: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low Power, Differential ADC Driver

Data Sheet

FEATURES

```
High performance at low power
High speed
    -3 dB bandwidth of 560 MHz, G = 1
    0.1 dB gain flatness to 300 MHz
    Slew rate: 2800 V/\mus, 25% to 75%
    Fast 0.1% settling time of 9 ns
Low power: 9.6 mA per amplifier
Low harmonic distortion
    100 dB SFDR at 10 MHz
    90 dB SFDR at }20\mathrm{ MHz
Low input voltage noise: 3.6 nV/\sqrt{}{Hz}
\pm0.5 mV typical input offset voltage
Externally adjustable gain
Can be used with gains less than 1
Differential-to-differential or single-ended-to-differential
    operation
Adjustable output common-mode voltage
Input common-mode range shifted down by 1 VBE
Wide supply range: +3 V to }\pm5\textrm{V
Available in 16-lead and 24-lead LFCSP packages
APPLICATIONS
ADC drivers
Single-ended-to-differential converters
IF and baseband gain blocks
Differential buffers
Line drivers
```


GENERAL DESCRIPTION

The ADA4932-1/ADA4932-2 are the next generation AD8132 with higher performance and lower noise and power consumption. They are an ideal choice for driving high performance ADCs as a single-ended-to-differential or differential-to-differential amplifier. The output common-mode voltage is user adjustable by means of an internal common-mode feedback loop, allowing the ADA4932-1/ADA4932-2 output to match the input of the ADC. The internal feedback loop also provides exceptional output balance as well as suppression of even-order harmonic distortion products.
With the ADA4932-1/ADA4932-2, differential gain configurations are easily realized with a simple external four-resistor feedback network that determines the closed-loop gain of the amplifier.

FUNCTIONAL BLOCK DIAGRAM

Figure 1. ADA4932-1

Figure 2. ADA4932-2

The ADA4932-1/ADA4932-2 were fabricated using the Analog Devices, Inc., proprietary silicon-germanium (SiGe) complementary bipolar process, enabling it to achieve low levels of distortion and noise at low power consumption.
The low offset and excellent dynamic performance of the ADA4932-1/ADA4932-2 make them well suited for a wide variety of data acquisition and signal processing applications.

The ADA4932-1 is available in a 16-lead LFCSP, and the ADA4932-2 is available in a 24 -lead LFCSP. The pinouts are optimized to facilitate the printed circuit board (PCB) layout and minimize distortion. The ADA4932-1/ADA4932-2 are specified to operate over the $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range; both operate on supplies between +3 V and $\pm 5 \mathrm{~V}$.

TABLE OF CONTENTS

Features 1
Applications.
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
$\pm 5 \mathrm{~V}$ Operation 3
5 V Operation 5
Absolute Maximum Ratings 7
Thermal Resistance 7
Maximum Power Dissipation 7
ESD Caution 7
Pin Configurations and Function Descriptions 8
Typical Performance Characteristics 9
Test Circuits. 17
Terminology 18
REVISION HISTORY
5/2016-Rev. D to Rev. E
Changed ADA4932 Family to ADA4932-1/ADA4932-2,ADA4932-x to ADA4932-1/ADA4932-2, and CP-16-2 to
CP-16-21Throughout
Deleted Figure 2 and Figure 3; Renumbered Sequentially. 1
Added Figure 2 1
Updated Outline Dimensions 27
Changes to Ordering Guide 27
4/2014—Rev. C to Rev. D
Changes to Features Section, Figure 2, and Figure 3 1
Changes to Setting the Output Common-Mode Voltage Section.. 23 23
Added High Performance Precision ADC Driver Section 24
Moved Layout, Grounding, and Bypassing Section 26
Theory of Operation 19
Applications Information 20
Analyzing an Application Circuit 20
Setting the Closed-Loop Gain 20
Estimating the Output Noise Voltage 20
Impact of Mismatches in the Feedback Networks 21
Calculating the Input Impedance for an Application Circuit. 21
Input Common-Mode Voltage Range 23
Input and Output Capacitive AC Coupling 23
Setting the Output Common-Mode Voltage 23
High Performance Precision ADC Driver 23
High Performance ADC Driving 25
Layout, Grounding, and Bypassing. 26
Outline Dimensions 27
Ordering Guide 27
1/2014—Rev. B to Rev. C
Changes to Figure 51 16
3/2013-Rev. A to Rev. B
Updated Outline Dimensions. 26
Changes to Ordering Guide 26
8/2009—Rev. 0 to Rev. A
Changes to Features Section 1
Changes to Figure 11 9
Changes to Figure 43 and Figure 45 15
Changes to Figure 52, Figure 53, and Figure 54 17
10/2008—Revision 0: Initial Version

