imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FET Input Analog Front End with ADC Driver

ADA4350

FEATURES

Low noise, low input bias current FET input amplifier Very low input bias current: ±0.25 pA typical at 25°C Low input voltage noise 92 nV/√Hz typical at 10 Hz at 5 V 5 nV/√Hz typical at 100 kHz at ±5 V Gain bandwidth product: 175 MHz Input capacitance 3 pF typical, differential mode 2 pF typical, common mode Integrated gain switching Sampling and feedback switch off leakage: ±0.5 pA typical Worst case ton/toff times: 105 ns typical/65 ns typical Integrated analog-to-digital converter (ADC) driver Differential mode and single-ended mode Adjustable output common-mode voltage -5 V to +3.8 V typical for ±5 V supply Wide output voltage swing: ±4.8 V minimum for ±5 V supply Linear output current: 18 mA rms typical for ±5 V supply SPI or parallel switch control of all functions Wide operating range: 3.3 V to 12 V Quiescent current: 8.5 mA typical (±5 V full system)

APPLICATIONS

Current to voltage (I to V) conversions **Photodiode preamplifiers Chemical analyzers Mass spectrometry** Molecular spectroscopy Laser/LED receivers **Data acquisition systems**

GENERAL DESCRIPTION

The ADA4350 is an analog front end for photodetectors or other sensors whose output produces a current proportional to the sensed parameter or voltage input applications where the system requires the user to select between very precise gain levels to maximize the dynamic range.

The ADA4350 integrates a FET input amplifier, a switching network, and an ADC driver with all functions controllable via a serial peripheral interface (SPI) or parallel control logic into a single IC. The FET input amplifier has very low voltage noise and current noise making it an excellent choice to work with a wide range of photodetectors, sensors, or precision data acquisition systems.

Its switching network allows the user individual selection of up to six different, externally configurable feedback networks; by using external components for the feedback network, the user can more easily match the system to their desired photodetector or sensor capacitance. This feature also allows the use of low thermal drift resistors, if required.

The design of the switches minimizes error sources so that they add virtually no error in the signal path. The output driver can be used in either single-ended or a differential mode and is ideal for driving the input of an ADC.

The ADA4350 can operate from a single +3.3 V supply or a dual ± 5 V supply, offering user flexibility when choosing the polarity of the detector. It is available in a Pb-free, 28-lead TSSOP package and is specified to operate over the -40°C to +85°C temperature range.

Multifunction pin names may be referenced by their relevant function only.

FUNCTIONAL BLOCK DIAGRAM

Rev. B

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2015–2016 Analog Devices, Inc. All rights reserved. **Technical Support** www.analog.com

ADA4350* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

ADA4350 Evaluation Board

DOCUMENTATION

Data Sheet

 ADA4350: FET Input Analog Front End With ADC Driver Data Sheet

User Guides

+ UG-655: Evaluating the ADA4350, a FET Input Analog Front End With ADC Driver Offered in a 28-Lead 9.8 mm \times 6.4 mm TSSOP

TOOLS AND SIMULATIONS \square

ADA4350 SPICE Macro-Model

REFERENCE MATERIALS

Press

Integrated Analog Front-end Simplifies Sensor Interfaces

DESIGN RESOURCES

- ADA4350 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADA4350 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features
Applications1
General Description
Functional Block Diagram1
Revision History
Specifications
±5 V Full System
±5 V FET Input Amplifier
$\pm 5~\mathrm{V}$ Internal Switching Network and Digital Pins
±5 V ADC Driver
5 V Full System
5 V FET Input Amplifier9
5 V Internal Switching Network and Digital Pins10
5 V ADC Driver
Timing Specifications13
Absolute Maximum Ratings15
Thermal Resistance15
Maximum Power Dissipation15
ESD Caution15
Pin Configuration and Function Descriptions

REVISION HISTORY

6/16—Rev. A to Rev. B	
Change to Table 15 2	9

12/15—Rev. 0 to Rev. A

Changes to Table 1	3
Changes to Table 5	8
Deleted Figure 4; Renumbered Sequentially	14
Changes to Table 10	15
Changes to Table 14	

4/15—Revision 0: Initial Version

Typical Performance Characterisitics	17
Full System	17
FET Input Amplifier	19
ADC Driver	22
Test Circuits	26
Theory of Operation	27
Kelvin Switching Techniques	27
Applications Information	28
Configuring the ADA4350	28
Selecting the Transimpedance Gain Paths Manually or Through the Parallel Interface	28
Selecting the Transimpedance Gain Paths Through the SPI Interface (Serial Mode)	28
SPICE Model	30
Transimpedance Amplifier Design Theory	32
Transimpedance Gain Amplifier Performance	34
The Effect of Low Feedback Resistor R _{Fx}	35
Using The T Network to Implement Large Feedback Resistor Values	36
Outline Dimensions	37
Ordering Guide	37

SPECIFICATIONS ±5 V FULL SYSTEM

 $T_A = 25^{\circ}$ C, $+V_S = +5$ V, $-V_S = -5$ V, $R_L = 1$ k Ω differential, unless otherwise specified.

