frequency divider with the REFCLK as the input and the DAC providing the output. The REFCLK input source is common to all channels and can be driven directly or used in combination with an integrated REFCLK multiplier (PLL) up to a maximum of 500 MSPS. The PLL multiplication factor is programmable from 4 to 20, in integer steps. The REFCLK input also features an oscillator circuit to support an external crystal as the REFCLK source. The crystal must be between 20 MHz and 30 MHz . The crystal can be used in combination with the REFCLK multiplier.
The AD9959 comes in a space-saving 56-lead LFCSP package. The DDS core (AVDD and DVDD pins) is powered by a 1.8 V supply. The digital I/O interface (SPI) operates at 3.3 V and requires DVDD_I/O (Pin 49) be connected to 3.3 V .
The AD9959 operates over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

AD9959

SPECIFICATIONS

AVDD and $\operatorname{DVDD}=1.8 \mathrm{~V} \pm 5 \% ; \mathrm{DVDD}_{2} \mathrm{I} / \mathrm{O}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\text {SET }}=1.91 \mathrm{k} \Omega$; external reference clock frequency $=500$ MSPS (REFCLK multiplier bypassed), unless otherwise noted.

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
REFERENCE CLOCK INPUT CHARACTERISTICS					See Figure 34 and Figure 35
Frequency Range					
REFCLK Multiplier Bypassed	1		500	MHz	
REFCLK Multiplier Enabled	10		125	MHz	
Internal VCO Output Frequency Range					
VCO Gain Control Bit Set High ${ }^{1}$	255		500	MHz	
VCO Gain Control Bit Set Low ${ }^{1}$	100		160	MHz	
Crystal REFCLK Source Range	20		30	MHz	
Input Level	200		1000	mV	Measured at each pin (single-ended)
Input Voltage Bias Level		1.15		V	
Input Capacitance		2		pF	
Input Impedance		1500		Ω	
Duty Cycle with REFCLK Multiplier Bypassed	45		55	\%	
Duty Cycle with REFCLK Multiplier Enabled	35		65	\%	
CLK Mode Select (Pin 24) Logic 1 Voltage	1.25		1.8	V	1.8 V digital input logic
CLK Mode Select (Pin 24) Logic 0 Voltage			0.5	V	1.8 V digital input logic
DAC OUTPUT CHARACTERISTICS					Must be referenced to AVDD
Resolution			10	Bits	
Full-Scale Output Current	1.25		10	mA	
Gain Error	-10		+10	\%FS	
Channel-to-Channel Output Amplitude Matching Error	-2.5		+2.5	\%	
Output Current Offset		1	25	$\mu \mathrm{A}$	
Differential Nonlinearity		± 0.5		LSB	
Integral Nonlinearity		± 1.0		LSB	
Output Capacitance		3		pF	
Voltage Compliance Range	AVDD - 0.50		AVDD +0.50	V	
Channel-to-Channel Isolation	65			dB	DAC supplies tied together (see Figure 19)
WIDEBAND SFDR					The frequency range for wideband SFDR is defined as dc to Nyquist
1 MHz to 20 MHz Analog Output		-65		dBc	
20 MHz to 60 MHz Analog Output		-62		dBC	
60 MHz to 100 MHz Analog Output		-59		dBC	
100 MHz to 150 MHz Analog Output		-56		dBC	
150 MHz to 200 MHz Analog Output		-53		dBC	
NARROW-BAND SFDR					
1.1 MHz Analog Output ($\pm 10 \mathrm{kHz}$)		-90		dBC	
1.1 MHz Analog Output ($\pm 50 \mathrm{kHz}$)		-88		dBC	
1.1 MHz Analog Output ($\pm 250 \mathrm{kHz}$)		-86		dBC	
1.1 MHz Analog Output ($\pm 1 \mathrm{MHz}$)		-85		dBC	
15.1 MHz Analog Output ($\pm 10 \mathrm{kHz}$)		-90		dBC	
15.1 MHz Analog Output ($\pm 50 \mathrm{kHz}$)		-87		dBC	
15.1 MHz Analog Output ($\pm 250 \mathrm{kHz}$)		-85		dBC	
15.1 MHz Analog Output ($\pm 1 \mathrm{MHz}$)		-83		dBC	
40.1 MHz Analog Output ($\pm 10 \mathrm{kHz}$)		-90		dBC	
40.1 MHz Analog Output ($\pm 50 \mathrm{kHz}$)		-87		dBC	
40.1 MHz Analog Output ($\pm 250 \mathrm{kHz}$)		-84		dBC	
40.1 MHz Analog Output ($\pm 1 \mathrm{MHz}$)		-82		dBC	
75.1 MHz Analog Output ($\pm 10 \mathrm{kHz}$)		-87		dBC	

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
75.1 MHz Analog Output ($\pm 50 \mathrm{kHz}$)		-85		dBc	
75.1 MHz Analog Output ($\pm 250 \mathrm{kHz}$)		-83		dBc	
75.1 MHz Analog Output ($\pm 1 \mathrm{MHz}$)		-82		dBc	
100.3 MHz Analog Output ($\pm 10 \mathrm{kHz}$)		-87		dBc	
100.3 MHz Analog Output ($\pm 50 \mathrm{kHz}$)		-85		dBc	
100.3 MHz Analog Output ($\pm 250 \mathrm{kHz}$)		-83		dBc	
100.3 MHz Analog Output ($\pm 1 \mathrm{MHz}$)		-81		dBc	
200.3 MHz Analog Output ($\pm 10 \mathrm{kHz}$)		-87		dBc	
200.3 MHz Analog Output ($\pm 50 \mathrm{kHz}$)		-85		dBc	
200.3 MHz Analog Output ($\pm 250 \mathrm{kHz}$)		-83		dBc	
200.3 MHz Analog Output ($\pm 1 \mathrm{MHz}$)		-81		dBC	
PHASE NOISE CHARACTERISTICS					
Residual Phase Noise @ 15.1 MHz (fout)					
@ 1 kHz Offset		-150		$\mathrm{dBC} / \mathrm{Hz}$	
@ 10 kHz Offset		-159		$\mathrm{dBC} / \mathrm{Hz}$	
@ 100 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
Residual Phase Noise @ 40.1 MHz (fout)					
@ 1 kHz Offset		-142		$\mathrm{dBC} / \mathrm{Hz}$	
@ 10 kHz Offset		-151		$\mathrm{dBC} / \mathrm{Hz}$	
@ 100 kHz Offset		-160		$\mathrm{dBC} / \mathrm{Hz}$	
@ 1 MHz Offset		-162		$\mathrm{dBC} / \mathrm{Hz}$	
Residual Phase Noise @ 75.1 MHz (fout)					
@ 1 kHz Offset		-135		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-146		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-154		$\mathrm{dBC} / \mathrm{Hz}$	