SPECIFICATIONS

± 5 V OPERATION

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-5 \mathrm{~V}, \mathrm{~V}_{\text {OCM }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=499 \Omega, \mathrm{R}_{\mathrm{G}}=499 \Omega, \mathrm{R}_{\mathrm{T}}=53.6 \Omega$ (when used), $\mathrm{R}_{\mathrm{L}, \mathrm{dm}}=1 \mathrm{k} \Omega$, unless otherwise noted. All specifications refer to single-ended input and differential outputs, unless otherwise noted. Refer to Figure 54 for signal definitions.
$\pm D_{\text {IN }}$ to $V_{\text {out, dm }}$ Performance
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Small Signal Bandwidth	$V_{\text {out, }} \mathrm{dm}=0.1 \mathrm{Vp-p}$	560			MHz
	Vout, dm $=0.1 \mathrm{~V}$ p-p, $\mathrm{RF}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=205 \Omega$	1000			MHz
-3 dB Large Signal Bandwidth	$\mathrm{V}_{\text {out, }} \mathrm{dm}=2.0 \mathrm{~V} \mathrm{p}-\mathrm{p}$	360			MHz
	$\mathrm{V}_{\text {out, }} \mathrm{dm}=2.0 \mathrm{~V}$ p-p, $\mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=205 \Omega$	360			MHz
Bandwidth for 0.1 dB Flatness	$V_{\text {out, } \mathrm{dm}}=2.0 \mathrm{~V}$ p-p, ADA4932-1, $\mathrm{R}_{\mathrm{L}}=200 \Omega$	300			MHz
	Vout, dm $=2.0 \mathrm{~V}$ p-p, ADA4932-2, $\mathrm{RL}=200 \Omega$	100			MHz
Slew Rate	$V_{\text {out, }}$ dm $=2 \mathrm{~V}$ p-p, 25% to 75%	2800			V/ $\mu \mathrm{s}$
Settling Time to 0.1\%	$\mathrm{V}_{\text {out, }} \mathrm{dm}=2 \mathrm{~V}$ step	9			ns
Overdrive Recovery Time	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5 V ramp, $\mathrm{G}=2$	20			ns
NOISE/HARMONIC PERFORMANCE Second Harmonic	See Figure 53 for distortion test circuit				
	$\mathrm{V}_{\text {out, }} \mathrm{dm}=2 \mathrm{~V}$ p-p, 1 MHz	-110			dBc
	$\mathrm{V}_{\text {out, } \mathrm{dm}}=2 \mathrm{Vp-p}, 10 \mathrm{MHz}$	-100			dBc
	$\mathrm{V}_{\text {out, } \mathrm{dm}}=2 \mathrm{Vp-p}, 20 \mathrm{MHz}$	-90			dBC
	Vout, dm $=2 \mathrm{Vp-p,50MHz}$	-72			dBC
Third Harmonic	$\mathrm{V}_{\text {out }, \mathrm{dm}}=2 \mathrm{~V}$ p-p, 1 MHz	-130			dBc
	$\mathrm{V}_{\text {out, } \mathrm{dm}}=2 \mathrm{Vp-p}, 10 \mathrm{MHz}$	-120			dBc
	Vout, dm $=2 \mathrm{Vp-p,20} \mathrm{MHz}$	-105			dBc
	$\mathrm{V}_{\text {out, }} \mathrm{dm}=2 \mathrm{~V}$ p-p, 50 MHz	-80			dBc
IMD	$\mathrm{f}_{1}=30 \mathrm{MHz}, \mathrm{f}_{2}=30.1 \mathrm{MHz}, \mathrm{V}_{\text {out, }} \mathrm{dm}=2 \mathrm{~V} \mathrm{p}-\mathrm{p}$	-91			dBc
Voltage Noise (RTI)	$\mathrm{f}=1 \mathrm{MHz}$	3.6			$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Current Noise	$\mathrm{f}=1 \mathrm{MHz}$	1.0			$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Crosstalk	$\mathrm{f}=10 \mathrm{MHz}$, ADA4932-2	-100			dB
INPUT CHARACTERISTICS					
Offset Voltage	$\mathrm{V}_{\text {+ IIN }}=\mathrm{V}_{- \text {DIN }}=\mathrm{V}_{\text {OCM }}=0 \mathrm{~V}$	-2.2	± 0.5	+2.2	mV
	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ variation		-3.7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current		-5.2	-2.5	-0.1	$\mu \mathrm{A}$
	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ variation		-9.5		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
Input Offset Current		-0.2	± 0.025	+0.2	$\mu \mathrm{A}$
Input Resistance	Differential		11		$\mathrm{M} \Omega$
	Common mode		16		$\mathrm{M} \Omega$
Input Capacitance			0.5		pF
Input Common-Mode Voltage Range			$\begin{aligned} & -V_{s}+0.2 \text { to } \\ & +V_{s}-1.8 \end{aligned}$		V
CMRR	$\Delta \mathrm{V}_{\text {OUT, } \mathrm{dm}} / \Delta \mathrm{V}_{\text {IN, cm, }}, \Delta \mathrm{V}_{\text {IN, cm }}= \pm 1 \mathrm{~V}$		-100	-87	dB
Open-Loop Gain		64	66		dB
OUTPUT CHARACTERISTICS					
Output Voltage Swing	Maximum $\Delta V_{\text {out, }}$ single-ended output, $R_{F}=R_{G}=10 \mathrm{k} \Omega, R_{L}=1 \mathrm{k} \Omega$	$\begin{aligned} & -V_{s}+1.4 \text { to } \\ & +V_{s}-1.4 \end{aligned}$	$\begin{aligned} & -V_{s}+1.2 \text { to } \\ & +V_{s}-1.2 \end{aligned}$		V
Linear Output Current	$200 \mathrm{kHz}, \mathrm{RL}, \mathrm{dm}=10 \Omega, \mathrm{SFDR}=68 \mathrm{~dB}$		80		mA rms
Output Balance Error	$\Delta \mathrm{V}_{\text {OUT, cm }} / \Delta \mathrm{V}_{\text {OUT, } \mathrm{dm},} \Delta \mathrm{V}_{\text {OUT, } \mathrm{dm}}=2 \mathrm{~V}$ p-p, 1 MHz , see Figure 52 for output balance test circuit		-64	-60	dB

$V_{\text {осм }}$ to $V_{\text {out, cm }}$ Performance

Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Vосм DYNAMIC PERFORMANCE -3 dB Small Signal Bandwidth -3 dB Large Signal Bandwidth Slew Rate Input Voltage Noise (RTI)	$\begin{aligned} & \text { Vout, } \mathrm{cm}=100 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\text {out }, \mathrm{cm}}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, 25 \% \text { to } 75 \% \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 270 \\ & 105 \\ & 410 \\ & 9.6 \end{aligned}$		MHz MHz $\mathrm{V} / \mu \mathrm{s}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
V осм INPUT CHARACTERISTICS Input Voltage Range Input Resistance Input Offset Voltage Vocm CMRR Gain	$\mathrm{V}_{+\mathrm{DIN}}=\mathrm{V}_{-\mathrm{DIN}}=0 \mathrm{~V}$ $\Delta \mathrm{V}_{\text {out, }}$ dm $/ \Delta \mathrm{V}_{\text {осм }}, \Delta \mathrm{V}_{\text {осм }}= \pm 1 \mathrm{~V}$ $\Delta \mathrm{V}_{\text {OUT, }} \mathrm{cm} / \Delta \mathrm{V}_{\text {Oсм }}, \Delta \mathrm{V}_{\text {Oсм }}= \pm 1 \mathrm{~V}$	$\begin{aligned} & 22 \\ & -5.1 \\ & 0.995 \end{aligned}$	$\begin{aligned} & -V_{s}+1.2 \text { to }+V_{s}-1.2 \\ & 25 \\ & \pm 1 \\ & -100 \\ & 0.998 \end{aligned}$	$\begin{aligned} & 29 \\ & +5.1 \\ & -86 \\ & 1.000 \end{aligned}$	V $\mathrm{k} \Omega$ mV dB V/V

General Performance

Table 3.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
POWER SUPPLY Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ variation Powered down $\Delta \mathrm{V}_{\text {out, }} \mathrm{dm} / \Delta \mathrm{V}_{\mathrm{s}}, \Delta \mathrm{V}_{\mathrm{s}}=1 \mathrm{~V}$ p-p	$\begin{aligned} & 3.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 9.6 \\ & 35 \\ & 0.9 \\ & -96 \end{aligned}$	$\begin{aligned} & 11 \\ & 10.1 \\ & \\ & 1.0 \\ & -84 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} /{ }^{\circ} \mathrm{C} \\ & \mathrm{~mA} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
POWER-DOWN ($\overline{\mathrm{PD}})$ $\overline{\mathrm{PD}}$ Input Voltage Turn-Off Time Turn-On Time $\overline{\text { PD }}$ Pin Bias Current per Amplifier Enabled Disabled	Powered down Enabled $\begin{aligned} & \overline{\mathrm{PD}}=5 \mathrm{~V} \\ & \overline{\mathrm{PD}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -10 \\ & -240 \end{aligned}$	$\begin{aligned} & \leq\left(+V_{s}-2.5\right) \\ & \geq\left(+V_{s}-1.8\right) \\ & 1100 \\ & 16 \\ & \\ & +0.7 \\ & -195 \end{aligned}$	$\begin{aligned} & +10 \\ & -140 \end{aligned}$	
OPERATING TEMPERATURE RANGE		-40		+105	${ }^{\circ} \mathrm{C}$

