# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



### **ADAM-6000 Series**

Ethernet-based Data Acquisition and Control Modules

**User Manual** 

#### Copyright

The documentation and the software included with this product are copyrighted 2017 by Advantech Co., Ltd. All rights are reserved. Advantech Co., Ltd. reserves the right to make improvements in the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of Advantech Co., Ltd. Information provided in this manual is intended to be accurate and reliable. However, Advantech Co., Ltd. assumes no responsibility for its use, nor for any infringements of the rights of third parties, which may result from its use.

#### Acknowledgements

Intel and Pentium are trademarks of Intel Corporation.

Microsoft Windows and MS-DOS are registered trademarks of

Microsoft Corp.

All other product names or trademarks are properties of their respective owners.

Part Number: 2003600002 June 2017

8th Edition

#### Product Warranty (2 years)

Advantech warrants to you, the original purchaser, that each of its products will be free from defects in materials and workmanship for two years from the date of purchase.

This warranty does not apply to any products which have been repaired or altered by persons other than repair personnel authorized by Advantech, or which have been subject to misuse, abuse, accident or improper installation. Advantech assumes no liability under the terms of this warranty as a consequence of such events.

Because of Advantech's high quality-control standards and rigorous testing, most of our customers never need to use our repair service. If an Advantech product is defective, it will be repaired or replaced at no charge during the warranty period. For out-of-warranty repairs, you will be billed according to the cost of replacement materials, service time and freight. Please consult your dealer for more details.

If you think you have a defective product, follow these steps:

- 1. Collect all the information about the problem encountered. (For example, CPU speed, Advantech products used, other hardware and software used, etc.) Note anything abnormal and list any onscreen messages you get when the problem occurs.
- 2. Call your dealer and describe the problem. Please have your manual, product, and any helpful information readily available.
- 3. If your product is diagnosed as defective, obtain an RMA (return merchandize authorization) number from your dealer. This allows us to process your return more quickly.
- 4. Carefully pack the defective product, a fully-completed Repair and Replacement Order Card and a photocopy proof of purchase date (such as your sales receipt) in a shippable container. A product returned without proof of the purchase date is not eligible for warranty service.
- 5. Write the RMA number visibly on the outside of the package and ship it prepaid to your dealer.

#### **Technical Support and Assistance**

- Step 1. Visit the Advantech web site at **www.advantech.com/support** where you can find the latest information about the product.
- Step 2. Contact your distributor, sales representative, or Advantech's customer service center for technical support if you need additional assistance. Please have the following information ready before you call:
  - Product name and serial number
  - Description of your peripheral attachments
  - Description of your software (OS, version, software, etc.)
  - A complete description of the problem
  - The exact wording of any error messages

| Chapter | 1   | Understanding Your System                         | 2    |
|---------|-----|---------------------------------------------------|------|
| -       | 1.1 | Introduction                                      | 2    |
|         |     | Figure 1.1:ADAM-6000 System Architecture          | 2    |
|         | 1.2 | Major Features                                    | 3    |
|         |     | 1.2.1 Ethernet-enabled DA&C I/O Modules           | 3    |
|         |     | 1.2.2 Intelligent I/O Modules                     | 3    |
|         |     | 1.2.3 Mixed I/O to Fit All Applications           | 3    |
|         |     | 1.2.4 Remote Monitoring & Diagnosis               | 3    |
|         |     | 1.2.5 Industrial Standard Modbus/TCP Protocol     | 4    |
|         |     | 1.2.6 Customized Web Page                         | 4    |
|         |     | 1.2.7 Modbus/TCP Software Support                 | 5    |
|         | 1.3 | Specifications                                    | 5    |
|         | 1.4 | Dimensions                                        | 6    |
|         |     | Figure 1.2:ADAM-6000 Module Dimension             | 6    |
|         | 1.5 | LED Status                                        | 6    |
|         |     | Figure 1.3:LED Indicators                         | 6    |
|         |     | 1.5.1 Locate                                      | 7    |
| Chapter | 2   | Selecting Your Hardware                           | . 10 |
|         | 21  | Selecting an I/O Module                           | 10   |
|         |     | Table 2.1:I/O Selection Guidelines                | 11   |
|         | 2.2 | Selecting a Link Terminal & Cable                 | 12   |
|         |     | Figure 2.1:Ethernet Terminal and Cable Connection | 12   |
|         |     | Table 2.2:Ethernet RJ-45 port Pin Assignment      | 12   |
|         | 2.3 | Selecting an Operator Interface                   | 13   |
| Chapter | 3   | Hardware Installation Guide                       | . 16 |
|         | 3.1 | Determining the Proper Environment                | 16   |
|         |     | 3.1.1 Package Contents                            | 16   |
|         |     | 3.1.2 System Requirements                         | 16   |
|         | 3.2 | Mounting                                          | 17   |
|         |     | 3.2.1 Panel Mounting                              | 17   |
|         |     | Figure 3.1:Panel Mounting Dimensions              | 17   |
|         |     | Figure 3.2: Fix Module on the Bracket             | 18   |
|         |     | 3.2.2 DIN-rail mounting                           | 18   |
|         |     | Figure 3.3: Fix Module on the DIN-rail Adapter    | 19   |
|         |     | Figure 3.4:Secure Module to a DIN-rail            | 20   |
|         | 3.3 | Wiring & Connections                              | 20   |
|         |     | 3.3.1 Power Supply Wiring                         | 20   |
|         |     | Figure 3.5:ADAM-6000 Module Power Wiring          | 21   |
|         |     | 3.3.2 I/O Module Wiring                           | 21   |
| Chapter | 4   | I/O Module Introduction                           | . 24 |
|         | 4.1 | Analog Input Modules                              | 24   |
|         |     | 4.1.1 ADAM-6015                                   | 24   |
|         |     | Figure 4.1:ADAM-6015 RTD Input Wiring             | 26   |
|         |     | 4.1.2 ADAM-6017                                   | 27   |
|         |     | Figure 4.2: ADAM-6017 Analog Input Wiring         | 29   |