@ 1 MHz Offset		-157		$\mathrm{dBc} / \mathrm{Hz}$	
Residual Phase Noise @ 100.3 MHz (fout)					
@ 1 kHz Offset		-134		$\mathrm{dBC} / \mathrm{Hz}$	
@ 10 kHz Offset		-144		$\mathrm{dBC} / \mathrm{Hz}$	
@ 100 kHz Offset		-152		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
Residual Phase Noise @ 15.1 MHz (fout) with REFCLK Multiplier Enabled 5×					
@ 1 kHz Offset		-139		$\mathrm{dBC} / \mathrm{Hz}$	
@ 10 kHz Offset		-149		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
Residual Phase Noise @ 40.1 MHz (fout) with REFCLK Multiplier Enabled 5×					
@ 1 kHz Offset		-130		$\mathrm{dBC} / \mathrm{Hz}$	
@ 10 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-139		$\mathrm{dBc} / \mathrm{Hz}$	
Residual Phase Noise @ 75.1 MHz (four) with REFCLK Multiplier Enabled $5 \times$					
@ 1 kHz Offset		-123		$\mathrm{dBC} / \mathrm{Hz}$	
@ 10 kHz Offset		-134		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-138		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	

AD9959

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
Residual Phase Noise @ 100.3 MHz (fout) with REFCLK Multiplier Enabled 5× @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset @ 1 MHz Offset Residual Phase Noise @ 15.1 MHz (fout) with REFCLK Multiplier Enabled 20× @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset @ 1 MHz Offset Residual Phase Noise @ 40.1 MHz (fout) with REFCLK Multiplier Enabled 20× @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset @ 1 MHz Offset Residual Phase Noise @ 75.1 MHz (fout) with REFCLK Multiplier Enabled 20× @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset @ 1 MHz Offset Residual Phase Noise @ 100.3 MHz (fout) with REFCLK Multiplier Enabled 20× @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset @ 1 MHz Offset		$\begin{aligned} & -120 \\ & -130 \\ & -135 \\ & -129 \\ & -127 \\ & -136 \\ & -139 \\ & -138 \\ & \\ & -117 \\ & -128 \\ & -132 \\ & -130 \\ & \hline-110 \\ & -121 \\ & -125 \\ & -123 \\ & \hline-107 \\ & -119 \\ & -121 \\ & -119 \end{aligned}$		$\mathrm{dBc} / \mathrm{Hz}$ dBc/Hz $\mathrm{dBc} / \mathrm{Hz}$	
SERIAL PORT TIMING CHARACTERISTICS Maximum Frequency Serial Clock (SCLK) Minimum SCLK Pulse Width Low (tpwL) Minimum SCLK Pulse Width High (tpwh) Minimum Data Setup Time (tos) Minimum Data Hold Time Minimum $\overline{\mathrm{CS}}$ Setup Time (tpre) Minimum Data Valid Time for Read Operation	$\begin{aligned} & 1.6 \\ & 2.2 \\ & 2.2 \\ & 0 \\ & 1.0 \\ & 12 \end{aligned}$		200	MHz ns ns ns ns ns ns	
MISCELLANEOUS TIMING CHARACTERISTICS MASTER_RESET Minimum Pulse Width I/O_UPDATE Minimum Pulse Width Minimum Setup Time (I/O_UPDATE to SYNC_CLK) Minimum Hold Time (I/O_UPDATE to SYNC_CLK) Minimum Setup Time (Profile Inputs to SYNC_CLK) Minimum Hold Time (Profile Inputs to SYNC_CLK) Minimum Setup Time (SDIO Inputs to SYNC_CLK) Minimum Hold Time (SDIO Inputs to SYNC_CLK) Propagation Time Between REF_CLK and SYNC_CLK Profile Pin Toggle Rate	$\begin{aligned} & 1 \\ & 1 \\ & 4.8 \\ & 0 \\ & 5.4 \\ & 0 \\ & 2.5 \\ & 0 \\ & 2.25 \end{aligned}$	3.5	$\begin{aligned} & 5.5 \\ & 2 \end{aligned}$	ns Sync clocks	Min pulse width = 1 sync clock period Min pulse width = 1 sync clock period Rising edge to rising edge Rising edge to rising edge
```CMOS LOGIC INPUTS VIH VIL Logic 1 Current Logic 0 Current Input Capacitance```	2.0	3 $-12$   2	0.8 12	V   V   $\mu \mathrm{A}$   $\mu \mathrm{A}$   pF	


Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
$\begin{aligned} & \text { CMOS LOGIC OUTPUTS } \\ & V_{\text {oH }} \\ & \mathrm{V}_{\mathrm{oL}} \\ & \hline \end{aligned}$	2.7		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	1 mA load
POWER SUPPLY   Total Power Dissipation—All Channels On, Single-Tone Mode   Total Power Dissipation-All Channels On, with Sweep Accumulator   Total Power Dissipation-Full Power-Down   IAvod-All Channels On, Single-Tone Mode   IAvod-All Channels On, Sweep Accumulator, REFCLK   Multiplier and 10-Bit Output Scalar Enabled   Iovod-All Channels On, Single-Tone Mode   Iovod-All Channels On, Sweep Accumulator, REFCLK   Multiplier and 10-Bit Output Scalar Enabled   Iovod_Io   Iavod Power-Down Mode   Iovod Power-Down Mode		$\begin{aligned} & 540 \\ & 580 \\ & 13 \\ & 155 \\ & 160 \\ & 105 \\ & 125 \\ & \\ & \\ & 0.7 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 635 \\ & 680 \\ & \\ & 180 \\ & 185 \\ & 125 \\ & 145 \\ & 40 \\ & 30 \end{aligned}$	mW   mW   mW   mA	Dominated by supply variation   Dominated by supply variation $\begin{aligned} & \mathrm{I}_{\text {DVDD }}=\text { read } \\ & \mathrm{I}_{\text {DVDD }}=\text { write } \end{aligned}$
DATA LATENCY (PIPELINE DELAY) SINGLE-TONE MODE2,3   Frequency, Phase, and Amplitude Words to DAC Output with Matched Latency Enabled   Frequency Word to DAC Output with Matched Latency Disabled   Phase Offset Word to DAC Output with Matched Latency Disabled   Amplitude Word to DAC Output with Matched Latency Disabled	29   29   25   17			$\begin{aligned} & \text { SYSCLK } \\ & \text { s } \\ & \text { SYSCLK } \\ & \text { s } \\ & \text { SYSCLK } \\ & \text { s } \\ & \text { SYSCLK } \\ & \text { s } \end{aligned}$	