ADA4932-1/ADA4932-2

5 V OPERATION

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OCM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=499 \Omega, \mathrm{R}_{\mathrm{G}}=499 \Omega, \mathrm{R}_{\mathrm{T}}=53.6 \Omega$ (when used), $\mathrm{R}_{\mathrm{L}, \mathrm{dm}}=1 \mathrm{k} \Omega$, unless otherwise noted. All specifications refer to single-ended input and differential outputs, unless otherwise noted. Refer to Figure 54 for signal definitions.
$\pm D_{\text {IN }}$ to $V_{\text {out, dm }}$ Performance
Table 4.

ADA4932-1/ADA4932-2

Data Sheet

$V_{\text {осм }}$ to $V_{\text {out, ст }}$ Performance

Table 5.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Vосм DYNAMIC PERFORMANCE -3 dB Small Signal Bandwidth -3 dB Large Signal Bandwidth Slew Rate Input Voltage Noise (RTI)	$\begin{aligned} & V_{\text {out }, \mathrm{cm}}=100 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\text {out }, \mathrm{cm}}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, 25 \% \text { to } 75 \% \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 260 \\ & 90 \\ & 360 \\ & 9.6 \end{aligned}$		MHz MHz V/ $\mu \mathrm{s}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
V ocm INPUT CHARACTERISTICS Input Voltage Range Input Resistance Input Offset Voltage Vocm CMRR Gain	$\mathrm{V}_{+\mathrm{DIN}}=\mathrm{V}_{\text {-DIN }}=2.5 \mathrm{~V}$ $\Delta \mathrm{V}_{\text {OUt, }}$ dm $/ \Delta \mathrm{V}_{\text {OcM }}, \Delta \mathrm{V}_{\text {OCM }}= \pm 1 \mathrm{~V}$ $\Delta V_{\text {OUT, cm }} / \Delta V_{\text {OCM }}, \Delta V_{\text {OCM }}= \pm 1 \mathrm{~V}$	$\begin{aligned} & 22 \\ & -6.5 \\ & 0.995 \end{aligned}$	$\begin{aligned} & -V_{s}+1.2 \text { to }+V_{s}-1.2 \\ & 25 \\ & -3.0 \\ & -100 \\ & 0.998 \end{aligned}$	$\begin{aligned} & 29 \\ & +6.5 \\ & -86 \\ & 1.000 \end{aligned}$	V $\mathrm{k} \Omega$ mV dB V/V

General Performance

Table 6.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
POWER SUPPLY Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ variation Powered down $\Delta \mathrm{V}_{\text {out }, \mathrm{dm}} / \Delta \mathrm{V}_{\mathrm{s}}, \Delta \mathrm{V}_{\mathrm{s}}=1 \mathrm{~V} \mathrm{p}-\mathrm{p}$	$\begin{aligned} & 3.0 \\ & 8.2 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 35 \\ & 0.7 \\ & -96 \end{aligned}$	$\begin{aligned} & 11 \\ & 9.5 \\ & \\ & 0.8 \\ & -84 \end{aligned}$	V mA $\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$ mA dB
POWER-DOWN ($\overline{\mathrm{PD}})$ $\overline{\mathrm{PD}}$ Input Voltage Turn-Off Time Turn-On Time $\overline{\text { PD Pin Bias Current per Amplifier }}$ Enabled Disabled	Powered down Enabled $\begin{aligned} & \overline{\mathrm{PD}}=5 \mathrm{~V} \\ & \overline{\mathrm{PD}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -10 \\ & -100 \end{aligned}$	$\begin{aligned} & \leq\left(+V_{s}-2.5\right) \\ & \geq\left(+V_{s}-1.8\right) \\ & 1100 \\ & 16 \\ & \\ & +0.7 \\ & -70 \end{aligned}$	$\begin{aligned} & +10 \\ & -40 \end{aligned}$	
OPERATING TEMPERATURE RANGE		-40		+105	${ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Table 7.

Parameter	Rating
Supply Voltage	11 V
Power Dissipation	See Figure 3
Input Current, $+\mathrm{IN},-\mathrm{IN}, \overline{\mathrm{PD}}$	$\pm 5 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	
\quad ADA4932-1	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
\quad ADA4932-2	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the device (including exposed pad) soldered to a high thermal conductivity 2 s 2 p circuit board, as described in EIA/JESD 51-7.

Table 8. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
ADA4932-1, 16-Lead LFCSP (Exposed Pad)	91	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ADA4932-2, 24-Lead LFCSP (Exposed Pad)	65	${ }^{\circ} \mathrm{C} / \mathrm{W}$

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation for the ADA4932-1/ ADA4932-2 package is limited by the associated rise in junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ on the die. At approximately $150^{\circ} \mathrm{C}$, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4932-1/ ADA4932-2. Exceeding a junction temperature of $150^{\circ} \mathrm{C}$ for an extended period can result in changes in the silicon devices, potentially causing failure.

The power dissipated in the package $\left(\mathrm{P}_{\mathrm{D}}\right)$ is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive. The quiescent power is the voltage between the supply pins (V_{s}) times the quiescent current $\left(\mathrm{I}_{\mathrm{s}}\right)$. The power dissipated due to the load drive depends upon the particular application. The power due to load drive is calculated by multiplying the load current by the associated voltage drop across the device. RMS voltages and currents must be used in these calculations.

Airflow increases heat dissipation, effectively reducing $\theta_{\text {JAA }}$. In addition, more metal directly in contact with the package leads/ exposed pad from metal traces, through holes, ground, and power planes reduces $\theta_{\text {JA }}$.
Figure 3 shows the maximum safe power dissipation in the package vs. the ambient temperature for the single 16 -lead $\operatorname{LFCSP}\left(91^{\circ} \mathrm{C} / \mathrm{W}\right)$ and the dual 24 -lead $\operatorname{LFCSP}\left(65^{\circ} \mathrm{C} / \mathrm{W}\right)$ on a JEDEC standard 4-layer board with the exposed pad soldered to a PCB pad that is connected to a solid plane.