Table 1.					
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
–3 dB Bandwidth	Gain (G) = -5 , V _{OUT} = 200 mV p-p		20		MHz
	$G = -5$, $V_{OUT} = 2 V p - p$		12		MHz
Slew Rate	V _{OUT} = 2 V step, 10% to 90%		60		V/µs
HARMONIC PERFORMANCE					
Harmonic Distortion (HD2/HD3)	$G = -5$, $f_c = 100 \text{ kHz}$		-95/-104		dBc
	$G = -5$, $f_C = 1 MHz$		-77/-78		dBc
DC PERFORMANCE					
Input Bias Current	At 25°C		±0.25	±1	pА
	At 85°C		±8	±25	pA
INPUT CHARACTERISTICS					
Input Resistance	Common mode		100		GΩ
Input Capacitance	Common mode		2		pF
	Differential mode		3		pF
Input Common-Mode Voltage Range	Common-mode rejection ratio (CMRR) > 80 dB	-4.5		+3.8	V
	CMRR > 68 dB	-5		+3.9	V
Common-Mode Rejection	$V_{CM} = \pm 3.0 \text{ V}$	92	104		dB
OUTPUT CHARACTERISTICS					
Linear Output Current	V _{OUT} = 4 V p-p, 60 dB spurious-free dynamic range (SFDR)		18		mA rms
Short-Circuit Current	Sinking/sourcing		43/76		mA
Settling Time to 0.1%	$G = -5$, $V_{OUT} = 2V$ step		100		ns
ANALOG POWER SUPPLY (+V _s , –V _s)					
Operating Range		3.3		12	V
Quiescent Current	Enabled		8.5	10	mA
	M1 disabled (see Figure 1)		7		mA
	All disabled		2		μA
Positive Power Supply Rejection Ratio			90		dB
Negative Power Supply Rejection Ratio			85		dB
DIGITAL SUPPLIES	DVDD, DGND				
Digital Supply Range		3.3		5.5	V
Quiescent Current	Enabled		50		μA
	Disabled		0.6		μA
+Vs to DGND Head Room			≥3.3		v

±5 V FET INPUT AMPLIFIER

 $T_A = 25^{\circ}$ C, $+V_S = +5$ V, $-V_S = -5$ V, $R_L = 1$ k Ω , unless otherwise specified.

Table 2.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
–3 dB Bandwidth	$G = -5$, $V_{OUT} = 100 \text{ mV } p-p$		26		MHz
	$G = -5, V_{OUT} = 2 V p - p$		24		MHz
Gain Bandwidth Product			175		MHz
Slew Rate	V _{OUT} = 2 V step, 10% to 90%		100		V/µs
Settling Time to 0.1%	$G = -5$, $V_{OUT} = 2 V$ step		28		ns
NOISE/HARMONIC PERFORMANCE					
Harmonic Distortion (HD2/HD3)	f = 100 kHz, V _{OUT} = 2 V p-p, G = -5		-106/-114		dBc
	f = 1 MHz, V _{OUT} = 2 V p-p, G = -5		-83/-93		dBc
Input Voltage Noise	f = 10 Hz		85		nV/√Hz
	f = 100 kHz		5		nV/√Hz
DC PERFORMANCE					
Input Offset Voltage			15	80	μV
Input Offset Voltage Drift	From –40°C to +85°C		0.1	1.6	μV/°C
	From 25°C to 85°C		0.1	1.0	μV/°C
Input Bias Current	At 25°C		±0.25	±1	pА
	At 85°C		±8	±25	pА
Input Bias Offset Current	At 25°C		±0.1	±0.8	pА
	At 85°C		±0.5		pА
Open-Loop Gain	$V_{OUT} = \pm 2 V$	106	115		dB
INPUT CHARACTERISTICS					
Input Resistance	Common mode		100		GΩ
Input Capacitance	Common mode		2		pF
	Differential mode		3		pF
Input Common-Mode Voltage Range	CMRR > 80 dB	-4.5		+3.8	V
	CMRR > 68 dB	-5		+3.9	V
Common-Mode Rejection Ratio	$V_{CM} = \pm 3 V$	92	115		V
OUTPUT CHARACTERISTICS					
Output Overdrive Recovery Time	$V_{OUT} = V_S \pm 10\%$		60		ns
Output Voltage Swing	$G = +21$, $R_F = 1 \text{ k}\Omega$, R_L open measured at FBx	-3.6 to +3.9	-4.05 to +4.07		V
	$G = +21$, $R_F = 100 \text{ k}\Omega$, R_L open measured at FBx	-4.7 to +4.8	-4.9 to +4.86		V
Linear Output Current	V _{OUT} = 2 V p-p, 60 dB SFDR		18		mA rms
Short-Circuit Current	Sinking/sourcing		41/45		mA
POWER SUPPLY					
Operating Range		3.3		12	V
Positive Power Supply Rejection Ratio		90	109		dB
Negative Power Supply Rejection Ratio		90	109		dB

± 5 V INTERNAL SWITCHING NETWORK AND DIGITAL PINS

 $T_A = 25^{\circ}C$, $+V_S = +5 V$, $-V_S = -5 V$, unless otherwise specified. See Figure 1 for feedback and sampling switches notation.

