: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1:2 Single-Ended, Low Cost, Active RF Splitter

Data Sheet

FEATURES

Ideal for CATV and terrestrial applications
Excellent frequency response
$1.6 \mathrm{GHz},-3 \mathrm{~dB}$ bandwidth
1 dB flatness to 1.0 GHz
Low noise figure: 4.0 dB
Low distortion
Composite second order (CSO): -62 dBc
Composite triple beat (CTB): -72 dBc
1 dB compression point of $\mathbf{8 . 2 5 \mathrm { dBm }}$
2.8 dB of gain per output channel
$\mathbf{2 5 ~ d B}$ output-to-output isolation, $50 \mathbf{~ M H z}$ to $1000 \mathbf{~ M H z}$
75Ω input and outputs
Integrated output resistors
Small package size: 16 -lead, $\mathbf{3} \mathbf{m m} \times 3 \mathrm{~mm}$ LFCSP

APPLICATIONS

Set-top boxes

Residential gateways

CATV distribution systems

Splitter modules

Digital cable ready (DCR) TVs

GENERAL DESCRIPTION

The ADA4304-2 is a 75Ω active splitter for use in applications where a lossless signal split is required. Typical applications include multituner digital set-top boxes, cable splitter modules, multituner/digital cable ready (DCR) televisions, and home gateways where traditional solutions require discrete passive splitter modules with separate fixed gain amplifiers.
The ADA4304-2 is fabricated using Analog Devices, Inc. proprietary silicon-germanium (SiGe), complementary bipolar process, enabling it to achieve very low levels of distortion with a noise figure of 4 dB . The part provides a low cost alternative that simplifies designs and improves system performance by integrating a signal splitter element and a gain block into a single IC. The ADA4304-2 is available in a 16 -lead LFCSP and operates in the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Figure 2. Gain $\left(S_{21}, S_{31}\right)$ vs. Frequency

COMPARABLE PARTS

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

- ADA4304-2: 1:2 Single-Ended, Low Cost, Active RF Splitter Data Sheet

REFERENCE MATERIALS \square

Product Selection Guide

- RF Source Booklet

DESIGN RESOURCES

- ADA4304-2 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADA4304-2 EngineerZone Discussions.
SAMPLE AND BUY \square
Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
Thermal Resistance 4
ESD Caution 4
REVISION HISTORY
6/2016-Rev. 0 to Rev. A
Changed CP-16-1 to CP-16-21 Throughout
Changes to Figure 4 and Table 4 5
Deleted Evaluation Boards Section, RF Layout ConsiderationsSection, Power Supply Section, and Figure 20; RenumberedSequentially 9
Deleted Figure 21 and Figure 22 10
Updated Outline Dimensions 11
Changes to Ordering Guide 11
Pin Configuration and Function Descriptions 5
Typical Performance Characteristics 6
Test Circuits 8
Applications information 9
Circuit Description 9
Outline Dimensions 10
Ordering Guide 10