Figure 3. Maximum Power Dissipation vs. Ambient Temperature for a 4-Layer Board

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES

1. SOLDER EXPOSED PADDLE ON BACK OF PACKAGE TO GROUND PLANE OR TO A POWER PLANE.

Figure 4. ADA4932-1 Pin Configuration

Table 9. ADA4932-1 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	- FB	Negative Output for Feedback Component Connection.
2	+ IN	Positive Input Summing Node.
3	- IN	Negative Input Summing Node.
4	+ FB	Positive Output for Feedback Component Connection.
5 to 8	$+V_{S}$	Positive Supply Voltage.
9	Vocm	Output Common-Mode Voltage.
10	+OUT	Positive Output for Load Connection.
11	-OUT	Negative Output for Load Connection.
12	PD	Power-Down Pin.
13 to 16	$-V_{\text {s }}$	Negative Supply Voltage.
17	Exposed Paddle (EPAD)	Solder the exposed paddle on the back of the package to a ground plane or to a power plane.

Table 10. ADA4932-2 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	-IN1	Negative Input Summing Node 1.
2	+FB1	Positive Output Feedback 1.
3,4	+ ${ }_{\text {S } 1}$	Positive Supply Voltage 1.
5	-FB2	Negative Output Feedback 2.
6	+IN2	Positive Input Summing Node 2.
7	-IN2	Negative Input Summing Node 2.
8	+FB2	Positive Output Feedback 2.
9, 10	$+\mathrm{V}_{52}$	Positive Supply Voltage 2.
11	V осм2	Output Common-Mode Voltage 2.
12	+OUT2	Positive Output 2.
13	-OUT2	Negative Output 2.
14	$\overline{\mathrm{PD} 2}$	Power-Down Pin 2.
15, 16	- V_{52}	Negative Supply Voltage 2.
17	Vocm1	Output Common-Mode Voltage 1.
18	+OUT1	Positive Output 1.
19	-OUT1	Negative Output 1.
20	$\overline{\text { PD1 }}$	Power-Down Pin 1.
21, 22	-V ${ }_{\text {s } 1}$	Negative Supply Voltage 1.
23	-FB1	Negative Output Feedback 1.
24	+IN1	Positive Input Summing Node 1.
25	Exposed Paddle (EPAD)	Solder the exposed paddle on the back of the package to a ground plane or to a power plane.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-5 \mathrm{~V}, \mathrm{~V}_{\text {OCM }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=499 \Omega, \mathrm{R}_{\mathrm{F}}=499 \Omega, \mathrm{R}_{\mathrm{T}}=53.6 \Omega$ (when used), $\mathrm{R}_{\mathrm{L}, \mathrm{dm}}=1 \mathrm{k} \Omega$, unless otherwise noted. Refer to Figure 51 for test setup. Refer to Figure 54 for signal definitions.

Figure 6. Small Signal Frequency Response for Various Gains

Figure 7. Small Signal Frequency Response for Various R_{F} and R_{G}

Figure 8. Small Signal Frequency Response for Various Supplies

Figure 9. Large Signal Frequency Response for Various Gains

Figure 10. Large Signal Frequency Response for Various R_{F} and R_{G}

Figure 11. Large Signal Frequency Response for Various Supplies

Figure 12. Small Signal Frequency Response for Various Temperatures

Figure 13. Small Signal Frequency Response at Various Loads

Figure 14. Small Signal Frequency Response for Various Vocm Levels

Figure 15. Large Signal Frequency Response for Various Temperatures

Figure 16. Large Signal Frequency Response at Various Loads

Figure 17. Large Signal Frequency Response for Various V осм Levels

Figure 18. Small Signal Frequency Response at Various Capacitive Loads

Figure 19.0.1 dB Flatness Small Signal Frequency Response for Various Loads

Figure 20. Vосм Small Signal Frequency Response at Various DC Levels

Figure 21. Large Signal Frequency Response at Various Capacitive Loads

Figure 22. 0.1 dB Flatness Large Signal Frequency Response for Various Loads

Figure 23. Vocm Large Signal Frequency Response at Various DC Levels

Figure 24. Harmonic Distortion vs. Frequency at Various Loads

Figure 25. Harmonic Distortion vs. Frequency at Various Supplies

Figure 26. Harmonic Distortion vs. Vосм at Various Frequencies, ± 5 V Supplies

Figure 27. Harmonic Distortion vs. Frequency at Various Gains

Figure 28. Harmonic Distortion vs. Vout, dm and Supply Voltage, $f=10 \mathrm{MHz}$

Figure 29. Harmonic Distortion vs. Vосм at Various Frequencies, +5 V Supply

Figure 30. Harmonic Distortion vs. Frequency at Various Vout, dm

Figure 31. Spurious-Free Dynamic Range vs. Frequency at Various Loads

Figure 32. CMRR vs. Frequency

Figure 33. Harmonic Distortion vs. Frequency at Various R_{F} and R_{G}

Figure 34. 30 MHz Intermodulation Distortion

Figure 35. PSRR vs. Frequency

Figure 36. Output Balance vs. Frequency

Figure 37. Return Loss (S_{11}, S_{22}) vs. Frequency

Figure 38. Voltage Noise Spectral Density, Referred to Input

Figure 39. Open-Loop Gain and Phase vs. Frequency

Figure 40. Closed-Loop Output Impedance Magnitude vs. Frequency, G=1

Figure 41.Overdrive Recovery, $G=2$

Figure 42. Small Signal Pulse Response

Figure 43. Small Signal Pulse Response for Various Capacitive Loads

Figure 44. Vосм Small Signal Pulse Response

Figure 45. Large Signal Pulse Response

Figure 46. Large Signal Pulse Response for Various Capacitive Loads

Figure 47. Vосм Large Signal Pulse Response

Figure 48. Settling Time

Figure 49. Crosstalk vs. Frequency, ADA4932-2

Figure 50. $\overline{P D}$ Response Time

TEST CIRCUITS

Figure 51. Equivalent Basic Test Circuit, G=1

Figure 52. Test Circuit for Output Balance, CMRR

Figure 53. Test Circuit for Distortion Measurements

TERMINOLOGY

Figure 54. Signal and Circuit Definitions

Differential Voltage

Differential voltage refers to the difference between two node voltages. For example, the output differential voltage (or equivalently, output differential mode voltage) is defined as

$$
V_{\text {OUT }, d m}=\left(V_{\text {+OUT }}-V_{\text {-OUT }}\right)
$$

where $V_{+ \text {out }}$ and $V_{\text {-out }}$ refer to the voltages at the +OUT and -OUT terminals with respect to a common ground reference. Similarly, the differential input voltage is defined as

$$
V_{I N, d m}=\left(+D_{I N}-\left(-D_{I N}\right)\right)
$$

Common-Mode Voltage

Common-mode voltage refers to the average of two node voltages with respect to the local ground reference. The output commonmode voltage is defined as

$$
V_{\text {out }, c m}=\left(V_{+ \text {out }}+V_{\text {-OUT }}\right) / 2
$$

Balance

Output balance is a measure of how close the output differential signals are to being equal in amplitude and opposite in phase. Output balance is most easily determined by placing a wellmatched resistor divider between the differential voltage nodes and comparing the magnitude of the signal at the divider midpoint with the magnitude of the differential signal (see Figure 52). By this definition, output balance is the magnitude of the output common-mode voltage divided by the magnitude of the output differential mode voltage.