|         |     |         | Figure 4.3: ADAM-6017 Analog Input Type Setting | 29   |
|---------|-----|---------|-------------------------------------------------|------|
|         |     |         | Figure 4.4: ADAM-6017 Digital Output Wiring     | 30   |
|         |     | 4.1.3   | ADAM-6018                                       | 31   |
|         |     |         | Figure 4.5: ADAM-6018 8-ch Thermocouple Input   | 31   |
|         |     |         | Figure 4.6: ADAM-6018 Thermocouple Input Wiring | 33   |
|         |     |         | Figure 4.7: ADAM-6018 Digital Output Wiring     |      |
|         |     | 4.1.4   | ADAM-6024                                       | 35   |
|         |     |         | Figure 4.8: ADAM-6024 Jumper Settings           |      |
|         |     |         | Figure 4.9: ADAM-6024 AI/O Wiring               | 38   |
|         |     |         | Figure 4.10:ADAM-6024 DI Wiring                 | 38   |
|         |     |         | Figure 4.11:ADAM-6024 DO Wiring                 | 39   |
|         | 4.2 | Digital | I/O Modules                                     | . 40 |
|         |     | 4.2.1   | ADAM-6050                                       | 40   |
|         |     |         | Figure 4.12:ADAM-6050 Digital Input Wiring      | 41   |
|         |     |         | Figure 4.13:ADAM-6050 Digital Output Wiring     | 42   |
|         |     | 4.2.2   | ADAM-6051                                       | 43   |
|         |     |         | Figure 4.14:ADAM-6051 Digital Input Wiring      | 45   |
|         |     |         | Figure 4.15:ADAM-6051 Counter (Frequency) Input | .45  |
|         |     |         | Figure 4.16:ADAM-6051 DO Wiring                 | 46   |
|         |     | 4.2.3   | ADAM-6052                                       | 47   |
|         |     |         | Figure 4.17:ADAM-6052 Jumper Settings           | 48   |
|         |     |         | Figure 4.18:ADAM-6052 DI Wiring                 | 49   |
|         |     |         | Figure 4.19:ADAM-6052 Digital Output Wiring     | 50   |
|         |     | 4.2.4   | ADAM-6060                                       | 51   |
|         |     |         | Figure 4.20: ADAM-6060 Digital Input Wiring     | 53   |
|         |     |         | Figure 4.21: ADAM-6060 Relay Output Wiring      | 53   |
|         |     | 4.2.5   | ADAM-6066                                       | 54   |
|         |     |         | Figure 4.22: ADAM-6066 Digital Input Wiring     | 56   |
|         |     |         | Figure 4.23: ADAM-6066 Relay Output Wiring      | 56   |
|         |     | 4.2.6   | Digital Output Diagnostic Function              | 57   |
|         |     |         | Figure 4.24: Abnormal DO Diagnostic Status      | 58   |
|         |     |         | Figure 4.25:Normal DO Diagnostic Status         | 59   |
| Chapter | 5   | Syste   | m Configuration Guide                           | 62   |
|         | 51  | System  | Hardware Configuration                          | 62   |
|         | 0.1 | 5.1.1   | System Requirements                             | 62   |
|         |     | 5.1.2   | Communication Interface                         | 62   |
|         | 5.2 | Install | ADAM.NET Utility Software                       | . 62 |
|         | 5.3 | ADAM    | 1.NET Utility Overview                          | . 63 |
|         |     | 5.3.1   | ADAM.NET Utility Operation Window               | 63   |
|         |     |         | Figure 5.1: ADAM.NET Utility Operation Window   | 63   |
|         |     |         | Figure 5.2: ADAM.NET Utility Toolbar            | 68   |
|         |     | 5.3.2   | Search ADAM-6000 Modules                        | 70   |
|         |     |         | Figure 5.3: Access Control Setting              | 79   |
|         |     |         | Figure 5.4: Modbus address setting              | 80   |
|         |     | 5.3.3   | I/O Module Configuration                        | 81   |
|         |     |         |                                                 |      |