Table 3.						
Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
FEEDBACK/SAMPLE ANALOG SWITCH						
Analog Signal Range			-5		+5	v
Switch On-Resistance						
Feedback	Ron, FB	For S0 to S2, $V_{CM} = 0 V$		149	196	Ω
		$T_A = 85^{\circ}C$		195		Ω
		For S3 to S5, $V_{CM} = 0 V$		149	196	Ω
		$T_A = 85^{\circ}C$		195		Ω
Sampling	Ron, s	For S6 to S8, $V_{CM} = 0 V$		297	356	Ω
		$T_A = 85^{\circ}C$		390		Ω
		For S9 to S11, $V_{CM} = 0 V$		297	356	Ω
		$T_A = 85^{\circ}C$		388		Ω
On-Resistance Match Between Channels						
Feedback Resistance	$\Delta R_{\text{ON, FB}}$	$V_{CM} = 0 V$		2	15	Ω
Sampling Resistance	$\Delta R_{ON, S}$	$V_{CM} = 0 V$		2	14	Ω
SWITCH LEAKAGE CURRENTS						
Sampling and Feedback Switch Off Leakage	Is (OFF)			±0.5	±1.7	pА
		$T_A = 85^{\circ}C$		±40	±120	pА
DYNAMIC CHARACTERISTICS						
Power-On Time	ton	DVDD = 5 V		76		ns
		DVDD = 3.3 V		80		ns
Power-Off Time	toff	DVDD = 5 V		86		ns
		DVDD = 3.3 V		90		ns
Off Isolation		$R_L = 50 \Omega$, $f = 1 MHz$				
Feedback Switches				-92		dB
Sampling Switches				-118		dB
Channel to Channel Crosstalk		$R_L = 50 \Omega$, $f = 1 MHz$		-86		dB
Worst Case Switch Feedback Capacitance (Switch Off)	CFB (OFF)			0.1		pF
THRESHOLD VOLTAGES FOR DIGITAL INPUT PINS		EN, MODE, DGND, LATCH/P0,				
		SCLK/P1, SDO/P2, SDI/P3, CS/P4 ¹				
Input High Voltage	VIH	DVDD = 5 V	2.0			V
		DVDD = 3.3 V	1.5			V
Input Low Voltage	VIL	DVDD = 5 V			1.4	V
		DVDD = 3.3 V			1.0	V
DIGITAL SUPPLIES		DVDD, DGND				
Digital Supply Range			3.3		5.5	v
Quiescent Current		Enabled		50		μΑ
		Disabled		0.6		μΑ
+Vs to DGND Head Room				≥3.3		V

¹ When referring to a single function of a multifunction pin, only the portion of the pin name that is relevant to the specification is listed. For full pin names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.

±5 V ADC DRIVER

 $T_A = 25^{\circ}C$, $+V_S = +5$ V, $-V_S = -5$ V, unless otherwise specified. See Figure 1 for the P1 and M1 amplifiers. $R_L = 1$ k Ω when differential, and $R_L = 500 \Omega$ when single-ended.

Table 4.					
Parameter	Test Conditions/Comments ¹	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
–3 dB Bandwidth	When used differentially, $V_{OUT} = 0.1 V p-p$		38		MHz
	When used differentially, $V_{OUT} = 2.0 V p - p$		16		MHz
	When P1 is used, V _{OUT} = 50 mV p-p		55		MHz
	When P1 is used, $V_{OUT} = 1.0 \text{ V p-p}$		17		MHz
	When M1 is used, $V_{OUT} = 50 \text{ mV } p-p$		45		MHz
	When M1 is used, $V_{OUT} = 1.0 \text{ V p-p}$		21		MHz
Overdrive Recovery Time	Positive recovery/negative recovery for P1		200/180		ns
	Positive recovery/negative recovery for M1		100/100		ns
Slew Rate	When differentially used, $V_{OUT} = 2 V$ step		57		V/µs
	When P1 or M1 is single-ended, Vout = 1 V step		30		V/µs
Settling Time 0.1%	When used differentially, $V_{OUT} = 2 V$ step		95		ns
-	When P1 is used, $V_{OUT} = 1 V$ step		80		ns
	When M1 is used, $V_{OUT} = 1 V$ step		80		ns
NOISE/DISTORTION PERFORMANCE					
Harmonic Distortion (HD2/HD3)	When used differentially, $f_c = 100 \text{ kHz}$, $V_{OUT} = 4 \text{ V p-p}$		-105/-109		dBc
	When used differentially, $f_c = 1 \text{ MHz}$, $V_{OUT} = 4 \text{ V p-p}$		-75/-73		dBc
	When P1 is used, $f_c = 100 \text{ kHz}$, $V_{OUT} = 2 \text{ V p-p}$		-112/-108		dBc
	When P1 is used, $f_c = 1 \text{ MHz}$, $V_{OUT} = 2 \text{ V p-p}$		-75/-73		dBc
	When M1 is used, $f_c = 100 \text{ kHz}$, $V_{OUT} = 2 \text{ V p-p}$		-98/-103		dBc
	When M1 is used, $f_c = 1 \text{ MHz}$, $V_{OUT} = 2 \text{ V p-p}$		-70/-69		dBc
Referred to Input (RTI) Voltage Noise	For P1, f = 10 Hz		55		nV/√Hz
. 2	For P1, f = 100 kHz		5		nV/√Hz
Referred to Output (RTO) Voltage Noise	For P1 and M1, $f = 10 Hz$, measured at VOUT2		95		nV/√Hz
. 2	For P1 and M1, $f = 100 \text{ kHz}$, measured at VOUT2		16		nV/√Hz
Input Current Noise	f = 100 kHz, referred to P1		1.1		pA/√Hz
DC PERFORMANCE					
Output Offset Voltage	Differential		0.125	0.5	mV
Output Offset Voltage Drift	Differential		0.7	13	μV/°C
Input Offset Voltage	Single-ended, P1 only		50	180	μV
	Single-ended, M1 only		40	180	μV
Input Offset Voltage Drift	Single-ended, P1 only		0.2	4.75	μV/°C
. 5	Single-ended, M1 only		0.4	3.6	μV/°C
Input Bias Current	P1 only at VIN1 pin		60	220	nA
·	P1 only at RF1 pin		60	325	nA
	M1 at REF pin		60	200	nA
Input Offset Current	P1 only		60	260	nA
Open-Loop Gain	P1 only, $V_{OUT} = \pm 2 V$	102	112		dB
Gain	M1 only	1.99	1.9996	2.01	V/V
Gain Error	,	-0.5		+0.5	%
Gain Error Drift			0.6	1.9	ppm/°C
INPUT CHARACTERISTICS					
Input Resistance	VIN1 and REF		200		MΩ
Input Capacitance	VIN1 and REF		1.4		рF
Input Common-Mode Voltage Range		-5		+3.8	V
Common-Mode Rejection Ratio	For P1, $V_{CM} = \pm 3.0 \text{ V}$	82	100		dB