$$
\text { Output Balance Error }=\left|\frac{\Delta V_{\text {OUT, } \mathrm{cm}}}{\Delta V_{\text {OUT, dm }}}\right|
$$

THEORY OF OPERATION

The ADA4932-1/ADA4932-2 differ from conventional op amps in that it has two outputs whose voltages move in opposite directions and an additional input, Vocm. Like an op amp, it relies on high open-loop gain and negative feedback to force these outputs to the desired voltages. The ADA4932-1/ADA4932-2 behave much like standard voltage feedback op amps and facilitates single-ended-to-differential conversions, commonmode level shifting, and amplifications of differential signals. Like an op amp, the ADA4932-1/ADA4932-2 have high input impedance and low output impedance. Because they use voltage feedback, the ADA4932-1/ADA4932-2 manifest a nominally constant gain bandwidth product.
Two feedback loops are employed to control the differential and common-mode output voltages. The differential feedback, set
with external resistors, controls only the differential output voltage. The common-mode feedback controls only the common-mode output voltage. This architecture makes it easy to set the output common-mode level to any arbitrary value within the specified limits. The output common-mode voltage is forced, by the internal common-mode feedback loop, to be equal to the voltage applied to the V осм input.
The internal common-mode feedback loop produces outputs that are highly balanced over a wide frequency range without requiring tightly matched external components. This results in differential outputs that are very close to the ideal of being identical in amplitude and are exactly 180° apart in phase.

APPLICATIONS INFORMATION

ANALYZING AN APPLICATION CIRCUIT

The ADA4932-1/ADA4932-2 use high open-loop gain and negative feedback to force their differential and common-mode output voltages in such a way as to minimize the differential and common-mode error voltages. The differential error voltage is defined as the voltage between the differential inputs labeled + IN and -IN (see Figure 54). For most purposes, this voltage is zero. Similarly, the difference between the actual output common-mode voltage and the voltage applied to Vосм is also zero. Starting from these principles, any application circuit can be analyzed.

SETTING THE CLOSED-LOOP GAIN

Using the approach described in the Analyzing an Application Circuit section, the differential gain of the circuit in Figure 54 can be determined by

$$
\left|\frac{V_{O U T, d m}}{V_{I N, d m}}\right|=\frac{R_{F}}{R_{G}}
$$

This presumes that the input resistors $\left(\mathrm{R}_{\mathrm{G}}\right)$ and feedback resistors (R_{F}) on each side are equal.

ESTIMATING THE OUTPUT NOISE VOLTAGE

The differential output noise of the ADA4932-1/ADA4932-2 can be estimated using the noise model in Figure 55. The inputreferred noise voltage density, $\mathrm{v}_{\mathrm{niN}}$, is modeled as a differential
input, and the noise currents, $\mathrm{i}_{\mathrm{nIN}}$ and $\mathrm{i}_{\mathrm{nIN}+}$, appear between each input and ground. The output voltage due to $\mathrm{V}_{\mathrm{nIN}}$ is obtained by multiplying $\mathrm{v}_{\mathrm{nIN}}$ by the noise gain, G_{N} (defined in the G_{N} equation that follows). The noise currents are uncorrelated with the same mean-square value, and each produces an output voltage that is equal to the noise current multiplied by the associated feedback resistance. The noise voltage density at the $\mathrm{V}_{\text {осм }} / \mathrm{V}_{\text {осми }}$ pin is $\mathrm{v}_{\mathrm{ncm}}$. When the feedback networks have the same feedback factor, as is true in most cases, the output noise due to $\mathrm{V}_{\mathrm{n} C \mathrm{~m}}$ is common mode. Each of the four resistors contributes $(4 \mathrm{kTRxx})^{1 / 2}$. The noise from the feedback resistors appears directly at the output, and the noise from the gain resistors appears at the output multiplied by R_{F} / R_{G}. Table 11 summarizes the input noise sources, the multiplication factors, and the output-referred noise density terms.

Figure 55. Noise Model

Table 11. Output Noise Voltage Density Calculations for Matched Feedback Networks

Input Noise Contribution	Input Noise Term	Input Noise Voltage Density	Output Multiplication Factor	Differential Output Noise Voltage Density Term
Differential Input	$\mathrm{V}_{\text {nin }}$	$\mathrm{V}_{\text {nin }}$	G_{N}	$\mathrm{v}_{\mathrm{nO1}}=\mathrm{G}_{\mathrm{N}}\left(\mathrm{V}_{\mathrm{nIN}}\right)$
Inverting Input	$\mathrm{in}_{\text {IN- }}$	$\mathrm{i}_{\text {IN }} \times \times\left(\mathrm{R}_{\text {F2 }}\right)$	1	$\mathrm{V}_{\mathrm{nO2}}=\left(\mathrm{in}_{\text {niN }}\right)\left(\mathrm{R}_{\text {F2 }}\right)$
Noninverting Input	$\mathrm{in}_{\text {IN+ }}$	$\mathrm{i}_{\mathrm{nlN}+} \times\left(\mathrm{R}_{\mathrm{Fl}}\right)$	1	$\mathrm{V}_{\text {nO3 }}=\left(\mathrm{in}_{\text {nIN+ }}\right)\left(\mathrm{R}_{\mathrm{Fl}}\right)$
Vocm Input	V ¢CM	V CM	0	$\mathrm{V}_{\mathrm{n} 04}=0 \mathrm{~V}$
Gain Resistor, R_{61}	VnRG1	$\left(4 \mathrm{kTR}_{\mathrm{G}_{1}}\right)^{1 / 2}$	$\mathrm{R}_{\mathrm{F} 1} / \mathrm{R}_{\mathrm{G} 1}$	$\mathrm{v}_{\mathrm{nO5}}=\left(\mathrm{R}_{\mathrm{F} 1} / \mathrm{R}_{\mathrm{G}_{1}}\right)\left(4 \mathrm{kTR} \mathrm{R}_{\mathrm{G}_{1}}\right)^{1 / 2}$
Gain Resistor, R G_{2}	VnRG2	$\left(4 \mathrm{kTR}_{\mathrm{G} 2}\right)^{1 / 2}$	$\mathrm{RF}_{\text {2 }} / \mathrm{R}_{\mathrm{G} 2}$	$\mathrm{v}_{\mathrm{nO6}}=\left(\mathrm{R}_{\mathrm{F} 2} / \mathrm{R}_{\mathrm{G} 2}\right)\left(4 \mathrm{kTR} \mathrm{R}_{\mathrm{G} 2}\right)^{1 / 2}$
Feedback Resistor, $\mathrm{R}_{\mathrm{F} 1}$	VnRF1	$\left(4 \mathrm{kTR}_{\text {F1 }}\right)^{1 / 2}$	1	$\mathrm{V}_{\mathrm{nO7}}=\left(4 \mathrm{kTR} \mathrm{F}_{1}\right)^{1 / 2}$
Feedback Resistor, R ${ }_{\text {F2 }}$	$\mathrm{V}_{\mathrm{nRF} 2}$	$\left(4 \mathrm{kTR}_{\text {F2 }}\right)^{1 / 2}$	1	$\mathrm{V}_{\mathrm{n} 08}=\left(4 \mathrm{kTR} \mathrm{F}_{2}\right)^{1 / 2}$