|         |     | Figure 5.5: Channel & GCL Configuration            | 81   |
|---------|-----|----------------------------------------------------|------|
|         |     | Figure 5.6: Channels Range Configuration Area      | 82   |
|         |     | Figure 5.7: Integration Time Configuration Area    | 83   |
|         |     | Figure 5.8: Analog Input Trend Log                 | 85   |
|         |     | Figure 5.9: Analog Input Average Setting           | 86   |
|         |     | Figure 5.10: Analog Input Alarm Mode Configuration | ı 89 |
|         |     | Figure 5.11: ADAM-6015 Channel Configuration       | 91   |
|         |     | Figure 5.12:ADAM-6024 Output Tab                   | 92   |
|         |     | 5.3.4 Universal Digital Input and Output Module    |      |
|         |     | (ADAM-6050) 93                                     |      |
|         |     | Figure 5.13:ADAM-6050 Channel Setting              | 93   |
|         |     | Figure 5.14: Fail Safe Value Configuration         | 95   |
|         |     | Figure 5.15:Individual Channel Configuration: DI   | 96   |
|         |     | Figure 5.16:Low to High Delay Output Mode          | 102  |
|         |     | Figure 5.17:Low to High Delay Output Mode          | 103  |
|         |     | 5.3.5 Peer-to-Peer Function                        | 104  |
|         |     | Figure 5.18:Basic mode for Peer-to-Peer            | 105  |
|         |     | Figure 5.19:Advanced mode for Peer-to-Peer         | 105  |
|         |     | Figure 5.20:Peer-to-Peer Configuration Tab         | 107  |
|         |     | Figure 5.21:Peer-to-Peer Basic Mode Configuration  | 108  |
|         |     | Figure 5.22: Building the Mapping Relationship     | 109  |
|         |     | Figure 5.23:P-to-P Advanced Mode Configuration     | 110  |
|         |     | Figure 5.24:Copy One Setting to Other Channels     | 112  |
|         | 5.4 | ADAM-6000 Web Server                               | 113  |
|         | 5.5 | Java Applet Customization                          | 113  |
|         |     | 5.5.1 Introduction                                 | 113  |
|         |     | Figure 5.25:Structure of the ADAM6060.jar file     | 11/  |
|         | 5 ( | Figure 5.26.Firmware Opgrade                       | 118  |
|         | 5.6 | Source Code of Java Applet Example                 | 119  |
| Chapter | 6   | Planning Your Application Program                  | 128  |
|         | 6.1 | Introduction                                       | 128  |
|         | 6.2 | ADAM .NET Class Library                            | 128  |
|         |     | Figure 6.1:Modifying ADAM-6050 .NET                | 130  |
|         | 6 0 | Figure 6.2: Launching ADAM .NET Class Library      | 132  |
|         | 6.3 | Modbus Protocol for ADAM-6000 Modules              | 133  |
|         |     | 6.2.2 Modbus Fibiocol Structure                    | 133  |
|         | 6.4 | ASCII Commands for ADAM 6000 Modulos               | 134  |
|         | 0.4 | 6.4.1 Syntax of ASCII                              | 140  |
|         |     | 6.4.2 System Command Set                           | 141  |
|         |     | 6 4 3 Analog Input Command Set                     | 147  |
|         |     | 6.4.4 Analog Input Alarm Command Set               | 164  |
|         |     | 6.4.5 Universal I/O Command Set                    | 174  |
|         |     | 6.4.6 Digital Input/Output Command Set             | 187  |
|         | 65  | SNMP for ADAM-6000 Modules                         | 192  |
|         | 0.5 | 6.5.1 ADAM MIB file                                | 192  |