DATA LATENCY (PIPELINE DELAY) MODULATION MODE ${ }^{3,4}$ Frequency Word to DAC Output   Phase Offset Word to DAC Output   Amplitude Word to DAC Output	34   29   21			$\begin{aligned} & \text { SYSCLK } \\ & \text { s } \\ & \text { SYSCLK } \\ & \text { s } \\ & \text { SYSCLK } \\ & \text { s } \\ & \hline \end{aligned}$	
DATA LATENCY (PIPELINE DELAY) LINEAR SWEEP MODE ${ }^{3,4}$   Frequency Rising/Falling Delta Tuning Word to DAC Output   Phase Offset Rising/Falling Delta Tuning Word to DAC Output   Amplitude Rising/Falling Delta Tuning Word to DAC Output	41   37 $29$			$\begin{aligned} & \text { SYSCLK } \\ & \text { s } \\ & \text { SYSCLK } \\ & \text { s } \\ & \text { SYSCLK } \\ & \text { s } \\ & \hline \end{aligned}$	

[^0]
## AD9959

## ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
DVDD_I/O (Pin 49)	4 V
AVDD, DVDD	2 V
Digital Input Voltage (DVDD_I/O $=3.3 \mathrm{~V}$ )	-0.7 V to +4 V
Digital Output Current	5 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (10 sec Soldering)	$300^{\circ} \mathrm{C}$
$\theta_{\mathrm{JA}}$	$21^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{f}}$	$2^{\circ} \mathrm{C} / \mathrm{W}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



NOTES

1. THE EXPOSED EPAD ON BOTTOM SIDE OF PACKAGE IS AN ELECTRICAL CONNECTION AND MUST BE SOLDERED TO GROUND.
2. PIN 49 IS DVDD_I/O AND IS TIED TO 3.3V.

Figure 3. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	I/O ${ }^{1}$	Description
1	SYNC_IN	I	Used to Synchronize Multiple AD9959 Devices. Connects to the SYNC_OUT pin of the master AD9959 device.
2	SYNC_OUT	0	Used to Synchronize Multiple AD9959 Devices. Connects to the SYNC_IN pin of the slave AD9959 devices.
3	MASTER_RESET	1	Active High Reset Pin. Asserting the MASTER_RESET pin forces the AD9959 internal registers to their default state, as described in the Register Maps and Bit Descriptions section.
4	PWR_DWN_CTL	1	External Power-Down Control.
$\begin{aligned} & 5,7,11,15,19,21, \\ & 26,31,33,37,39 \end{aligned}$	AVDD	I	Analog Power Supply Pins (1.8V).
$\begin{aligned} & 6,10,12,16,18,20 \\ & 25,28,32,34,38 \end{aligned}$	AGND	1	Analog Ground Pins.
45, 55	DVDD	1	Digital Power Supply Pins (1.8V).
44,56	DGND	1	Digital Power Ground Pins.
8	CH2_IOUT	0	True DAC Output. Terminates into AVDD.
9	$\overline{\mathrm{CH} 2 _ \text {IOUT }}$	0	Complementary DAC Output. Terminates into AVDD.
13	CH3_IOUT	0	True DAC Output. Terminates into AVDD.
14	CH3_IOUT	0	Complementary DAC Output. Terminates into AVDD.
17	DAC_RSET	1	Establishes the Reference Current for All DACs. A $1.91 \mathrm{k} \Omega$ resistor (nominal) is connected from Pin 17 to AGND.
22	$\overline{\text { REF_CLK }}$	1	Complementary Reference Clock/Oscillator Input. When the REF_CLK is operated in single-ended mode, this pin should be decoupled to AVDD or AGND with a $0.1 \mu \mathrm{~F}$ capacitor.
23	REF_CLK	1	Reference Clock/Oscillator Input. When the REF_CLK is operated in single-ended mode, this is the input. See the Modes of Operation section for the reference clock configuration.


Pin No.	Mnemonic	1/0 ${ }^{1}$	Description
24	CLK_MODE_SEL	I	Control Pin for the Oscillator Section. Caution: Do not drive this pin beyond 1.8 V . When high $(1.8 \mathrm{~V})$, the oscillator section is enabled to accept a crystal as the REF_CLK source. When low, the oscillator section is bypassed.
27	LOOP_FILTER	I	Connects to the external zero compensation network of the PLL loop filter. Typically, the network consists of a $0 \Omega$ resistor in series with a 680 pF capacitor tied to AVDD.
29	$\overline{\mathrm{CHO} \text { _IOUT }}$	0	Complementary DAC Output. Terminates into AVDD.
30	CHO_IOUT	0	True DAC Output. Terminates into AVDD.
35	$\overline{\text { CH1_IOUT }}$	O	Complementary DAC Output. Terminates into AVDD.
36	CH1_IOUT	0	True DAC Output. Terminates into AVDD.
40 to 43	P0 to P3	I	Data pins used for modulation (FSK, PSK, ASK), to start/stop the sweep accumulators or used to ramp up/ramp down the output amplitude. The data is synchronous to the SYNC_CLK (Pin 54). The data inputs must meet the setup and hold time requirements of the SYNC_CLK. The functionality of these pins is controlled by the profile pin configuration (PPC) bits (FR1[14:12]).
46	I/O_UPDATE	1	A rising edge transfers data from the serial I/O port buffer to active registers. I/O_UPDATE is synchronous to the SYNC_CLK (Pin 54). I/O_UPDATE must meet the setup and hold time requirements of the SYNC_CLK to guarantee a fixed pipeline delay of data to the DAC output; otherwise, a $\pm 1$ SYNC_CLK period of pipeline uncertainty exists. The minimum pulse width is one SYNC_CLK period.
47	$\overline{C S}$	I	Active Low Chip Select. Allows multiple devices to share a common I/O bus (SPI).
48	SCLK	1	Serial Data Clock for I/O Operations. Data bits are written on the rising edge of SCLK and read on the falling edge of SCLK.