Table 12. Differential Input, DC-Coupled

Nominal Gain (dB)	$\mathbf{R}_{\mathbf{F}}(\boldsymbol{\Omega})$	$\mathbf{R}_{\mathbf{G}} \boldsymbol{(\Omega)}$	$\mathbf{R}_{\mathbf{I N}, \mathrm{dm}} \boldsymbol{(\Omega)}$	Differential Output Noise Density $\mathbf{(n V / \sqrt { H z })}$
0	499	499	998	9.25
6	499	249	498	12.9
10	768	243	486	18.2

Table 13. Single-Ended Ground-Referenced Input, DC-Coupled, $R_{S}=50 \Omega$

Nominal Gain (dB)	R $\mathbf{F}^{(\Omega)}$	R_{G1} ($\mathbf{\Omega}$)	R_{T} ($\mathbf{\Omega}$) (Std 1\%)	$\mathrm{R}_{\mathrm{IN}, \mathrm{cm}}(\mathbf{\Omega})$	$\mathrm{R}_{\mathrm{G} 2}(\boldsymbol{\Omega})^{1}$	Differential Output Noise Density ($\mathrm{nV} / \mathrm{V} \mathbf{H z}$)
0	511	499	53.6	665	525	9.19
6	523	249	57.6	374	276	12.6
10	806	243	57.6	392	270	17.7

[^0]Similar to the case of a conventional op amp, the output noise voltage densities can be estimated by multiplying the inputreferred terms at + IN and -IN by the appropriate output factor, where:
$G_{N}=\frac{2}{\left(\beta_{1}+\beta_{2}\right)}$ is the circuit noise gain.
$\beta_{1}=\frac{R_{G 1}}{R_{F 1}+R_{G 1}}$ and $\beta_{2}=\frac{R_{G 2}}{R_{F 2}+R_{G 2}}$ are the feedback factors.
When the feedback factors are matched, $\mathrm{R}_{\mathrm{F} 1} / \mathrm{R}_{\mathrm{G} 1}=\mathrm{R}_{\mathrm{F} 2} / \mathrm{R}_{\mathrm{G} 2}, \beta 1=$ $\beta 2=\beta$, and the noise gain becomes

$$
G_{N}=\frac{1}{\beta}=1+\frac{R_{F}}{R_{G}}
$$

Note that the output noise from $V_{\text {осм }}$ goes to zero in this case. The total differential output noise density, $\mathrm{V}_{\mathrm{nOD}}$, is the root-sumsquare of the individual output noise terms.

$$
v_{n O D}=\sqrt{\sum_{i=1}^{8} v_{n O i}^{2}}
$$

Table 12 and Table 13 list several common gain settings, associated resistor values, input impedance, and output noise density for both balanced and unbalanced input configurations.

IMPACT OF MISMATCHES IN THE FEEDBACK NETWORKS

As previously mentioned, even if the external feedback networks $\left(\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{G}}\right)$ are mismatched, the internal common-mode feedback loop still forces the outputs to remain balanced. The amplitudes of the signals at each output remain equal and 180° out of phase. The input-to-output differential mode gain varies proportionately to the feedback mismatch, but the output balance is unaffected.
The gain from the $\mathrm{V}_{\text {осм }} / \mathrm{V}_{\text {осмх }}$ pin to $\mathrm{Vout}_{\text {odm }}$ is equal to

$$
2(\beta 1-\beta 2) /(\beta 1+\beta 2)
$$

When $\beta 1=\beta 2$, this term goes to zero and there is no differential output voltage due to the voltage on the $V_{\text {осм }}$ input (including noise). The extreme case occurs when one loop is open and the other has 100% feedback; in this case, the gain from Vосм input to Vour, dm is either +2 or -2 , depending on which loop is closed. The feedback loops are nominally matched to within 1% in most applications, and the output noise and offsets due to the $V_{\text {осм }}$ input are negligible. If the loops are intentionally mismatched by a large amount, it is necessary to include the gain term from $V_{\text {Ocm }}$ to $V_{\text {Out, dm }}$ and account for the extra noise. For example, if $\beta 1=0.5$ and $\beta 2=0.25$, the gain from $V_{\text {OCM }}$ to $V_{\text {out, }}$ dm is 0.67 . If the $\mathrm{V}_{\text {осм }} / \mathrm{V}_{\text {осмх }}$ pin is set to 2.5 V , a differential offset voltage is present at the output of $(2.5 \mathrm{~V})(0.67)=1.67 \mathrm{~V}$. The differential output noise contribution is $(9.6 \mathrm{nV} / \sqrt{ } \mathrm{Hz})(0.67)=6.4 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$. Both of these results are undesirable in most applications; therefore, it is best to use nominally matched feedback factors.
Mismatched feedback networks also result in a degradation of the ability of the circuit to reject input common-mode signals,
much the same as for a four-resistor difference amplifier made from a conventional op amp.
As a practical summarization of the above issues, resistors of 1% tolerance produce a worst-case input CMRR of approximately 40 dB , a worst-case differential-mode output offset of 25 mV due to a 2.5 V Vосм input, negligible $\mathrm{V}_{\text {осм }}$ noise contribution, and no significant degradation in output balance error.

CALCULATING THE INPUT IMPEDANCE FOR AN APPLICATION CIRCUIT

The effective input impedance of a circuit depends on whether the amplifier is being driven by a single-ended or differential signal source. For balanced differential input signals, as shown in Figure 56, the input impedance ($\mathrm{R}_{\mathbb{I N}, \mathrm{dm}}$) between the inputs $\left(+D_{\text {IN }}\right.$ and $\left.-D_{\text {IN }}\right)$ is $R_{I N, d m}=R_{G}+R_{G}=2 \times R_{G}$.

Figure 56. ADA4932-1/ADA4932-2 Configured for Balanced (Differential) Inputs
For an unbalanced, single-ended input signal (see Figure 57), the input impedance is

Figure 57. The ADA4932-1/ADA4932-2 with Unbalanced (Single-Ended) Input
The input impedance of the circuit is effectively higher than it is for a conventional op amp connected as an inverter because a fraction of the differential output voltage appears at the inputs as a common-mode signal, partially bootstrapping the voltage across the input resistor, R_{G}. The common-mode voltage at the amplifier input terminals can be easily determined by noting that the voltage at the inverting input is equal to the noninverting output voltage divided down by the voltage divider that is formed by R_{F} and R_{G} in the lower loop. This voltage is present at both input terminals due to negative voltage feedback and is in phase
with the input signal, thus reducing the effective voltage across R_{G} in the upper loop and partially bootstrapping R_{G}.