|         |     | 6.5.2      | SNMP Trap Configuration                              | 192        |
|---------|-----|------------|------------------------------------------------------|------------|
|         |     |            | Figure 6.3:Trap specific type table                  | 193        |
|         |     |            | Figure 6.4: Trap configuration by ADAM.Net Utili 194 | ty         |
| Chapter | 7   | Graj       | ohic Condition Logic(GCL)                            | 196        |
|         | 7.1 | Overv      | riew                                                 | 196        |
|         | 7.2 | GCL        | Configuration Environment                            | 197        |
|         |     |            | Figure 7.1:GCL Configuration Environment             | 197        |
|         |     |            | Figure 7.2: Four Stages for One Logic Rule           | 199        |
|         | 7.3 | Confi      | gure Four Stages of One Logic Rule                   | 201        |
|         |     | 7.3.1      | Input Condition Stage                                | 201        |
|         |     |            | Figure 7.3:Input Condition Stage Configuration       | 202        |
|         |     |            | Figure 7.4:Engineer Unit and Current Value           | 204        |
|         |     |            | Figure 7.5:Scaling Function of Analog Input Mode     | 205        |
|         |     | 7.3.2      | Logic Stage                                          | 208        |
|         |     |            | Figure 7.6:Logic Stage Configuration                 | 208        |
|         |     | 7.3.3      | Execution Stage                                      | 210        |
|         |     |            | Figure 7.7:Execution Stage Configuration             | 210        |
|         |     |            | Figure 7.8:Send to Next Rule Function                | 211        |
|         |     | 724        | Figure 7.9: The Next Logic Rule                      | 212        |
|         |     | 1.3.4      | Support Stage                                        | 212        |
|         |     |            | Figure 7.10:Output Stage Configuration               | 213        |
|         | 7.4 | <b>.</b> . | Figure /.11:Remote Message Output                    | 218        |
|         | 7.4 | Intern     | al Flag for Logic Cascade and Feedback               | 220        |
|         |     | /.4.1      | Figure 7 12: A rebitecture of Local Logic Cascade    | 220        |
|         |     |            | Figure 7.12: Architecture of Local Logic Cascade     | 221        |
|         |     |            | Figure 7.14:Configuration of Logic Rule 2            | 221        |
|         |     |            | Figure 7.15: Configuration of Logic Rule 3           | 222<br>222 |
|         |     |            | Figure 7.16: Distributed Logic Cascade               | 222        |
|         |     |            | Figure 7.17: Configuration of Logic Rule 1           | 223        |
|         |     |            | Figure 7.18:Configuration of Logic Rule 2            | 224        |
|         |     |            | Figure 7 19: Configuration of Logic Rule 3           | 225        |
|         |     | 742        | Feedback                                             | 225        |
|         |     | 7.1.2      | Figure 7 20 Building Logic Feedback                  | 225        |
|         | 75  | Down       | load Logic and Online Monitoring                     | 226        |
|         | 1.5 | Down       | Figure 7.21:Online Monitoring Function               | 226        |
|         |     |            | Figure 7.22:GCL Execution Sequence                   | 228        |
|         | 7.6 | Tvpic      | al Applications with GCL                             | 229        |
|         |     | 51         | Figure 7.23:Ladder Diagram for On/Off Control        | 229        |
|         |     |            | Figure 7.24:GCL Logic for On/Off Control             | 230        |
|         |     |            | Figure 7.25: Time Chart for Sequence Control         | 231        |
|         |     |            | Figure 7.26:GCL Logic for Sequence Control           | 232        |
|         |     |            | Figure 7.27: Time Chart for 12 DI to 1 DO            | 233        |
|         |     |            | Figure 7.28:GCL Logic for 12 DI to 1 DO              | 234        |
|         |     |            | Figure 7.29:Time Chart for Flicker Application       | 234        |