49	DVDD_I/O	1	3.3 V Digital Power Supply for SPI Port and Digital I/O.
50	SDIO_0	I/O	Data Pin SDIO_0 is dedicated to the serial port I/O only.
51, 52	SDIO_1, SDIO_2	I/O	Data Pin SDIO_1 and Data Pin SDIO_2 can be used for the serial I/O port or used to initiate a ramp-up/ramp-down (RU/RD) of the DAC output amplitude.
53	SDIO_3	I/O	Data Pin SDIO_3 can be used for the serial I/O port or to initiate a ramp-up/ramp-down (RU/RD) of the DAC output amplitude. In single-bit or 2-bit modes, SDIO_3 is used for SYNC_I/O. If the SYNC_I/O function is not used, tie to ground or Logic 0 . Do not let SDIO_3 float in single-bit or 2-bit modes.
54	SYNC_CLK	0	The SYNC_CLK runs at one-fourth the system clock rate; it can be disabled. I/O_UPDATE or data (Pin 40 to Pin 43) is synchronous to the SYNC_CLK. To guarantee a fixed pipeline delay of data to DAC output, I/O_UPDATE or data (Pin 40 to Pin 43) must meet the setup and hold time requirements to the rising edge of SYNC_CLK; otherwise, a $\pm 1$ SYNC_CLK period of uncertainty occurs.

[^1]
## TYPICAL PERFORMANCE CHARACTERISTICS




Figure 5. Wideband SFDR, $f_{\text {OUT }}=40.1 \mathrm{MHz}, f_{C L K}=500 \mathrm{MSPS}$


Figure 6. Wideband SFDR, $f_{\text {OUT }}=100.3 \mathrm{MHz}, f_{C L K}=500 \mathrm{MSPS}$


Figure 7. Wideband SFDR, fout $=15.1 \mathrm{MHz}, f_{\text {CLK }}=500 \mathrm{MSPS}$


Figure 8. Wideband SFDR, $f_{\text {OUT }}=75.1 \mathrm{MHz}, f_{\text {CLK }}=500 \mathrm{MSPS}$


Figure 9. Wideband SFDR, fout $=200.3 \mathrm{MHz}, f_{C L K}=500 \mathrm{MSPS}$

## AD9959



Figure 10. NBSFDR, $\pm 1 \mathrm{MHz}, f_{\text {OUT }}=1.1 \mathrm{MHz}, f_{C L K}=500 \mathrm{MSPS}$


Figure 11. NBSFDR, $\pm 1 \mathrm{MHz}, f_{\text {OUT }}=40.1 \mathrm{MHz}, f_{C L K}=500 \mathrm{MSPS}$


Figure 12. NBSFDR, $\pm 1 \mathrm{MHz}, f_{\text {OUt }}=100.3 \mathrm{MHz}, f_{\text {CLK }}=500 \mathrm{MSPS}$


Figure 13. NBSFDR, $\pm 1 \mathrm{MHz}, f_{\text {OUT }}=15.1 \mathrm{MHz}, f_{C L K}=500 \mathrm{MSPS}$


Figure 14. NBSFDR, $\pm 1 \mathrm{MHz}, f_{\text {OUT }}=75.1 \mathrm{MHz}, f_{\text {CLK }}=500 \mathrm{MSPS}$


Figure 15. NBSFDR, $\pm 1 \mathrm{MHz}, f_{\text {OUt }}=200.3 \mathrm{MHz}, f_{C L K}=500 \mathrm{MSPS}$


Figure 16. Residual Phase Noise (SSB) with fout $=15.1 \mathrm{MHz}, 40.1 \mathrm{MHz}$, 75.1 MHz, 100.3 MHz; $f_{C L K}=500 \mathrm{MHz}$ with REFCLK Multiplier Bypassed


Figure 17. Residual Phase Noise (SSB) with fout $=15.1 \mathrm{MHz}, 40.1 \mathrm{MHz}$, 75.1 MHz, 100.3 MHz; $f_{C L K}=500 \mathrm{MHz}$ with REFCLK Multiplier $=5 \times$


Figure 18. Residual Phase Noise (SSB) with fout $=15.1 \mathrm{MHz}, 40.1 \mathrm{MHz}$, 75.1 MHz, 100.3 MHz; $f_{C L K}=500 \mathrm{MHz}$ with REFCLK Multiplier $=20 \times$


Figure 19. Channel Isolation at 500 MSPS Operation; Conditions are Channel of Interest Fixed at 110.3 MHz , the Other Channels Are Frequency Swept


Figure 20. Power Dissipation vs. Reference Clock Frequency vs. Channel(s) Power On/Off


Figure 21. Averaged Channel SFDR vs. fout

## AD9959

## APPLICATION CIRCUITS



Figure 22. Phase Array Radar Using Precision Frequency/Phase Control from DDS in FMCW or Pulsed Radar Applications; DDS Provides Either Continuous Wave or Frequency Sweep


Figure 23. Single-Sideband-Suppressed Carrier Upconversion


Figure 24. DDS in PLL Locking to Reference Offering Distribution with Fine Frequency and Delay Adjust Tuning


Figure 25. Synchronizing Multiple Devices to Increase Channel Capacity Using the AD9510 as a Clock Distributor for the Reference and SYNC_CLK


Figure 26. DDS Providing Stimulus for Acoustic Optical Tunable Filter


Figure 27. Agile Clock Source with Duty Cycle Control Using the Phase Offset Value in DDS to Change the DC Voltage to the Comparator

## AD9959



Figure 28. Clock Generation Circuit Using the AD9512/AD9513/AD9514/AD9515 Series of Clock Distribution Chips

## EQUIVALENT INPUT AND OUTPUT CIRCUITS



Figure 29. CMOS Digital Inputs


TERMINATE OUTPUTS
INTO AVDD. DO NOT
EXCEED VOLTAGE
OUTPUTS.
Figure 30. DAC Outputs


## THEORY OF OPERATION

## DDS CORE

The AD9959 has four DDS cores, each consisting of a 32-bit phase accumulator and phase-to-amplitude converter. Together, these digital blocks generate a digital sine wave when the phase accumulator is clocked and the phase increment value (frequency tuning word) is greater than 0 . The phase-to-amplitude converter simultaneously translates phase information to amplitude information by a $\cos (\theta)$ operation.
The output frequency (fout) of each DDS channel is a function of the rollover rate of each phase accumulator. The exact relationship is given in the following equation:

$$
f_{\text {OUT }}=\frac{(F T W)\left(f_{S}\right)}{2^{32}}
$$

where:
$f_{s}$ is the system clock rate.