Terminating a Single-Ended Input

This section describes how to properly terminate a single-ended input to the ADA4932-1/ADA4932-2 with a gain of $1, \mathrm{R}_{\mathrm{F}}=499 \Omega$, and $\mathrm{R}_{\mathrm{G}}=499 \Omega$. An example using an input source with a terminated output voltage of $1 \mathrm{~V} \mathrm{p}-\mathrm{p}$ and source resistance of 50Ω illustrates the four steps that must be followed. Note that because the terminated output voltage of the source is $1 \mathrm{Vp}-\mathrm{p}$, the open-circuit output voltage of the source is 2 V p-p. The source shown in Figure 58 indicates this open-circuit voltage.

1. Calculate the input impedance by using the following formula:

$$
R_{I N, s e}=\left(\frac{R_{G}}{1-\frac{R_{F}}{2 \times\left(R_{G}+R_{F}\right)}}\right)=\left(\frac{499}{1-\frac{499}{2 \times(499+499)}}\right)=665 \Omega
$$

Figure 58. Calculating Single-Ended Input Impedance, $R_{I N}$
2. To match the 50Ω source resistance, calculate the termination resistor, R_{T}, using $\mathrm{R}_{\mathrm{T}}| | 665 \Omega=50 \Omega$. The closest standard 1% value for R_{T} is 53.6Ω.

Figure 59. Adding Termination Resistor, R_{T}
3. Figure 59 shows that the effective R_{G} in the upper feedback loop is now greater than the R_{G} in the lower loop due to the addition of the termination resistors. To compensate for the imbalance of the gain resistors, add a correction resistor (R_{TS}) in series with R_{G} in the lower loop. R_{TS} is the Thevenin equivalent of the source resistance, R_{s}, and the termination resistance, R_{T}, and is equal to $\mathrm{R}_{S} \| \mathrm{R}_{\mathrm{T}}$.

Figure 60. Calculating the Thevenin Equivalent
$\mathrm{R}_{\mathrm{TS}}=\mathrm{R}_{\mathrm{TH}}=\mathrm{R}_{S}| | \mathrm{R}_{\mathrm{T}}=25.9 \Omega$. Note that V_{TH} is greater than 1 V p-p, which was obtained with $\mathrm{R}_{\mathrm{T}}=50 \Omega$. The modified circuit with the Thevenin equivalent (closest 1% value used for R_{TH}) of the terminated source and R_{TS} in the lower feedback loop is shown in Figure 61.

Figure 61. Thevenin Equivalent and Matched Gain Resistors
Figure 61 presents a tractable circuit with matched feedback loops that can be easily evaluated.

It is useful to point out two effects that occur with a terminated input. The first is that the value of R_{G} is increased in both loops, lowering the overall closed-loop gain. The second is that V_{TH} is a little larger than $1 \mathrm{~V} \mathrm{p}-\mathrm{p}$, as it would be if $\mathrm{R}_{\mathrm{T}}=50 \Omega$. These two effects have opposite impacts on the output voltage, and for large resistor values in the feedback loops ($\sim 1 \mathrm{k} \Omega$), the effects essentially cancel each other out. For small R_{F} and R_{G}, or high gains, however, the diminished closed-loop gain is not canceled completely by the increased V_{TH}. This can be seen by evaluating Figure 61.
The desired differential output in this example is 1 V p-p because the terminated input signal was 1 V p-p and the closed-loop gain $=1$. The actual differential output voltage, however, is equal to $(1.03 \mathrm{~V} p-\mathrm{p})(499 / 524.5)=0.98 \mathrm{~V}$ p-p. To obtain the desired output voltage of 1 V p-p, a final gain adjustment can be made by increasing R_{F} without modifying any of the input circuitry (see Step 4).
4. The feedback resistor value is modified as a final gain adjustment to obtain the desired output voltage.

To make the output voltage $\mathrm{V}_{\text {out }}=1 \mathrm{~V}$ p-p, calculate R_{F} by using the following formula:

$$
\begin{aligned}
R_{F}= & \frac{\left(\text { Desired } V_{\text {OUT,dm }}\right)\left(R_{G}+R_{T S}\right)}{V_{T H}}= \\
& \frac{(1 V p-p)(524.5 \Omega)}{1.03 V p-p}=509 \Omega
\end{aligned}
$$

The closest standard 1% value to 509Ω is 511Ω, which gives a differential output voltage of 1.00 V p-p.

The final circuit is shown in Figure 62.

Figure 62. Terminated Single-Ended-to-Differential System with $G=2$

INPUT COMMON-MODE VOLTAGE RANGE

The ADA4932-1/ADA4932-2 input common-mode range is shifted down by approximately one VBE, in contrast to other ADC drivers with centered input ranges such as the ADA4939-1/ ADA4939-2. The downward-shifted input common-mode range is especially suited to dc-coupled, single-ended-todifferential, and single-supply applications.

For $\pm 5 \mathrm{~V}$ operation, the input common-mode range at the summing nodes of the amplifier is specified as -4.8 V to +3.2 V , and is specified as +0.2 V to +3.2 V with a +5 V supply. To avoid nonlinearities, the voltage swing at the +IN and -IN terminals must be confined to these ranges.

INPUT AND OUTPUT CAPACITIVE AC COUPLING

While the ADA4932-1/ADA4932-2 is best suited to dc-coupled applications, it is nonetheless possible to use it in ac-coupled circuits. Input ac coupling capacitors can be inserted between the source and R_{G}. This ac coupling blocks the flow of the dc common-mode feedback current and causes the ADA4932-1/ ADA4932-2 dc input common-mode voltage to equal the dc output common-mode voltage. These ac coupling capacitors must be placed in both loops to keep the feedback factors matched. Output ac coupling capacitors can be placed in series between each output and its respective load.

SETTING THE OUTPUT COMMON-MODE VOLTAGE

The V OCM $^{\prime} / \mathrm{V}_{\text {OCMx }}$ pin of the ADA4932-1/ADA4932-2 is internally biased with a voltage divider comprised of two $50 \mathrm{k} \Omega$ resistors across the supplies, with a tap at a voltage approximately equal to the midsupply point, $\left[\left(+\mathrm{V}_{\mathrm{s}}\right)+\left(-\mathrm{V}_{\mathrm{s}}\right)\right] / 2$. Because of this internal divider, the $\mathrm{V}_{\text {осм }} / \mathrm{V}_{\text {осмх }}$ pin sources and sinks current, depending on the externally applied voltage and its associated source resistance. Relying on the internal bias results in an output common-mode voltage that is within about 100 mV of the expected value.
In cases where more accurate control of the output commonmode level is required, it is recommended that an external source or resistor divider be used with source resistance less than 100Ω. If an external voltage divider consisting of equal resistor values is used to set $\mathrm{V}_{\text {OCM }}$ to midsupply with greater accuracy than produced internally, higher values can be used because the external resistors are placed in parallel with the internal resistors. The output common-mode offset listed in the Specifications section assumes that the $\mathrm{V}_{\text {оСм }}$ input is driven by a low impedance voltage source.
It is also possible to connect the Vосм input to a common-mode level (CML) output of an ADC; however, care must be taken to ensure that the output has sufficient drive capability. The input impedance of the $V_{\text {OCM }} / V_{\text {OCMx }}$ pin is approximately $25 \mathrm{k} \Omega$. If multiple ADA4932-1/ADA4932-2 devices share one ADC reference output, a buffer may be necessary to drive the parallel inputs.

