imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ANALOG DEVICES

1.25 GHz Dual Integrated DCL with PPMU, Level Setting DACs, and On-Chip Calibration Registers

Data Sheet

ADATE320

FEATURES

1.25 GHz, 2.5 Gbps data rate 3-level driver with high-Z and reflection clamps Window and differential comparators ±25 mA active load Per pin parametric measurement unit (PMU) with a -1.5 V to +4.5 V range Low leakage mode (typically <5 nA) Integrated 16-bit DACs with offset and gain correction 1.2 W power dissipation per channel (ADATE320) 1.3 W power dissipation per channel (ADATE320-1) Driver Voltage range: -1.5 V to +4.5 V Precision trimmed termination: 50.0 Ω Unterminated swing: 50 mV minimum to 6.0 V maximum 400 ps minimum pulse width, 1.0 V programmed swing 25 ps deterministic jitter Comparator Differential and single-ended window modes 100 ps equivalent input rise/fall time (ERT/EFT) 250 mV current mode logic (CML) outputs (ADATE320) 400 mV CML outputs (ADATE320-1) Load Per pin PMU (PPMU) Force voltage/compliance range: -1.5 V to +4.5 V 5 current ranges ±40 mA, ±1 mA, ±100 μA, ±10 μA, ±2 μA Dedicated go/no-go comparators DC levels Fully integrated and dedicated 16-bit DACs On-chip gain and offset calibration registers with automatic add/multiply function 84-lead, 10 mm × 10 mm LFCSP (0.4 mm pitch)

APPLICATIONS

Automatic test equipment (ATE) Semiconductor/board test systems Instrumentation and characterization equipment

GENERAL DESCRIPTION

The ADATE320 is a complete, single-chip ATE solution that performs the pin electronics functions of a driver, comparator, and active load (DCL), and a four quadrant per pin parametric measurement unit (PPMU). Dedicated 16-bit digital-to-analog converters (DACs) with on-chip calibration registers provide all the necessary dc levels for operation of the device.

The driver features three active modes: high, low, and terminate, as well as a high impedance inhibit state. The inhibit state, in conjunction with the integrated dynamic clamps, facilitates significant attenuation of transmission line reflections when the driver is not actively terminating the line. The open-circuit drive capability is -1.5 V to +4.5 V to accommodate a standard range of ATE and instrumentation applications.

The ADATE320 can be used as a dual, single-ended pin electronics channel or as a single differential channel. In addition to per channel high speed window comparators, the ADATE320 provides a programmable threshold differential comparator for differential ATE applications.

All dc levels for DCL and PPMU functions are generated by dedicated, on-chip, 16-bit DACs. To facilitate the programming of accurate levels, the ADATE320 includes an integrated calibration function to correct for the gain and offset errors of each functional block. Correction coefficients can be stored on chip, and any values written to the DACs adjust automatically using the appropriate correction factors.

The ADATE320 uses a serial programmable interface (SPI) bus to program all functional blocks, DACs, and on-chip calibration constants. It also has an on-chip temperature sensor and overvoltage/undervoltage fault clamps that monitor and report the device temperature and any output pin or transient PPMU voltage faults that may occur during operation.

The ADATE320 is available in two options. The standard option has high speed comparator outputs with 250 mV output swing. The ADATE320-1 has 400 mV output swing. See the Ordering Guide for more information.

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADATE320* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

 ADATE320: 1.25 GHz Dual Integrated DCL with PPMU, Level Setting DACs, and On-Chip Calibration Registers Data Sheet

DESIGN RESOURCES

- ADATE320 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADATE320 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

REVISION HISTORY

9/2016-Rev.	A to	Rev.	B
-------------	------	------	---

Changes to Time Constant 1 Parameter and Time Constant 2	
Parameter, Table 2	7
Changes to IOx Offset Parameter, and IOHx Offset	
Parameter, Table 6	11
Change to AGND Pin Number Column	29
Change to SPI Reset Sequence and the RST Pin Section	50
Changes to the SPI Clock Cycles and BUSY Pin Section	51
Changes to Table 24	54
Changes to Figure 137	65