|            |               | Figure 7.30:GCL Logic for Flicker            |     |
|------------|---------------|----------------------------------------------|-----|
|            |               | Figure 7.31: Time Chart for Rising Edge      |     |
|            |               | Figure 7.32:Ladder Diagram for Rising Edge   |     |
|            |               | Figure 7.33:GCL Logic for Rising Edge        |     |
|            |               | Figure 7.34: Time Chart for Falling Edge     |     |
|            |               | Figure 7.35:Ladder Diagram for Falling Edge  |     |
|            |               | Figure 7.36:GCL Logic for Falling Edge       |     |
|            |               | Figure 7.37: Time Chart for Sequence Control |     |
|            |               | Figure 7.38:GCL Logic for Sequence Control   |     |
|            |               | Figure 7.39:GCL Logic for Event Trigger      |     |
|            |               | Figure 7.40:Event Trigger Configuration      |     |
| Appendix A | Desig         | gn Worksheets                                | 244 |
|            |               | Table A.1:I/O Data Base                      |     |
|            |               | Table A.2:Summary Required Modules           |     |
|            | -             | Table A.3: Table for Programming             |     |
| Appendix B | Data          | Formats and I/O Range                        | 248 |
| B.1        | ADAN          | A-6000 Commands Data Formats                 | 248 |
|            | B.1.1         | Command Structure                            |     |
|            |               | Figure B.1:Request Comment Structure         |     |
|            |               | Figure B.2:Response Comment Structure        |     |
|            | B.1.2         | Modbus Function Code Introductions           |     |
| 5.4        |               | Table B.1:Response Comment Structure         |     |
| B.2        | ADAN<br>D 2 1 | A-6000 I/O Modbus Mapping Table              |     |
|            | B.2.1         | ADAM (017                                    |     |
|            | B.2.2         | ADAM (01)                                    |     |
|            | B.2.3         | ADAM-6018                                    |     |
|            | B.2.4         | ADAM-6024                                    |     |
|            | B.2.5         | ADAM (051                                    |     |
|            | B.2.0         | ADAM (052                                    |     |
|            | B.2./         | ADAM (0(0)(0)(                               |     |
|            | В.2.8         | ADAM-0000/0000                               |     |
| Appendix C | Grou          | inding Reference                             | 308 |
| C.1        | Field (       | Grounding and Shielding Application          | 308 |
| C.2        | Groun         | ding                                         | 309 |
|            | C.2.1         | The Earth' for Reference                     |     |
|            | <b>C 2 2</b>  | Figure C.1: Think of the Earth as a Ground   |     |
|            | C.2.2         | The Frame Ground' and 'Grounding Bar'        |     |
|            |               | Figure C.2: Grounding Bar                    |     |
|            | <b>a a a</b>  | Figure C.3:Normal and Common Mode.           |     |
|            | C.2.3         | Normal Mode and Common Mode                  |     |
|            |               | Figure C.4:Normal and Common Mode            |     |
|            | C.2.4         | Wire impedance                               |     |
|            |               | Figure C.5:High Voltage Transmission         |     |
|            | ~ • -         | Figure C.6: Wire Impedance                   |     |
|            | C.2.5         | Single Point Grounding                       |     |

|            | Figure C.7:Single Point Grounding (1)        |     |
|------------|----------------------------------------------|-----|
|            | Figure C.8:Single point grounding (2)        |     |
| C.3        | Shielding                                    | 314 |
|            | C.3.1 Cable Shield                           |     |
|            | Figure C.9:Single isolated cable             |     |
|            | Figure C.10:Double isolated cable            |     |
|            | C.3.2 System Shielding                       |     |
|            | Figure C.11:System Shielding                 |     |
|            | Figure C.12: The characteristic of the cable |     |
|            | Figure C.13:System Shielding (1)             |     |
|            | Figure C.14:System Shielding (2)             |     |
| C.4        | Noise Reduction Techniques                   |     |
|            | Figure C.15:Noise Reduction Techniques       |     |
| C.5        | Check Point List                             | 319 |
| Appendix D | REST for ADAM-6000                           | 322 |
| D.1        | REST Introduction                            |     |
| D.2        | REST Resources for ADAM                      | 322 |
|            | D.2.1 Analoginput                            |     |
|            | D.2.2 Analogoutput                           |     |
|            | D.2.3 Digitalinput                           |     |
|            | D.2.4 Digitaloutput                          |     |
|            | D.2.5 Counter                                |     |
| Appendix E | HTML 5                                       | 330 |
| E1         | HTML 5 Introduction                          | 330 |
| E.2        | Monitor and Control Remotely via ADAM-6000   | Web |
| Server     | 330                                          |     |
| Appendix F | New Version Enhancement                      | 334 |
| F1         | Enhancement Introduction                     | 334 |
| F.2        | Intelligent Function Enhancement             |     |