HIGH PERFORMANCE PRECISION ADC DRIVER

Using a differential amplifier to drive an ADC successfully is linked to balancing each side of the differential amplifier correctly. Figure 64 shows the schematic for the ADA4932-1, AD7626, and associated circuitry. In the test circuit used, a 2.4 MHz band-pass filter follows the signal source. The bandpass filter eliminates harmonics of the 2.4 MHz signal and ensures that only the frequency of interest is passed and processed by the ADA4932-1 and AD7626.
The ADA4932-1 is particularly useful when driving higher frequency inputs to the AD7626, a 10 MSPS ADC with a switched capacitor input. The resistor (R8, R9) and capacitor (C5, C6) circuit between the ADA4932-1 and AD7626 IN+ and IN- pins acts as a low-pass filter to noise. The filter limits the input bandwidth to the AD7626, but its main function is to optimize the interface between the driving amplifier and the AD7626. The series resistor isolates the driver amplifier from high frequency switching spikes from the ADC switched capacitor front end. The AD7626 data sheet shows values of 20Ω and 56 pF . In Figure 64, these values were empirically optimized to 33Ω and 56 pF . The resistor-capacitor combination can be optimized slightly for the circuit and input frequency being converted by simply varying the R-C combination; however, keep in mind that having the incorrect combination limits the THD and linearity performance of the AD7626. In addition, increasing the bandwidth as seen by the ADC introduces more noise.

Another aspect of optimization is the selection of the power supply voltages for the ADA4932-1. In the circuit, the output common-mode voltage (VCM pin) of the AD7626 is 2.048 V for the internal reference voltage of 4.096 V , and each input ($\mathrm{IN}+, \mathrm{IN}-$) swings between 0 V and $4.096 \mathrm{~V}, 180^{\circ}$ out of phase. This provides an 8.2 V full-scale differential input to the ADC. The ADA4932-1 output stage requires about 1.4 V headroom with respect to each supply voltage for linear operation. Optimum distortion performance is obtained when the supply voltages are approximately symmetrical about the common-mode voltage. If a negative supply of -2.5 V is chosen, then a positive supply of at least +6.5 V is needed for symmetry about the common-mode voltage of 2.048 V .
Experiments performed indicate that a positive supply of 7.25 V gives the best overall distortion for a 2.4 MHz tone. Using a low jitter clock source and a single tone -1 dBFS amplitude, 2.402 MHz input to the AD7626 yielded the results shown in Figure 63 of 88.49 dB SNR and -86.17 dBc THD. At this input level, the ADC limits the SFDR to 83.8 dB . As can be seen from the plot, the harmonics of the fundamental alias back into the pass band. For example, when sampling at 10 MSPS, the third harmonic (7.206 MHz) is aliased into the pass band at 10.000 MHz $7.206 \mathrm{MHz}=2.794 \mathrm{MHz}$.

Figure 63. AD7626 Output, 64,000 Point, FFT Plot - 1 dBFS Amplitude 2.40173 MHz Input Ton, 10.000 MSPS Sampling Rate

The nonharmonic noise admitted through the pass band of the band-pass filter used in the circuit is replaced by the average noise across the Nyquist bandwidth when calculating the SNR and THD. The performance of this or any high speed circuit is highly dependent on proper PCB layout. This includes, but is not limited to, power supply bypassing, controlled impedance lines (where required), component placement, signal routing, and power and ground planes. For a more detailed analysis of this circuit, refer to Circuit Note CN-0105.

Figure 64. ADA4932-1 Driving the AD7626 (All Connections and Decoupling Not Shown)

HIGH PERFORMANCE ADC DRIVING

The ADA4932-1/ADA4932-2 are ideally suited for broadband dc-coupled applications. The circuit in Figure 65 shows a frontend connection for an ADA4932-1 driving an AD9245, a 14-bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS ADC, with dc coupling on the ADA4932-1 input and output. (The AD9245 achieves its optimum performance when driven differentially.) The ADA4932-1 eliminates the need for a transformer to drive the ADC and performs a single-ended-to-differential conversion and buffering of the driving signal.

The ADA4932-1 is configured with a single 3.3 V supply and a gain of 1 for a single-ended input to differential output. The 53.6Ω termination resistor, in parallel with the single-ended input impedance of approximately 665Ω, provides a 50Ω termination for the source. The additional 25.5Ω (524.5Ω total) at the inverting input balances the parallel impedance of the 50Ω source and the termination resistor driving the noninverting input.
In this example, the signal generator has a 1 V p-p symmetric, ground-referenced bipolar output when terminated in 50Ω. The V ${ }_{\text {Ocm }}$ input is bypassed for noise reduction, and set externally with 1% resistors to maximize output dynamic range on the tight 3.3 V supply.

Because the inputs are dc-coupled, dc common-mode current flows in the feedback loops, and a nominal dc level of 0.84 V is present at the amplifier input terminals. A fraction of the output signal is also present at the input terminals as a common-mode signal; its level is equal to the ac output swing at the noninverting output, divided down by the feedback factor of the lower loop. In this example, this ripple is $0.5 \mathrm{~V} \mathrm{p}-\mathrm{p} \times[524.5 /(524.5+511)]=$ 0.25 V p-p. This ac signal is riding on the 0.84 V dc level, producing a voltage swing between 0.72 V and 0.97 V at the input terminals. This is well within the specified limits of 0.2 V to 1.5 V . With an output common-mode voltage of 1.65 V , each ADA4932-1 output swings between 1.4 V and 1.9 V , opposite in phase, providing a gain of 1 and a 1 V p-p differential signal to the ADC input. The differential RC section between the ADA4932-1 output and the ADC provides single-pole low-pass filtering and extra buffering for the current spikes that are output from the ADC input when its SHA capacitors are discharged.
The AD9245 is configured for a 1 V p-p full-scale input by connecting its SENSE pin to VREF, as shown in Figure 65.

Figure 65. ADA4932-1 Driving an AD9245 ADC with DC-Coupled Input and Output

[^0]: ${ }^{1} R_{G 2}=R_{G 1}+\left(R_{S} \| R_{T}\right)$.