Data Sheet

ADA4350

Parameter	Test Conditions/Comments ¹	Min	Typ	Max	Unit
			אני	Max	Unit
OUTPUT CHARACTERISTICS					
Output Voltage Swing	$R_L = no load, single-ended$	±4.8	±4.83		V
	$R_L = 500 \Omega$, single-ended	±4.55	±4.6		V
Output Common-Mode Voltage Range		-5		+3.8	V
Linear Output Current	P1 or M1, Vout = 2 V p-p, 60 dB SFDR		18		mA rms
	Differential output, $V_{OUT} = 4 V p - p$, 60 dB SFDR		18		mA rms
Short Circuit Current	P1 or M1, sinking/sourcing		43/76		mA
Capacitive Load Drive	When used differentially at each VOUTx, 30% overshoot,		33		pF
	$V_{OUT} = 200 \text{ mV } p-p$				
	When P1/M1 is used, 30% overshoot, $V_{OUT} = 100 \text{ mV p-p}$		47		pF
POWER SUPPLY					
Operating Range		3.3		12	V
Positive Power Supply Rejection Ratio	For P1	90	106		dB
	For M1	86	100		dB
Negative Power Supply Rejection Ratio	For P1	80	100		dB
	For M1	78	90		dB

 $^{\rm 1}\,{\rm P1}$ and M1 within this table refer to the amplifiers shown in Figure 1.

5 V FULL SYSTEM

 T_{A} = 25°C, +V_{\text{S}} = 5 V, -V_{\text{S}} = 0 V, R_{F} = 1 k Ω differential, unless otherwise specified.

Table 5.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
–3 dB Bandwidth	G = -5, V _{OUT} = 200 mV p-p		15		MHz
	G = -5, V _{OUT} = 1 V p-p		14		MHz
Slew Rate	V _{OUT} = 2 V step, 10% to 90%		30		V/µs
HARMONIC PERFORMANCE					
Harmonic Distortion (HD2/HD3)	$G = -5$, $f_C = 100 \text{ kHz}$		-85/-94		dBc
	$G = -5$, $f_c = 1 MHz$		-66/-75		dBc
Input Voltage Noise	f = 10 Hz		92		nV/√Hz
	f = 100 kHz		4.4		nV/√Hz
DC PERFORMANCE					
Input Bias Current	At 25°C		±0.35	±1.6	рА
	At 85°C		±8.5	±30	рА
INPUT CHARACTERISTICS					
Input Resistance	Common mode		100		GΩ
Input Capacitance	Common mode		2		рF
	Differential mode		3		рF
Input Common-Mode Voltage Range	CMRR > 80 dB	0.5		3.8	V
	CMRR > 68 dB	0		3.9	V
Common-Mode Rejection	$V_{CM} = \pm 0.5 V$	88	94		dB
OUTPUT CHARACTERISTICS					
Linear Output Current	V _{OUT} = 1 V p-p, 60 dB SFDR		9		mA rms
Short-Circuit Current	Sinking/sourcing, $R_L < 1 \Omega$		41/63		mA
Settling Time to 0.1%	$G = -5$, $V_{OUT} = 2 V$ step		130		ns
POWER SUPPLY					
Operating Range		3.3		12	V
Quiescent Current	Enabled		8	9	mA
	M1 disabled (see Figure 1)		6.5		mA
	All disabled		2		μΑ
Positive Power Supply Rejection Ratio			86		dB
Negative Power Supply Rejection Ratio			80		dB
DIGITAL SUPPLIES (DVDD, DGND)	DVDD, DGND				
Digital Supply Range		3.3		5.5	V
Quiescent Current	Enabled		50		μA
	Disabled		0.6		μA
+V _s to DGND Head Room			≥3.3		V

5 V FET INPUT AMPLIFIER

 $T_{\rm A}$ = 25°C, +V_{\rm S} = 5 V, -V_{\rm S} = 0 V, $R_{\rm L}$ = 1 k Ω , unless otherwise specified.