# CHAPTER

# Understanding Your System

Sections include:

- Introduction
- Major Features
- Specifications
- Dimensions
- LED Status

# Chapter 1 Understanding Your System

#### 1.1 Introduction

ADAM-6000 Ethernet-based data acquisition and control modules provide I/O, data acquisition, and networking in one module to build a costeffective, distributed monitoring and control solution for a wide variety of applications. Through standard Ethernet networking, ADAM-6000 retrieves I/O values from sensors, and can publish them as a real-time I/O values to networking nodes via LAN, Intranet, or Internet. With Ethernetenabled technology, ADAM-6000 series modules build up a cost-effective DA&C system for building automation, environmental monitoring, facility management and intelligent manufacturing applications. Please refer to Figure 1-1 for a brief overview of the ADAM-6000 system architecture.



Figure 1.1: ADAM-6000 System Architecture

#### 1.2.1 Ethernet-enabled DA&C I/O Modules

ADAM-6000 is based on popular Ethernet networking standards used in most business environments. Users can easily add ADAM-6000 I/O modules to existing Ethernet networks, or use ADAM-6000 modules in new Ethernet-enabled manufacturing networks. ADAM-6000 modules feature a 10/100 Mbps Ethernet chip and support popular industrial Modbus/TCP protocols over TCP/IP for data connection. ADAM-6000 also supports UDP protocol over Ethernet networking. With UDP/IP, ADAM-6000 I/O modules can actively send I/O data streams to 8 Ethernet nodes. Through Ethernet networking, HMI/SCADA systems, and controllers, users can access or gather real-time data from ADAM-6000 Ethernet enabled DA&C modules. This data can then be integrated with business systems to compile valuable business information.

**Note:** Some intelligent functions are only provided by the ADAM-6000-CE version. See details in Appendix F.

#### 1.2.2 Intelligent I/O Modules

ADAM-6000 series have pre-built intelligent math functions to empower system capacity. The Digital Input module provide counter, totalizer functions; the Digital Output module provide pulse output, delay output functions; the Analog Input module provide the max./min./average data values and the Analog Output module provide the PID loop control functions.

#### 1.2.3 Mixed I/O to Fit All Applications

ADAM-6000 series mixed I/O design provides the most cost-effective I/O for applications. The most common used I/O type for single functions are collected in one module. This design concept not only saves I/O usage and costs, but also speeds up I/O relative operations. For small DA&C system or standalone control units from mid to large scales, ADAM-6000's mixed I/O design can easily adapt to application needs with one or two modules only. With additional embedded control modules, ADAM-6000 can easily create a localized, less complex, and more distributed I/O architecture.

#### 1.2.4 Remote Monitoring & Diagnosis

Each ADAM-6000 module features a pre-built I/O module web page to display real-time I/O data values, alarms, and module status thru LAN or Internet. Through any Internet browser, users can monitor real-time I/O

data values and alarms at local or remote sites. The web-enabled monitoring system requires no programming.

#### 1.2.5 Industrial Standard Modbus/TCP Protocol

ADAM-6000 modules support the popular industrial standard, Modbus/ TCP protocol, to connect with Ethernet Controller or HMI/SCADA software built with Modbus/TCP drivers. Advantech also provides an OPC server for Modbus/TCP to integrate ADAM-6000 I/O real-time data values with OPC client enabled software, freeing users from driver development.

#### 1.2.6 Customized Web Page

Since ADAM-6000 modules have a built in default web page, users can monitor and control the I/O status from anywhere through a browser. Moreover, ADAM-6000 modules can download user-defined web pages for individual applications. Advantech has provided sample programs of Java Script\* for users reference to design their own operator interface, then download it into the specific ADAM-6000 modules via Windows Utility.