$F T W$ is the frequency tuning word and is $0 \leq$ FTW $\leq 2^{31}$.
$2^{32}$ represents the phase accumulator capacity.
Because all four channels share a common system clock, they are inherently synchronized.
The DDS core architecture also supports the capability to phase offset the output signal, which is performed by the channel phase offset word (CPOW). The CPOW is a 14 -bit register that stores a phase offset value. This value is added to the output of the phase accumulator to offset the current phase of the output signal. Each channel has its own phase offset word register. This feature can be used for placing all channels in a known phase relationship relative to one another. The exact value of phase offset is given by the following equation:

$$
\Phi=\left(\frac{P O W}{2^{14}}\right) \times 360^{\circ}
$$

## DIGITAL-TO-ANALOG CONVERTER

The AD9959 incorporates four 10-bit current output DACs. The DAC converts a digital code (amplitude) into a discrete analog quantity. The DAC current outputs can be modeled as a current source with high output impedance (typically $100 \mathrm{k} \Omega$ ). Unlike many DACs, these current outputs require termination into AVDD via a resistor or a center-tapped transformer for expected current flow.
Each DAC has complementary outputs that provide a combined full-scale output current (Iout $+\mathrm{I}_{\text {OUT }}$ ). The outputs always sink current, and their sum equals the full-scale current at any point in time. The full-scale current is controlled by means of an external resistor ( $\mathrm{R}_{\mathrm{SET}}$ ) and the scalable DAC current control bits discussed in the Modes of Operation section. The resistor, $\mathrm{R}_{\text {SET }}$, is connected between the DAC_RSET pin and analog ground (AGND). The full-scale current is inversely proportional to the resistor value as follows:

$$
R_{S E T}=\frac{18.91}{I_{O U T}(\max )}
$$

The maximum full-scale output current of the combined DAC outputs is 15 mA , but limiting the output to 10 mA provides optimal spurious-free dynamic range (SFDR) performance. The DAC output voltage compliance range is AVDD +0.5 V to AVDD - 0.5 V . Voltages developed beyond this range may cause excessive harmonic distortion. Proper attention should be paid to the load termination to keep the output voltage within its compliance range. Exceeding this range could potentially damage the DAC output circuitry.


Figure 32. Typical DAC Output Termination Configuration

## MODES OF OPERATION

There are many combinations of modes (for example, singletone, modulation, linear sweep) that the AD9959 can perform simultaneously. However, some modes require multiple data pins, which can impose limitations. The following guidelines can help determine if a specific combination of modes can be performed simultaneously by the AD9959.

## CHANNEL CONSTRAINT GUIDELINES

- Single-tone mode, two-level modulation mode, and linear sweep mode can be enabled on any channel and in any combination at the same time.
- Any one or two channels in any combination can perform four-level modulation. The remaining channels can be in single-tone mode.
- Any channel can perform eight-level modulation. The three remaining channels can be in single-tone mode.
- Any channel can perform 16-level direct modulation. The three remaining channels can be in single-tone mode.
- The RU/RD function can be used on all four channels in single-tone mode. See the Output Amplitude Control Mode section for the RU/RD function.
- When Profile Pin P2 and Profile Pin P3 are used for RU/RD, any two channels can perform two-level modulation with RU/RD or any two channels can perform linear frequency or phase sweep with RU/RD. The other two channels can be in single-tone mode.
- When Profile Pin P3 is used for RU/RD, any channel can be used in eight-level modulation with RU/RD. The other three channels can be in single-tone mode.
- When the SDIO_1, SDIO_2, and SDIO_3 pins are used for RU/RD, any one or two channels, any three channels, or all four channels can perform two-level modulation with RU/RD. Any channels not in the two-level modulation can be in single-tone mode.
- When the SDIO_1, SDIO_2, and SDIO_3 pins are used for RU/RD, any one or two channels can perform four-level modulation with RU/RD. Any channels not in four-level modulation can be in single-tone mode.
- When the SDIO_1, SDIO_2, and SDIO_3 pins are used for RU/RD, any channel can perform 16-level modulation with RU/RD. The other three channels can be in single-tone mode.
- Amplitude modulation, linear amplitude sweep modes, and the RU/RD function cannot operate simultaneously, but frequency and phase modulation can operate simultaneously as the RU/RD function.


## POWER SUPPLIES

The AVDD and DVDD supply pins provide power to the DDS core and supporting analog circuitry. These pins connect to a 1.8 V nominal power supply.

The DVDD_I/O pin connects to a 3.3 V nominal power supply. All digital inputs are 3.3 V logic except for the CLK_MODE_SEL input. CLK_MODE_SEL (Pin 24) is an analog input and should be operated by 1.8 V logic.

## SINGLE-TONE MODE

Single-tone mode is the default mode of operation after a master reset signal. In this mode, all four DDS channels share a common address location for the frequency tuning word (Register 0x04) and phase offset word (Register 0x05). Channel enable bits are provided in combination with these shared addresses. As a result, the frequency tuning word and/or phase offset word can be independently programmed between channels (see the following Step 1 through Step 5). The channel enable bits do not require an I/O update to enable or disable a channel.
See the Register Maps and Bit Descriptions section for a description of the channel enable bits in the channel select register (CSR, Register 0x00). The channel enable bits are enabled or disabled immediately after the CSR data byte is written.

Address sharing enables channels to be written simultaneously, if desired. The default state enables all channel enable bits. Therefore, the frequency tuning word and/or phase offset word is common to all channels but written only once through the serial I/O port.
The following steps present a basic protocol to program a different frequency tuning word and/or phase offset word for each channel using the channel enable bits.

1. Power up the DUT and issue a master reset. A master reset places the part in single-tone mode and single-bit mode for serial programming operations (refer to the Serial I/O Modes of Operation section). Frequency tuning words and phase offset words default to 0 at this point.
2. Enable only one channel enable bit (Register 0x00) and disable the other channel enable bits.
3. Using the serial I/O port, program the desired frequency tuning word (Register 0x04) and/or the phase offset word (Register 0x05) for the enabled channel.
4. Repeat Step 2 and Step 3 for each channel.
5. Send an I/O update signal. After an I/O update, all channels should output their programmed frequency and/or phase offset value.

## AD9959

## Single-Tone Mode—Matched Pipeline Delay

In single-tone mode, the AD9959 offers matched pipeline delay to the DAC input for all frequency, phase, and amplitude changes. This avoids having to deal with different pipeline delays between the three input ports for such applications. The feature is enabled by asserting the matched pipe delays active bit found in the channel function register (CFR, Register 0x03). This feature is available in single-tone mode only.