Table 6.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
–3 dB Bandwidth	G = -5, V _{OUT} = 100 mV p-p		25		MHz
	G = -5, V _{OUT} = 1 V p-p		24		MHz
Gain Bandwidth Product			175		MHz
Slew Rate	V _{OUT} = 2 V step, 10% to 90%		56		V/µs
Settling Time to 0.1%	G = -5, V _{OUT} = 2 V step		60		ns
NOISE/HARMONIC PERFORMANCE					
Harmonic Distortion (HD2/HD3)	f = 100 kHz, V _{OUT} = 1 V p-p, G = -5		-113/-117		dBc
	f = 1 MHz, V _{OUT} = 1 V p-p, G = -5		-82/-83		dBc
Input Voltage Noise	f = 10 Hz		92		nV/√Hz
	f = 100 kHz		4.4		nV/√Hz
DC PERFORMANCE					
Input Offset Voltage			25	80	μV
Input Offset Voltage Drift	From –40°C to +85°C		0.1	1.5	μV/°C
	From 25°C to 85°C		0.05	1	μV/°C
Input Bias Current	At 25°C		±0.35	±1.6	рА
	At 85°C		±8.5	±30	рА
Input Bias Offset Current	At 25°C		±0.25	±1.25	рА
	At 85°C		±0.4		рА
Open-Loop Gain	$V_{OUT} = 1.5 V \text{ to } 3.5 V$	98	102		dB
INPUT CHARACTERISTICS					
Input Resistance	Common mode		100		GΩ
Input Capacitance	Common mode		2		pF
	Differential mode		3		pF
Input Common-Mode Voltage Range	CMRR > 80 dB	0.5		3.8	V
	CMRR > 68 dB	0		3.9	V
Common-Mode Rejection Ratio	$V_{CM} = \pm 0.5 V$	88	94		dB
OUTPUT CHARACTERISTICS					
Output Overdrive Recovery Time	$V_{OUT} = V_S \pm 10\%$, positive/negative		60/50		ns
Output Voltage Swing	$G = +21$, $R_F = 1 \text{ k}\Omega$, R_L open measured at FBx	1.15 to 3.46	0.86 to 3.66		V
	$G = +21$, $R_F = 100 \text{ k}\Omega$, R_L open measured at FBx	0.27 to 4.80	0.08 to 4.87		V
Linear Output Current	$V_{OUT} = 1 V p-p, 60 dB SFDR$		10		mA rms
Short-Circuit Current	Sinking/sourcing		32/38		mA
POWER SUPPLY					
Operating Range		3.3		12	V
Positive Power Supply Rejection Ratio		90	100		dB
Negative Power Supply Rejection Ratio		86	100		dB

5 V INTERNAL SWITCHING NETWORK AND DIGITAL PINS

 $T_A = 25^{\circ}C$, $+V_S = 5$ V, $-V_S = 0$ V, unless otherwise specified. See Figure 1 for sampling and feedback switches position.

Table 7.						
Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
FEEDBACK/SAMPLE ANALOG SWITCH						
Analog Signal Range			0		5	v
Switch On Resistance						
Feedback	Ron, FB	S0 to S2, $V_{CM} = 2.5 V$		308	390	Ω
		$T_A = 85^{\circ}C$		382		Ω
		S3 to S5, $V_{CM} = 2.5 V$		308	390	Ω
		$T_A = 85^{\circ}C$		384		Ω
Sampling	Ron, s	S6 to S8, $V_{CM} = 2.5 V$		610	770	Ω
		$T_A = 85^{\circ}C$		762		Ω
		S9 to S11, $V_{CM} = 2.5 V$		612	770	Ω
		$T_A = 85^{\circ}C$		764		Ω
On-Resistance Match Between Channels						
Feedback Resistance	$\Delta R_{\text{ON, FB}}$	$V_{CM} = 2.5 V$		3	21	Ω
Sampling Resistance	$\Delta R_{ON, S}$	$V_{CM} = 2.5 V$		3	23	Ω
SWITCH LEAKAGE CURRENTS						
Sampling and Feedback Switch Off Leakage	Is (OFF)			±0.4	±1.2	рА
		$T_A = 85^{\circ}C$		±30	±80	рА
DYNAMIC CHARACTERISTICS						
Power-On Time	ton	DVDD = 3.3 V		105		ns
Power-Off Time	toff	DVDD = 3.3 V		65		ns
Off Isolation		$R_L = 50 \Omega$, $f = 1 MHz$				
Feedback Switches				-93		dB
Sampling Switches				-116		dB
Channel to Channel Crosstalk		$R_L = 50 \Omega$, $f = 1 MHz$		-83		dB
Worst Case Switch Feedback Capacitance (Switch Off)	CFB (OFF)			0.1		pF
THRESHOLD VOLTAGES FOR DIGITAL INPUT PINS		EN, MODE, DGND, LATCH/P0,				
		SCLK/P1, SDO/P2, SDI/P3, CS/P4 ¹				
Input High Voltage	VIH	DVDD = 5V	2.0			V
		DVDD = 3.3 V	1.5			V
Input Low Voltage	Vı∟	DVDD = 5V			1.4	V
		DVDD = 3.3 V			1.0	V
DIGITAL SUPPLIES		DVDD, DGND				
Digital Supply Range			3.3		5.5	V
Quiescent Current		Enabled		50		μΑ
		Disabled		0.6		μA
+Vs to DGND Head Room				≥3.3		V

¹ When referring to a single function of a multifunction pin, only the portion of the pin name that is relevant to the specification is listed. For full pin names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.