\*ADAM series support JavaScript libraries (\*js files), users can import this file from the ADAM utility tool. Java Scripting language works with WWW and HTML documents and objects. ADAM provides basic libraries via jQuery v1.8.2 software on the CD package, users can update new versions online from http://jquery.com/download/

| Advantech Adam/Apax .NET Utility (Win3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2) Version 2.05.05                                                                                                                                                                                                                                                                         |                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Pie         Pie           Pie | Information     Network     Stream     Administration     Furneware     Peer to Peer/Event   Access Control   Modbur       File     Howstering File     Image: Stream     File       File     Howstering File     Configuration file       File     Configuration file       File     File | Address  <br>Brown<br>Download<br>Save as<br>Upload |
| ADAM-6251:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |                                                     |

**Note:** Download the JavaScript file to the ADAM Module via the Adam/ Apax Utility

#### 1.2.7 Modbus/TCP Software Support

The ADAM-6000s firmware has a built-in Modbus/TCP server. Advantech provides the ADAM.NET class library and Windows ADAM.NET utility for users. Users can configure this DA&C system via Windows utility; integrate with HMI software package via Modbus/TCP driver. Users can also purchase an Advantech OPC server to operate Modbus/ TCP.

#### 1.3 Specifications

| Ethernet:                         | 10/100 Base-T                                        |
|-----------------------------------|------------------------------------------------------|
| Wiring:                           | UTP, category 5 or greater                           |
| Bus Connection: RJ45 modular jack |                                                      |
| Comm. Protocol:                   | Modbus/TCP on TCP/IP and UDP                         |
| Data Transfer Rate:               | Up to 100 Mbps                                       |
|                                   | Unregulated 10 to 30 VDC                             |
| Status Indicator:                 | Power, CPU, Communication                            |
|                                   | (Link, Collide, 10/100 Mbps, Tx, Rx)                 |
| Case:                             | PC with captive mounting hardware                    |
| Screw Terminal Block:             | Accepts wire size #14-28 AWG, stripped length:6.5 mm |

NOTE: Equipment will operate below 30% humidity, however, static electricity problems occur much more frequently at lower humidity levels. Make sure you take adequate precautions when you touch the equipment. Consider using ground straps, anti-static floor coverings, etc. if you use the equipment in low humidity environments.

#### 1.4 Dimensions

 60.00
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

The following diagram shows the dimensions of the I/O modules. (mm)

Figure 1.2: ADAM-6000 Module Dimension

#### 1.5 LED Status

There are two LEDs on the ADAM-6000 I/O Series front panel. Each LED has two indicators to represent system status, as explained below:



#### Figure 1.3: LED Indicators

| LED    | Color                |       | Indication | Behavior                                 |
|--------|----------------------|-------|------------|------------------------------------------|
| Status | Orange (when         | Red   | Blink      | Module is normally running               |
|        | on at the same time) |       | ON for 30s | When user enable LOCATE function.        |
| Link   |                      | Green | ON         | Ethernet is connected.                   |
| Speed  | Orange (when speed   | Red   | ON         | Ethernet speed is 100 Mbps               |
| Com    | the same time)       | Green | Blink      | Module is transmitting or receiving data |

#### 1.5.1 Locate

This helps user get ADAM module status via LED lights. (Status LED will be constantly on RED or 30 seconds when enabled.)

|                 |             | Ethernet                                                                                                                                                                                                                                                                                              |                                                                                        |
|-----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Status<br>Speed | Link<br>Com | Tadomikini         Metvock         Jamual         Administration         Ferroven         Pere to PereEvent           Famoven         Version         [A1.00.B01]         Device Name:         [ADAd-6251]           Device Description:         [ADAd-6251]         Device Name:         [ADAd-6251] | t   Access Control   Modifies Address  <br>Locats Enable  <br>Apply  <br>ADAM Web Page |
|                 |             | Description<br>Stot Moltals<br>6251 ADAM-6251 16-ch solated dignkt inper molta                                                                                                                                                                                                                        | <u> </u>                                                                               |



## Selecting Your Hardware

Sections include:

- Selecting an I/O Module
- Selecting a Link Terminal & Cable
- Selecting an Operator Interface

# **Chapter 2 Selecting Your Hardware**

#### 2.1 Selecting an I/O Module

To organize an ADAM-6000 remote data acquisition & control system, you need to select I/O modules to interface the host PC with field devices or processes that you have previously determined. There are several things should be considered when you select the I/O modules.