ADA4304-2

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, 75 \Omega$ system, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE Bandwidth (-3 dB) Specified Frequency Range Gain ($\mathrm{S}_{21}, \mathrm{~S}_{31}$) 1 dB Gain Flatness	$\mathrm{f}=100 \mathrm{MHz}$; see Figure 17 and Figure 18	54	$\begin{aligned} & 1600 \\ & 2.8 \\ & 1000 \end{aligned}$	865	MHz MHz dB MHz
NOISE/DISTORTION PERFORMANCE Noise Figure ${ }^{1}$ Output IP3 Output IP2 Composite Triple Beat (CTB) Composite Second Order (CSO) Cross Modulation (CXM)	@ 54 MHz @ 550 MHz @ 865 MHz $\begin{aligned} & f_{1}=97.25 \mathrm{MHz}, f_{2}=103.25 \mathrm{MHz} \\ & f_{1}=97.25 \mathrm{MHz}, \mathrm{f}_{2}=103.25 \mathrm{MHz} \end{aligned}$ 135 channels, $15 \mathrm{dBmV} /$ channel, $\mathrm{f}=865 \mathrm{MHz}$ 135 channels, $15 \mathrm{dBmV} /$ channel, $\mathrm{f}=865 \mathrm{MHz}$ 135 channels, $15 \mathrm{dBmV} /$ channel, 100% modulation @ $15.75 \mathrm{kHz}, \mathrm{f}=865 \mathrm{MHz}$		$\begin{aligned} & 4.0 \\ & 4.5 \\ & 4.6 \\ & 26 \\ & 44.5 \\ & -72 \\ & -62 \\ & -69 \end{aligned}$		dB dB dB dBm dBm dBc dBc dBc
INPUT CHARACTERISTICS Input Return Loss (S_{11}) Output-to-Input Isolation ($\mathrm{S}_{12}, \mathrm{~S}_{13}$)	See Figure 17, Figure 18, and Figure 19 @ 54 MHz @ 550 MHz @ 865 MHz Either output, 54 MHz to 865 MHz @ 54 MHz @ 550 MHz @ 865 MHz		$\begin{aligned} & -15 \\ & -35.5 \\ & -13.3 \\ & -32 \\ & -32 \\ & -33 \end{aligned}$	$\begin{aligned} & -11 \\ & -22 \\ & -8 \\ & -30 \\ & -29 \\ & -31 \end{aligned}$	dB dB dB dB dB dB
OUTPUT CHARACTERISTICS Output Return Loss ($\mathrm{S}_{22}, \mathrm{~S}_{33}$) Output-to-Output Isolation $\left(\mathrm{S}_{23}, \mathrm{~S}_{32}\right)$ 1 dB Compression ($\mathrm{P}_{1 \mathrm{~dB}}$)	See Figure 17, Figure 18, and Figure 19 Either output, 54 MHz to 865 MHz @ 54 MHz @ 550 MHz @ 865 MHz Either output, 54 MHz to 865 MHz @ 54 MHz @ 550 MHz @ 865 MHz Output referred, $\mathrm{f}=100 \mathrm{MHz}$		$\begin{aligned} & -26.7 \\ & -22 \\ & -20 \\ & -26.7 \\ & -25.1 \\ & -25 \\ & 8.25 \end{aligned}$	$\begin{aligned} & -21 \\ & -15 \\ & -12 \end{aligned}$	dB dBm
POWER SUPPLY Nominal Supply Voltage Quiescent Supply Current		4.75	$\begin{aligned} & 5.0 \\ & 88 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 105 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	5.5 V
Power Dissipation	See Figure 3
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

$\theta_{J A}$ is specified for the device (including exposed pad) soldered to a high thermal conductivity 2 s 2 p circuit board, as described in EIA/JESD 51-7.

Table 3. Thermal Resistance

Package Type	θ_{JA}	Unit
16-Lead LFCSP (Exposed Pad)	98	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Maximum Power Dissipation

The maximum safe power dissipation in the ADA4304-2 package is limited by the associated rise in junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ on the die. At approximately $150^{\circ} \mathrm{C}$, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4304-2. Exceeding a junction temperature of $150^{\circ} \mathrm{C}$ for an extended period can result in changes in the silicon devices, potentially causing failure.

The power dissipated in the package $\left(\mathrm{P}_{\mathrm{D}}\right)$ is essentially equal to the quiescent power dissipation; the supply voltage (V_{S}) times the quiescent current (I_{s}). In Table 1, the maximum power dissipation of the ADA4304-2 can be calculated as

$$
P_{D(M A X)}=5.25 \mathrm{~V} \times 105 \mathrm{~mA}=551 \mathrm{~mW}
$$

Airflow increases heat dissipation, effectively reducing $\theta_{\text {JA }}$. In addition, more metal directly in contact with the package leads/exposed pad from metal traces, through-holes, ground, and power planes reduces the $\theta_{J A}$.