5 V ADC DRIVER

 $T_A = 25^{\circ}C$, $+V_S = 5 V$, $-V_S = 0 V$, unless otherwise specified. See Figure 1 for the P1 and M1 amplifiers, $R_L = 1 k\Omega$ when differential, and $R_L = 500 \Omega$ when single-ended.

Table 8.					
Parameter	Test Conditions/Comments ¹	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
–3 dB Bandwidth	When used differentially, $V_{OUT} = 0.1 V p-p$		33		MHz
	When used differentially, $V_{OUT} = 2.0 \text{ V p-p}$		16		MHz
	When P1 is used, $V_{OUT} = 50 \text{ mV } p-p$		47		MHz
	When P1 is used, $V_{OUT} = 1.0 V p-p$		16		MHz
	When M1 is used, $V_{OUT} = 50 \text{ mV } p-p$		37		MHz
	When M1 is used, $V_{OUT} = 1.0 \text{ V p-p}$		18		MHz
Overdrive Recovery Time	For P1, positive recovery/negative recovery		200/200		ns
	For M1, positive recovery/negative recovery		140/120		ns
Slew Rate	When differentially used, $V_{OUT} = 2 V$ step		37		V/µs
	When P1 or M1 is single-ended, Vout = 1 V step		20		V/µs
Settling Time 0.1%	When used differentially, $V_{OUT} = 2 V$ step		75		ns
2	When P1 is used, $V_{OUT} = 1 V$ step		60		ns
	When M1 is used, $V_{OUT} = 1 V$ step		60		ns
NOISE/DISTORTION PERFORMANCE					
Harmonic Distortion (HD2/HD3)	When used differentially, $f_c = 100 \text{ kHz}$,		-117/-116		dBc
	V _{OUT} = 1 V p-p				
	When used differentially, $f_c = 1 \text{ MHz}$,		-80/-85		dBc
	V _{OUT} = 1 V p-p				
	When P1 is used, $f_c = 100 \text{ kHz}$, $V_{OUT} = 500 \text{ mV } p-p$		-108/-115		dBc
	When P1 is used, $f_c = 1 \text{ MHz}$, $V_{OUT} = 500 \text{ mV p-p}$		-80/-83		dBc
	When M1 is used, $f_c = 100 \text{ kHz}$, $V_{OUT} = 500 \text{ mV p-p}$		-103/-107		dBc
	When M1 is used, $f_c = 1 \text{ MHz}$, $V_{OUT} = 500 \text{ mV p-p}$		-75/-78		dBc
Referred to Input (RTI) Voltage Noise	For P1, $f = 10 Hz$		60		nV/√Hz
	For P1, f = 100 kHz		5.2		nV/√Hz
Referred to Output (RTO) Voltage Noise	For P1and M1, $f = 10$ Hz, measured at VOUT2		140		nV/√Hz
	For P1 and M1, $f = 100 \text{ kHz}$, measured at VOUT2		18		nV/√Hz
Input Current Noise	f = 100 kHz, referred to P1		1.1		pA/√Hz
DC PERFORMANCE					
Output Offset Voltage	Differential		0.15	0.75	mV
Input Offset Voltage Drift	Differential		0.6	16	μV/°C
Output Offset Voltage	Single-ended, P1 only		60	275	μV
	Single-ended, M1 only		70	250	μV
Input Offset Voltage Drift	Single-ended, P1 only		0.1	5.9	μV/°C
	Single-ended, M1 only		0.3	4.5	μV/°C
Input Bias Current	P1 only at VIN1 pin		60	230	nA
	P1 only at RF1 pin		60	350	nA
	M1 only at REF pin		60	200	nA
Input Offset Current	P1 only		60	270	nA
Open-Loop Gain	P1 only, V _{OUT} = 1.5 V to 3.5 V	94	100		dB
Gain	M1 only	1.99	1.9995	2.01	V/V
Gain Error		-0.5		+0.5	%
Gain Error Drift			0.6	3.4	ppm/°C

		1	_		
Parameter	Test Conditions/Comments ¹	Min	Тур	Max	Unit
INPUT CHARACTERISTICS					
Input Resistance	VIN1 and REF		200		MΩ
Input Capacitance	VIN1 and REF		1.4		pF
Input Common-Mode Voltage Range		0		3.9	V
Common-Mode Rejection Ratio	For P1, $V_{CM} = \pm 0.5 V$	84	94		dB
OUTPUT CHARACTERISTICS					
Output Voltage Swing	$R_L = no load$, single-ended	0.15 to 4.85	0.125 to 4.875		V
	$R_L = 500 \Omega$, single-ended	0.28 to 4.72	0.24 to 4.76		V
Output Common-Mode Voltage Range		0		3.9	V
Linear Output Current	For P1or M1, V _{OUT} = 1 V p-p, 60 dB SFDR		4		mA rms
	Differential output, $V_{OUT} = 1 V p-p$, 60 dB SFDR		10		mA rms
Short-Circuit Current	For P1 or M1, sinking/sourcing		41/63		mA
Capacitive Load Drive	When used differentially at each VOUTx, 30% overshoot, $V_{OUT} = 100$ mV p-p		33		pF
	When P1/M1 is used, 30% overshoot, $V_{\text{OUT}} = 50 \text{ mV p-p}$		47		pF
POWER SUPPLY					
Operating Range		3.3		12	V
Positive Power Supply Rejection Ratio	For P1	86	104		dB
	For M1	80	94		dB
Negative Power Supply Rejection Ratio	For P1	80	92		dB
	For M1	76	88		dB

¹ P1 and M1 within this table refer to the amplifiers shown in Figure 1.