- What type of I/O signal is applied in your system?
- How much I/O is required to your system?
- How will you place the modules to handle I/O points in individual areas of an entire field site?
- How many modules are required for distributed I/O point arrangement?
- How many hubs are required for the connection of these devices?
- What is the required voltage range for each I/O module?
- What isolation environment is required for each I/O module?
- What are the noise and distance limitations for each I/O module?

Refer to table 2-1 for I/O module selection guidelines

| Table 2.1: I/O                                         | Table 2.1: I/O Selection Guidelines                                                                                                                                                                        |                                                                                                                   |  |  |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Type of I/O<br>module:                                 | For these types of field devices or operations (examples):                                                                                                                                                 | Explanation:                                                                                                      |  |  |  |  |
| Discrete input<br>module and<br>block I/O<br>module    | Selector switches, push but-<br>tons, photoelectric eyes, limit<br>switches, circuit breakers, prox-<br>imity switches, level switches,<br>motor starter contacts, relay<br>contacts, thumb-wheel switches | Input modules sense<br>ON/OFF or OPENED/<br>CLOSED signals                                                        |  |  |  |  |
| Discrete out-<br>put module<br>and block I/O<br>module | Alarms, control relays, fans,<br>lights, horns, valves, motor<br>starters, solenoids                                                                                                                       | Output module signals<br>interface with ON/OFF<br>or OPENED/CLOSED<br>devices                                     |  |  |  |  |
| Analog input<br>module                                 | Thermocouple signals, RTD<br>signals, temperature transduc-<br>ers, pressure transducers, load<br>cell transducers, humidity trans-<br>ducers, flow transducers,<br>potentiometers.                        | Convert continuous<br>analog signals into<br>input values for host<br>device                                      |  |  |  |  |
| Analog output<br>module                                | Analog valves, actuators, chart<br>recorders, electric motor drives,<br>analog meters                                                                                                                      | Interpret host device's<br>output to analog sig-<br>nals (generally<br>through transducers)<br>for field devices. |  |  |  |  |

•

#### 2.2 Selecting a Link Terminal & Cable

Use the RJ-45 connector to connect the Ethernet port of the ADAM-6000 to the Hub. The cable for connection should be Category 3 (for 10Mbps data rate) or Category 5 (for 100Mbps data rate) UTP/STP cable, which is compliant with EIA/TIA 586 specifications. Maximum length between the Hub and any ADAM-6000 modules is up to 100 meters (approx. 300 ft).



Figure 2.1: Ethernet Terminal and Cable Connection

| Table 2.2: Ethernet RJ-45 port Pin Assignment |            |              |  |  |
|-----------------------------------------------|------------|--------------|--|--|
| PIN NUMBER                                    | SIGNAL     | FUNCTION     |  |  |
| 1                                             | RD+        | Receive (+)  |  |  |
| 2                                             | RD-        | Receive (-)  |  |  |
| 3                                             | TD+        | Transmit (+) |  |  |
| 4                                             | (Not Used) | -            |  |  |
| 5                                             | (Not Used) | -            |  |  |
| 6                                             | TD-        | Transmit (-) |  |  |
| 7                                             | (Not Used) | -            |  |  |
| 8                                             | (Not Used) | -            |  |  |

#### 2.3 Selecting an Operator Interface

To complete your Data Acquisition and Control system, selecting the operator interface is necessary. Adopting the Modbus/TCP Protocol, ADAM-6000 I/O modules exhibit high ability in system integration for various applications.

You can read the real-time status of ADAM-6000 modules through the web page from the following browser.

•Microsoft Internet Explorer (version 9 or later)

•Google Chrome (version 30 or later)

•Safari (version 6 or later)

•Firefox (version 25 or later)

If you want to integrate ADAM-6000 I/O with HMI (Human Machine Interface) software in a SCADA (Supervisory Control and Data Acquisition) system, there are a lot of HMI software packages, which support Modbus/TCP driver.

- Advantech PM Designer
- Wonderware InTouch
- Any other software that supports the Modbus/TCP protocol

You can also purchase Advantech OPC Server, the easiest-to-use data exchange tool in the world. Any HMI software designed with OPC Client is able to access ADAM-6000 I/O modules.

• Modbus/TCP OPC Server

If you want to develop your own applications, the ADAM.NET Class Library will be the best tool to build up users' operator interface.

With these ready-to-go application software packages, tasks such as remote data acquisition, process control, historical trending and data analysis require only a few keystrokes.



# Hardware Installation Guide

Sections include:

- Determining the Proper Environment
- Mounting
- Wiring & Connections