## REFERENCE CLOCK MODES

The AD9959 supports multiple reference clock configurations to generate the internal system clock. As an alternative to clocking the part directly with a high frequency clock source, the system clock can be generated using the internal, PLL-based reference clock multiplier. An on-chip oscillator circuit is also available for providing a low frequency reference signal by connecting a crystal to the clock input pins. Enabling these features allows the part to operate with a low frequency clock source and still provide a high update rate for the DDS and DAC. However, using the clock multiplier changes the output phase noise characteristics. For best phase noise performance, a clean, stable clock with a high slew is required (see Figure 17 and Figure 18).

Enabling the PLL allows multiplication of the reference clock frequency from $4 \times$ to $20 \times$, in integer steps. The PLL multiplication value is represented by a 5 -bit multiplier value. These bits are located in Function Register 1 (FR1, Register 0x01), Bits[22:18] (see the Register Maps and Bit Descriptions section).
When FR1[22:18] is programmed with values ranging from 4 to 20 (decimal), the clock multiplier is enabled. The integer value in the register represents the multiplication factor. The system clock rate with the clock multiplier enabled is equal to the reference clock rate multiplied by the multiplication factor. If FR1[22:18] is programmed with a value less than 4 or greater than 20, the clock multiplier is disabled and the multiplication factor is effectively 1.
Whenever the PLL clock multiplier is enabled or the multiplication value is changed, time should be allowed to lock the PLL (typically 1 ms ).
Note that the output frequency of the PLL is restricted to a frequency range of 100 MHz to 500 MHz . However, there is a VCO gain control bit that must be used appropriately. The VCO gain control bit defines two ranges (low/high) of frequency output. The VCO gain control bit defaults to low (see Table 1 for details).

The charge pump current in the PLL defaults to $75 \mu \mathrm{~A}$. This setting typically produces the best phase noise characteristics. Increasing the charge pump current may degrade phase noise, but it decreases the lock time and changes the loop bandwidth.
Enabling the on-chip oscillator for crystal operation is performed by driving CLK_MODE_SEL (Pin 24) to logic high (1.8 V logic). With the on-chip oscillator enabled, connection of an external crystal to the REF_CLK and $\overline{\text { REF_CLK }}$ inputs is made, producing a low frequency reference clock. The frequency of the crystal must be in the range of 20 MHz to 30 MHz .
Table 4 summarizes the clock modes of operation. See Table 1 for more details.

## Reference Clock Input Circuitry

The reference clock input circuitry has two modes of operation controlled by the logic state of Pin 24 (CLK_MODE_SEL). The first mode (logic low) configures as an input buffer. In this mode, the reference clock must be ac-coupled to the input due to internal dc biasing. This mode supports either differential or single-ended configurations. If single-ended mode is chosen, the complementary reference clock input ( Pin 22 ) should be decoupled to AVDD or AGND via a $0.1 \mu \mathrm{~F}$ capacitor. Figure 33 to Figure 35 exemplify typical reference clock configurations for the AD9959.


Figure 33. Differential Coupling from Single-Ended Source
The reference clock inputs can also support an LVPECL or PECL driver as the reference clock source.


Figure 34. Differential Clock Source Hook-Up
The second mode of operation ( $\operatorname{Pin} 24=\operatorname{logic~high~}=1.8 \mathrm{~V}$ ) provides an internal oscillator for crystal operation. In this mode, both clock inputs are dc-coupled via the crystal leads and are bypassed. The range of crystal frequencies supported is from 20 MHz to 30 MHz . Figure 35 shows the configuration for using a crystal.

Table 4. Clock Configuration

CLK_MODE_SEL, Pin 24	FR1[22:18] PLL Divider Ratio = M	Crystal Oscillator Enabled	System Clock (fsrscuk)	Min/Max Freq. Range (MHz)
High $=1.8 \mathrm{~V}$ Logic	$4 \leq M \leq 20$	Yes	$\mathrm{f}_{\text {SYscık }}=\mathrm{f}_{\text {osc }} \times \mathrm{M}$	$100<\mathrm{f}_{\text {SYSCLK }}<500$
High $=1.8 \mathrm{~V}$ Logic	$\mathrm{M}<4$ or $\mathrm{M}>20$	Yes	$\mathrm{f}_{\text {SYSCLK }}=\mathrm{f}_{\text {fSc }}$	$20<\mathrm{f}_{\text {SYSLIK }}<30$
Low	$4 \leq M \leq 20$	No	$\mathrm{f}_{\text {SYSCLK }}=\mathrm{f}_{\text {REFCLK }} \times \mathrm{M}$	$100<\mathrm{f}_{\text {SYSCLK }}<500$
Low	$\mathrm{M}<4$ or $\mathrm{M}>20$	No	$\mathrm{f}_{\text {SYSCLK }}=\mathrm{f}_{\text {REFCLK }}$	$0<$ fsysclk $<500$



Figure 35.Crystal Input Configuration

## SCALABLE DAC REFERENCE CURRENT CONTROL MODE

$\mathrm{R}_{\text {SET }}$ is common to all four DACs. As a result, the full-scale currents are equal by default. The scalable DAC reference can be used to set the full-scale current of each DAC independent from one another. This is accomplished by using the register bits CFR[9:8]. Table 5 shows how each DAC can be individually scaled for independent channel control. This scaling provides for binary attenuation.

Table 5. DAC Full-Scale Current Control

CFR[9:8]	LSB Current State
11	Full scale
01	Half scale
10	Quarter scale
00	Eighth scale

## POWER-DOWN FUNCTIONS

The AD9959 supports an externally controlled power-down feature and the more common software programmable powerdown bits found in previous Analog Devices DDS products.
The software control power-down allows the input clock circuitry, the DAC, and the digital logic (for each separate channel) to be individually powered down via unique control bits (CFR[7:6]). These bits are not active when the externally controlled powerdown pin (PWR_DWN_CTL) is high. When the input pin, PWR_DWN_CTL, is high, the AD9959 enters a power-down mode based on the FR1[6] bit. When the PWR_DWN_CTL input pin is low, the external power-down control is inactive.
When FR1[6] = 0 and the PWR_DWN_CTL input pin is high, the AD9959 is put into a fast recovery power-down mode. In this mode, the digital logic and the DAC digital logic are powered down. The DAC bias circuitry, PLL, oscillator, and clock input circuitry are not powered down.