TIMING SPECIFICATIONS

All input signals are specified with $t_R = t_F = 2$ ns (10% to 90% of DVDD) and timed from a voltage threshold level of $V_{TH} = 1.3$ V at DVDD = 3.3 V or $V_{TH} = 1.7$ V at DVDD = 5 V. Guaranteed by characterization; not production tested. See Figure 2 and Figure 3.

Table 9.

	DVDD = 3.3 V DVDD = 5) = 5 V			
Parameter	Description ¹	Min	Max	Min	Max	Unit
t1	SCLK period.	20		20		ns
t ₂	SCLK positive pulse width.	10		10		ns
t ₃	SCLK negative pulse width.	10		10		ns
t4	\overline{CS} setup time. The time required to begin sampling data after \overline{CS} goes low.	1		1		ns
t ₅	\overline{CS} hold time. The amount of time required for \overline{CS} to be held low after the last data bit is sampled before bringing \overline{CS} high. Data is latched on the \overline{CS} rising edge. If \overline{LATCH} is held low, data is also applied on the \overline{CS} rising edge.	7		5		ns
t ₆	CS positive pulse width. The amount of time required between consecutive words.	2		1		ns
t ₇	Data setup time. The amount of time the data bit (SDI) must be set before sampling on the falling edge of SCLK.	1		1		ns
t ₈	Data hold time. The amount of time SDI must be held after the falling edge of SCLK for valid data to be sampled.	2		2		ns
t9	Data latched to the internal switches updated. The amount of time it takes from the latched data being applied until the internal switches are updated. LATCH disabled referenced from the rising edge of CS.		145		140	ns
	LATCH enabled referenced from the falling edge of LATCH.					
t ₁₀	LATCH negative pulse width.	3		3		ns
t ₁₁ ²	SCLK rising edge to SDO valid. The amount of time between the SCLK rising edge and the valid SDO transitions ($CL_{SDO}^3 = 20 \text{ pF}$).		15		10	ns
t ₁₂	CS rising edge to the SCLK falling edge. The amount of time required to prevent a 25 th SCLK edge from being recognized (only 24 bits allowed for valid word).	1		1		ns

¹ When referring to a single function of a multifunction pin, only the portion of the pin name that is relevant to the specification is listed. For full pin names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.

² This is while in daisy-chain mode and in readback mode.

³ CL_{SDO} is the capacitive load on the SDO output.

Timing Diagrams for Serial Mode

Figure 2. Write Operation

ABSOLUTE MAXIMUM RATINGS

Table 10.

Parameter	Rating		
Analog Supply Voltage	14 V		
Digital Supply Voltage	5.5 V		
Power Dissipation	See Figure 4		
Common-Mode Input Voltage	\pm Vs \pm 0.3V		
Differential Input Voltage	±0.7 V		
Input Current (IN-N, IN-P, VIN1, RF1, and REF)	20 mA		
Storage Temperature Range	–65°C to +125°C		
Operating Temperature Range	-40°C to +85°C		
Lead Temperature (Soldering, 10 sec)	300°C		
Junction Temperature	150°C		

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst case conditions, that is, θ_{JA} is specified for a device soldered in a circuit board for surfacemount packages. Table 11 lists the θ_{JA} for the ADA4350.

Table 11. Thermal Resistance

Package Type	θ」Α	Unit
28-Lead TSSOP	72.4	°C/W

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation for the ADA4350 is limited by the associated rise in junction temperature (T_J) on the die. At approximately 150°C, which is the glass transition temperature, the properties of the plastic change. Even temporarily exceeding this temperature limit may change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4350. Exceeding a junction temperature of 175°C for an extended period can result in changes in silicon devices, potentially causing degradation or loss of functionality.

The power dissipated in the package (P_D) is the sum of the quiescent power dissipation and the power dissipated in the die due to the ADA4350 output load drive.

The quiescent power dissipation is the voltage between the supply pins $(\pm V_S)$ multiplied by the quiescent current (I_S).

 P_D = Quiescent Power + (Total Drive Power – Load Power)

$$P_{D} = \left(\pm V_{S} \times I_{S}\right) + \left(\frac{\pm V_{S}}{2} \times \frac{V_{OUT}}{R_{L}}\right) - \frac{V_{OUT}^{2}}{R_{L}}$$

Consider rms output voltages. If R_L is referenced to $-V_S$, as in single-supply operation, the total drive power is $+V_S \times I_{OUT}$. If the rms signal levels are indeterminate, consider the worst case, when $V_{OUT} = +V_S/4$ for R_L to midsupply for dual supplies and $V_{OUT} = +V_S/2$ for single supply.

$$P_D = \left(+V_S \times I_S\right) + \frac{\left(V_{OUT}\right)^2}{R_L}$$

Airflow increases heat dissipation, effectively reducing θ_{JA} . In addition, more metal directly in contact with the package leads and exposed pad from metal traces, through holes, ground, and power planes reduces θ_{JA} .