Figure 3 shows the maximum safe power dissipation in the package vs. the ambient temperature for the 16-lead LFCSP ($98^{\circ} \mathrm{C} / \mathrm{W}$) on a JEDEC standard 4-layer board.

Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,15,16$	VCC	Supply Pin.
3,5 to $7,9,11$	GND	Ground.
4	VIN	Input.
8,13	NIC	No Internal Connection.
10	VOUT2	Output 2.
12	VOUT1	Output 1.
14	IL	Bias Pin.
	EPAD	Exposed Pad. The exposed pad must be connected to GND.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, 75 \Omega$ system, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 5. Composite Second Order (CSO) vs. Frequency

Figure 6. Composite Triple Beat (CTB) vs. Frequency

Figure 7. Cross Modulation (CXM) vs. Frequency

Figure 8. Noise Figure vs. Frequency

Figure 9. Output IP2 vs. Frequency

Figure 10. Output IP3 vs. Frequency

Figure 11. Gain $\left(S_{21}, S_{31}\right)$ vs. Frequency

Figure 12. Output-to-Input Isolation $\left(S_{12}, S_{13}\right)$ vs. Frequency

`Figure 13. Output-to-Output Isolation $\left(S_{23}, S_{32}\right)$ vs. Frequency

Figure 14. Input Return Loss $\left(S_{11}\right)$ vs. Frequency

Figure 15. Output Return Loss $\left(S_{22}, S_{33}\right)$ vs. Frequency

Figure 16. Quiescent Supply Current vs. Temperature

TEST CIRCUITS

Figure 17. Test Circuit for $S_{11}, S_{12}, S_{21}, S_{22}$ Measurements

Figure 18. Test Circuit for S_{13}, S_{31}, S_{33} Measurements

Figure 19. Test Circuit for S_{23}, S_{32} Measurements

APPLICATIONS INFORMATION

The ADA4304-2 active splitter is primarily intended for use in the downstream path of television set-top boxes (STBs) that contain multiple tuners. It is typically located directly after the diplexer in a bidirectional CATV customer premise unit. The ADA4304-2 provides a single-ended input and two singleended outputs that allow the delivery of the RF signal to two different signal paths. These paths can include, but are not limited to, a main picture tuner, the picture-in-picture (PIP) tuner, an out-of-band (OOB) tuner, a digital video recorder (DVR), and a cable modem (CM).
The ADA4304-2 exhibits composite second order (CSO) and composite triple beat (CTB) products that are -62 dBc and -72 dBc , respectively. The use of the SiGe bipolar process also allows the ADA4304-2 to achieve a noise figure (NF) of 4 dB .

CIRCUIT DESCRIPTION

The ADA4304-2 consists of a low noise buffer amplifier followed by a resistive power divider. This arrangement provides 2.8 dB of gain relative to the RF signal present at the input of the device. The input and each output must be properly matched to a 75Ω environment for distortion and noise performance to match the data sheet specifications. AC coupling capacitors of $0.01 \mu \mathrm{~F}$ are recommended for the input and outputs.
A $1 \mu \mathrm{H}$ RF choke (Coilcraft chip inductor 0805LS-102X) is required to correctly bias internal nodes of the ADA4304-2. It should be connected between the 5 V supply and the IL pin (Pin 14). The choke should be placed as close as possible to the ADA4304-2 to minimize parasitic capacitance on the IL pin, which is critical for achieving the specified bandwidth and flatness.

OUTLINE DIMENSIONS

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Ordering Quantity	Branding
ADA4304-2ACPZ-RL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead LFCSP	$\mathrm{CP}-16-21$	5,000	H 0 Z
ADA4304-2ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16-$ Lead LFCSP	CP-16-21	1,500	$\mathrm{H} 0 Z$
ADA4304-2ACPZ-R2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead LFCSP	CP-16-21	250	$\mathrm{H} 0 Z$

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ Characterized with 50Ω noise figure analyzer.