When FR1[6] = 1 and the PWR_DWN_CTL input pin is high, the AD9959 is put into full power-down mode. In this mode, all functions are powered down. This includes the DAC and PLL, which take a significant amount of time to power up. When the PLL is bypassed, the PLL is shut down to conserve power.

When the PWR_DWN_CTL input pin is high, the individual power-down bits (CFR[7:6] and FR1[7]) are invalid (don't care) and unused. When the PWR_DWN_CTL input pin is low, the individual power-down bits control the power-down modes of operation.
Note that the power-down signals are all designed such that Logic 1 indicates the low power mode and Logic 0 indicates the powered-up mode.

## MODULATION MODE

The AD9959 can perform 2-/4-/8-/16-level modulation of frequency, phase, or amplitude. Modulation is achieved by applying data to the profile pins. Each channel can be programmed separately, but the ability to modulate multiple channels simultaneously is constrained by the limited number of profile pins. For instance, 16 -level modulation uses all four profile pins, which inhibits modulation for three channels.

In addition, the AD9959 has the ability to ramp up or ramp down the output amplitude before, during, or after a modulation (FSK, PSK only) sequence. This is performed by using the 10 -bit output scalar. If the $\mathrm{RU} / \mathrm{RD}$ feature is desired, unused profile pins or unused SDIO_1/SDIO_2/SDIO_3 pins can be configured to initiate the operation. See the Output Amplitude Control Mode section for more details of the RU/RD feature.

In modulation mode, each channel has its own set of control bits to determine the type (frequency, phase, or amplitude) of modulation. Each channel has 16 profile (channel word) registers for flexibility. Register 0x0A through Register 0x18 are profile registers for modulation of frequency, phase, or amplitude. Register 0x04, Register 0x05, and Register 0x06 are dedicated registers for frequency, phase, and amplitude, respectively. These registers contain the first frequency, phase offset, and amplitude word.
Frequency modulation has 32 -bit resolution, phase modulation is 14 bits, and amplitude is 10 bits. When modulating phase or amplitude, the word value must be MSB aligned in the profile (channel word) registers and the unused bits are don't care bits.

## AD9959

In modulation mode, the amplitude frequency phase (AFP) select bits (CFR[23:22]) and modulation level bits (FR1[9:8]) are programmed to configure the modulation type and level (see Table 6 and Table 7). Note that the linear sweep enable bit must be set to Logic 0 in direct modulation mode.

Table 6. Modulation Type Configuration

AFP Select   (CFR[23:22])	Linear Sweep Enable   (CFR[14])	Description
00	X	Modulation disabled
01	0	Amplitude modulation
10	0	Frequency modulation
11	0	Phase modulation

Table 7. Modulation Level Selection

Modulation Level (FR1[9:8])	Description
00	Two-level modulation
01	Four-level modulation
10	Eight-level modulation
11	$16-l e v e l ~ m o d u l a t i o n ~$

When modulating, the RU/RD function can be limited based on pins available for controlling the feature. The SDIO_x pins are for RU/RD only, not for modulation.

Table 8. RU/RD Profile Pin Assignments

Ramp-Up/Ramp-Down   (RU/RD) (FR1[11:10])	Description
00	RU/RD disabled   Only Profile Pin P2 and Profile Pin P3   available for RU/RD operation
10	Only Profile Pin P3 available for RU/RD   operation
11	Only SDIO_1, SDIO_2, and SDIO_3   pins available for RU/RD operation;   this forces the serial I/O to be used   only in 1-bit mode

If the profile pins are used for RU/RD, Logic 0 is for ramp-up and Logic 1 is for ramp-down.

Because of the number of available channels and limited data pins, it is necessary to assign the profile pins and/or SDIO_1, SDIO_2, and SDIO_3 pins to a dedicated channel. This is controlled by the profile pin configuration (PPC) bits (FR1[14:12]). Each of the following modulation descriptions incorporates data pin assignments.

## Two-Level Modulation—No RU/RD

The modulation level bits (FR1[9:8]) are set to 00 (two-level). The AFP select bits (CFR[23:22]) are set to the desired modulation type. The RU/RD bits (FR1[11:10]) and the linear sweep enable bit (CFR[14]) are disabled. Table 9 displays how the profile pins and channels are assigned.

As shown in Table 9, only Profile Pin P0 can be used to modulate Channel 0. If frequency modulation is selected and Profile Pin P0 is Logic 0, Channel Frequency Tuning Word 0 (Register 0x04) is chosen; if Profile Pin P0 is Logic 1, Channel Word 1 (Register 0x0A) is chosen.

## Four-Level Modulation-No RU/RD

The modulation level bits are set to 01 (four-level). The AFP select bits (CFR[23:22]) are set to the desired modulation type. The RU/RD bits (FR1[11:10]) and the linear sweep enable bit (CFR[14]) are disabled. Note that the other two channels not being used should have their AFP select bits set to 00 due to the lack of profile pins. Table 10 displays how the profile pins and channels are assigned to each other.

For the conditions in Table 10, the profile (channel word) register chosen is based on the 2-bit value presented to Profile Pins [P0:P1] or Profile Pins [P2:P3].
For example, if $\mathrm{PPC}=010,[\mathrm{P} 0: \mathrm{P} 1]=11$, and $[\mathrm{P} 2: \mathrm{P} 3]=01$, then the contents of the Channel Word 3 register of Channel 0 are presented to the output of Channel 0 and the contents of the Channel Word 1 register of Channel 3 are presented to the output of Channel 3.

Table 9. Profile Pin Channel Assignments

Profile Pin Configuration (PPC) (FR1[14:12])	P0	P1	P2	P3	Description
$X X X$	CH0	CH1	CH2	CH3	Two-level modulation, all channels, no RU/RD

Table 10. Profile Pin and Channel Assignments

Profile Pin Configuration (PPC) (FR1[14:12])	P0	P1	P2	P3	Description
000	CH 0	CH 0	CH 1	CH 1	Four-level modulation on CH0 and CH1, no RU/RD
001	$\mathrm{CH0}$	CH 0	CH 2	CH 2	Four-level modulation on CH0 and CH2, no RU/RD
010	CH 0	CH 0	CH 3	CH 3	Four-level modulation on CH0 and CH3, no RU/RD
011	CH 1	CH 1	CH 2	CH 2	Four-level modulation on CH1 and CH2, no RU/RD
100	CH 1	CH 1	CH 3	CH 3	Four-level modulation on CH1 and CH3, no RU/RD
101	CH 2	CH 2	CH 3	CH 3	Four-level modulation on CH2 and CH3, no RU/RD

## Eight-Level Modulation—No RU/RD

The modulation level bits (FR1[9:8]) are set to 10 (eight-level). The AFP select bits (CFR[23:22]) are set to a nonzero value. The RU/RD bits (FR1[11:10]) and the linear sweep enable bit (CFR[14]) are disabled. Note that the AFP select bits of the three channels not being used must be set to 00 . Table 11 shows the assignment of profile pins and channels.