Figure 4 shows the maximum safe power dissipation in the package vs. the ambient temperature on a JEDEC standard 4-layer board. θ_{JA} values are approximations.

Figure 4. Maximum Power Dissipation vs. Ambient Temperature for a 4-Layer Board

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration

Table 12. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	SWB_OUT	Switch Group B (S3 to S5 and S9 to S11) Output.
2	RF1	Feedback Resistor for Output Differential Amplifier.
3	VOUT1	Differential Amplifier Output 1.
4	FB5	Feedback Pin 5 for FET Input Amplifier.
5	FB4	Feedback Pin 4 for FET Input Amplifier.
6	FB3	Feedback Pin 3 for FET Input Amplifier.
7	FB2	Feedback Pin 2 for FET Input Amplifier.
8	FB1	Feedback Pin 1 for FET Input Amplifier.
9	FB0	Feedback Pin 0 for FET Input Amplifier.
10	IN-N	FET Input Amplifier Inverting Input.
11	IN-P	FET Input Amplifier Noninverting Input.
12	SWA_IN	Switch Group A (S0 to S2 and S6 to S8) Input.
13	SWB_IN	Switch Group B (S3 to S5 and S9 to S11) Input.
14	-Vs	Analog Negative Supply.
15	+Vs	Analog Positive Supply.
16	EN	Enable Pin.
17	MODE	Mode Pin. Use this pin to switch between the SPI interface and the parallel interface.
18	DGND	Digital Ground.
19	LATCH/P0	Latch Bit in the Serial Mode (LATCH). Parallel Data Bit 0 in parallel mode (P0).
20	SCLK/P1	Digital Clock in Serial Mode (SCLK). Parallel Data Bit 1 in parallel mode (P1).
21	SDO/P2	Serial Data Out in Serial Mode (SDO). Parallel Data Bit 2 in parallel mode (P2).
22	SDI/P3	Serial Data In in Serial Mode (SDI). Parallel Data Bit 3 in parallel mode (P3).
23	CS/P4	Select Bit in Serial Mode (CS). Parallel Data Bit 4 in parallel mode (P4).
24	DVDD	Digital Positive Supply.
25	REF	Reference for the ADC Driver at M1.
26	VOUT2	Differential Amplifier Output 2.
27	SWA_OUT	Switch Group A (S0 to S2 and S6 to S8) Output.
28	VIN1	Differential Amplifier Noninverting Input.

TYPICAL PERFORMANCE CHARACTERISITICS

FULL SYSTEM

These plots are for the full system, which includes the FET input amplifier, the switching network, and the ADC driver. Unless otherwise stated, $R_L = 1 \text{ k}\Omega$ differential. For $Vs = \pm 5 \text{ V}$, DVDD = +5 V, and for Vs = +5 V (or $\pm 2.5 \text{ V}$), DVDD = +3.3 V.

Figure 9. Harmonic Distortion vs. Frequency for Various Supplies, See Test Circuit in Figure 48

Figure 10. Input Referred Voltage Noise vs. Frequency

Figure 11. Supply Current vs. Temperature at Different Modes

Figure 13. 0.1% Settling Time, See Test Circuit in Figure 49

Figure 14. Switch On-Resistance vs. Common-Mode Voltage at Switches for Various Temperature

FET INPUT AMPLIFIER

Unless otherwise stated, $R_L = 1 \text{ k}\Omega$. For $Vs = \pm 5 \text{ V}$, DVDD = +5 V, and for $Vs = \pm 2.5 \text{ V}$, DVDD = +3.3 V.

Figure 15. Small Signal Frequency Response for Various Gains, $V_S = \pm 5 V$, See Test Circuit Diagrams in Figure 50 and Figure 51

Figure 16. Small Signal Frequency Response for Various Gains, Vs = 5 V, See Test Circuit Diagrams in Figure 50 and Figure 51

Figure 17. Large Signal Frequency Response for Various Gains, $V_S = \pm 5 V$, See Test Circuit Diagrams in Figure 50 and Figure 51

Figure 18. Large Signal Frequency Response for Various Gains, $V_5 = 5 V$, See Test Circuit Diagrams in Figure 50 and Figure 51

Figure 19. Large Signal Step Response for Various Supplies, G = -5

Figure 20. 0.1% Settling Time

Data Sheet

Figure 28. Output Overdrive Recovery when Used as an Amplifier

ADC DRIVER

Unless stated otherwise, $R_L = 1 \text{ k}\Omega$ differential, and $R_L = 500 \Omega$ when single-ended. For $V_S = \pm 5 \text{ V}$, DVDD = +5 V, and for $V_S = +5 \text{ V}$ (or $\pm 2.5 \text{ V}$), DVDD = +3.3 V.

Figure 31. Small Signal Frequency Response, $V_S = \pm 5 V$

Figure 33. Large Signal Step Response (Single-Ended Output), $V_S = \pm 5 V$

Figure 34. Large Signal Step Response (Differential Output), $V_S = \pm 5 V$

Data Sheet

Figure 35. Large Signal Step Response (Single-Ended Output), $V_S = \pm 2.5 V$

Figure 36. Large Signal Step Response (Differential Output), $V_S = \pm 2.5 V$

Figure 37. Harmonic Distortion vs. Frequency

Figure 44. Output Overdrive Recovery (M1 Only)