For the condition in Table 11, the choice of channel word registers is based on the 3-bit value presented to Profile Pins [P0:P2]. For example, if $\mathrm{PPC}=\mathrm{X} 10$ and $[\mathrm{P} 0: \mathrm{P} 2]=111$, the contents of the Channel Word 7 register of Channel 2 are presented to the output of Channel 2.

## 16-Level Modulation—No RU/RD

The modulation level bits (FR1[9:8]) are set to 11 (16-level). The AFP select bits (CFR[23:22]) are set to the desired modulation type. The RU/RD bits (FR1[11:10]) and the linear sweep enable bit (CFR[14]) are disabled. The AFP select bits of the three channels not being used must be set to 00 . Table 12 displays how the profile pins and channels are assigned.

For the conditions in Table 12, the profile register chosen is based on the 4 -bit value presented to Profile Pins [P0:P3]. For example, if $\mathrm{PPC}=\mathrm{X} 11$ and $[\mathrm{P} 0: \mathrm{P} 3]=1110$, the contents of the Channel Word 14 register of Channel 3 is presented to the output of Channel 3.

## Two-Level Modulation Using Profile Pins for RU/RD

When the RU/RD bits = 01, Profile Pin P2 and Profile Pin P3 are available for RU/RD. Note that only a modulation level of two is available in this mode. See Table 13 for available pin assignments.

## Eight-Level Modulation Using a Profile Pin for RU/RD

When the RU/RD bits = 10 , Profile Pin P3 is available for RU/RD. Note that only a modulation level of eight is available in this mode. See Table 14 for available pin assignments.

Table 11. Profile Pin and Channel Assignments for Eight-Level Modulation (No RU/RD)

Profile Pin Config. (PPC)   (FR1[14:12])	P0	P1	P2	P3	Description
X00	CH0	CH0	CH0	X	Eight-level modulation on CH0, no RU/RD
X01	CH 1	CH 1	CH 1	X	Eight-level modulation on CH1, no RU/RD
X10	CH 2	CH 2	CH 2	X	Eight-level modulation on CH2, no RU/RD
X11	CH 3	CH 3	$\mathrm{CH3}$	X	Eight-level modulation on CH3, no RU/RD

Table 12. Profile Pin and Channel Assignments for 16-Level Modulation (No RU/RD)

Profile Pin Config. (PPC)   (FR1[14:12])	P0	P1	P2	P3	Description
X00	CH0	CH0	CH0	CH0	16-level modulation on CH0, no RU/RD
X01	CH1	CH1	CH1	CH1	16-level modulation on CH1, no RU/RD
X10	CH2	CH2	CH2	CH2	16-level modulation on CH2, no RU/RD
X11	CH3	CH3	CH3	CH3	16-level modulation on CH3, no RU/RD

Table 13. Profile Pin and Channel Assignments for Two-Level Modulation (RU/RD Enabled)

Profile Pin Config. (PPC)   (FR1[14:12])	P0	P1	P2	P3	Description
000	CH 0	CH 1	$\mathrm{CH} 0 \mathrm{RU} / \mathrm{RD}$	$\mathrm{CH} 1 \mathrm{RU} / \mathrm{RD}$	Two-level modulation on CH0 and CH1 with RU/RD
001	CH 0	CH 2	$\mathrm{CH} 0 \mathrm{RU} / \mathrm{RD}$	$\mathrm{CH} 2 \mathrm{RU} / \mathrm{RD}$	Two-level modulation on CH 0 and CH 2 with RU/RD
010	CH 0	CH 3	$\mathrm{CH} 0 \mathrm{RU} / \mathrm{RD}$	$\mathrm{CH} 3 \mathrm{RU} / \mathrm{RD}$	Two-level modulation on CH 0 and CH 3 with RU/RD
011	CH 1	CH 2	$\mathrm{CH} 1 \mathrm{RU} / \mathrm{RD}$	$\mathrm{CH} 2 \mathrm{RU} / \mathrm{RD}$	Two-level modulation on CH 1 and CH 2 with RU/RD
100	CH 1	CH 3	$\mathrm{CH} 1 \mathrm{RU} / \mathrm{RD}$	$\mathrm{CH} 3 \mathrm{RU} / \mathrm{RD}$	Two-level modulation on CH 1 and CH3 with RU/RD
101	CH 2	CH 3	$\mathrm{CH} 2 \mathrm{RU} / \mathrm{RD}$	$\mathrm{CH} 3 \mathrm{RU} / \mathrm{RD}$	Two-level modulation on CH2 and CH3 with RU/RD

Table 14. Profile Pin and Channel Assignments for Eight-Level Modulation (RU/RD Enabled)

Profile Pin Config. (PPC)   (FR1[14:12])	P0	P1	P2	P3	Description
X00	CH 0	CH 0	$\mathrm{CH0}$	$\mathrm{CH0} \mathrm{RU/RD}$	Eight-level modulation on CH0 with RU/RD
X01	CH 1	CH 1	CH 1	$\mathrm{CH} 1 \mathrm{RU} / \mathrm{RD}$	Eight-level modulation on CH1 with RU/RD
X10	CH 2	CH 2	CH 2	$\mathrm{CH} 2 \mathrm{RU} / \mathrm{RD}$	Eight-level modulation on CH2 with RU/RD
X11	CH 3	CH 3	CH 3	$\mathrm{CH3} \mathrm{RU/RD}$	Eight-level modulation on CH3 with RU/RD


[^0]:    ${ }^{1}$ For the VCO frequency range of 160 MHz to 255 MHz , there is no guarantee of operation.
    ${ }^{2}$ Data latency is referenced to I/O_UPDATE.
    ${ }^{3}$ Data latency is fixed.
    ${ }^{4}$ Data latency is referenced to a profile change.

[^1]:    ${ }^{1} \mathrm{I}=$ input, $\mathrm{O}=$ output.