10/2015—Revision A: Initial Version

Thermal Characteristics	
Explanation of Test Levels	
ESD Caution	25
User Information and Truth Tables	
Pin Configuration and Function Descriptions	
Typical Performance Characteristics	
Theory of Operation	50
Serial Programmable Interface (SPI)	50
Level Setting DACs	52
Alarm Functions	59
Applications Information	62
Power Supply, Grounding, and Typical Decoupling St	trategy
Power Supply, Grounding, and Typical Decoupling St	trategy 62
Power Supply, Grounding, and Typical Decoupling St	trategy 62 64
Power Supply, Grounding, and Typical Decoupling St Power Supply Sequencing Detailed Functional Block Diagrams	trategy 62 64 65
Power Supply, Grounding, and Typical Decoupling St Power Supply Sequencing Detailed Functional Block Diagrams SPI Register Memory Map and Details	trategy 62 64 65 71
Power Supply, Grounding, and Typical Decoupling St Power Supply Sequencing Detailed Functional Block Diagrams SPI Register Memory Map and Details Memory Map	trategy 62 64 65 71 71
Power Supply, Grounding, and Typical Decoupling St Power Supply Sequencing Detailed Functional Block Diagrams SPI Register Memory Map and Details Memory Map Register Details	trategy
Power Supply, Grounding, and Typical Decoupling St Power Supply Sequencing Detailed Functional Block Diagrams SPI Register Memory Map and Details Memory Map Register Details Default Test Conditions	trategy
Power Supply, Grounding, and Typical Decoupling St Power Supply Sequencing Detailed Functional Block Diagrams SPI Register Memory Map and Details Memory Map Register Details Default Test Conditions External Components	trategy
Power Supply, Grounding, and Typical Decoupling St Power Supply Sequencing Detailed Functional Block Diagrams SPI Register Memory Map and Details Memory Map Register Details Default Test Conditions External Components Outline Dimensions	trategy

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

SPECIFICATIONS

 $V_{CC} = 8.0 \text{ V}, V_{DD} = 1.8 \text{ V}, V_{EE} = -5.0 \text{ V}, V_{TTCx} = V_{TTDx} = 1.2 \text{ V}, V_{REF} = 2.500 \text{ V}, V_{REFGND} = 0.000 \text{ V}$. All default test conditions are as defined in Table 30. All specified values are at $T_J = 60^{\circ}$ C, where T_J corresponds to the typical internal temperature sensor reading (VTHERM pin), unless otherwise noted. Temperature coefficients are measured around $T_J = 40^{\circ}$ C, 60° C, 80° C, and 100° C. Typical values are based on the statistical mean of the design, simulation analyses, and/or limited bench evaluation data. Typical values are neither tested nor guaranteed. Test level codes are defined in the Explanation of Test Levels section.

ELECTRICAL SPECIFICATIONS

Table 1.	
----------	--

Parameter	Min	Тур	Max	Unit	Test Level	Test Conditions/Comments
DUTx PIN CHARACTERISTICS						
Output Leakage Current						
DCL Disable						
PPMU Range E	-10.0	+5.0	+10.0	nA	Р	-1.5 V $<$ V_{DUTx} $<$ +4.5 V, PPMU and DCL disabled, PPMU Range E, VCLx = -2.5 V, VCHx = $+7.5$ V
PPMU Range A to Range D		5.0		nA	CT	-1.5 V < V _{DUTx} < +4.5 V, PPMU and DCL disabled, PPMU Range A, Range B, Range C, and Range D, VCLx = -2.5 V, VCHx = $+7.5$ V
Driver High-Z Mode	-0.4		+0.4	μA	Р	-1.5 V < V _{DUTx} < +4.5 V, PPMU disabled and DCL enabled, RCV active, VCLx = -2.5 V, VCHx = $+7.5$ V
Capacitance		0.4		рF	S	Drive VITx = 0.0 V
Voltage Range	-1.5		+4.5	V	D	
POWER SUPPLIES						Power measured with the DUTx pin high-Z, 10 K to 0.0 V
Positive DCL Supply, Vcc	7.6	8.0	8.4	V	D	Defines dc power supply rejection (PSR) conditions
Negative DCL Supply, V_{EE}	-5.25	-5.0	-4.75	V	D	Defines dc PSR conditions
Digital Supply, VDD	1.7	1.8	1.9	V	D	
Comparator Termination, V_{TTCx}	0.5	1.2	1.8	V	D	VTTC0 is not electrically connected to VTTC1
Driver Termination, V _{TTDx}	0.0	1.2	1.8	V	D	VTTD0 is not electrically connected to VTTD1
Positive DCL Supply Current, I _{cc}						Load and PPMU power-down
ADATE320	145	169	185	mA	Р	
ADATE320-1	145	169	185	mA	Р	
Negative DCL Supply Current, IEE						Load and PPMU power-down
ADATE320	190	222	235	mA	Р	
ADATE320-1	220	247	265	mA	Р	
Digital Core Supply Current, I _{DD}	-125	+10	+125	μΑ	Р	Quiescent (SPI is static)
Comparator Termination Supply Current, VTTCx						$0.5 \text{ V} \leq V_{\text{TTCx}} \leq 1.8 \text{ V}$
ADATE320		41		mA	CT	
ADATE320-1		66		mA	CT	
Driver Termination Supply Current, V _{TTDx}		0		mA	CT	$0.0 \text{ V} \leq V_{\text{TTDx}} \leq 1.8 \text{ V}, (\text{DATx} + \overline{\text{DATx}})/2 = (\text{RCVx} + \overline{\text{RCVx}})/2 = V_{\text{TTDx}}$
Total Power Dissipation						Load and PPMU power-down
ADATE320	2.10	2.52	2.75	W	Р	
ADATE320-1	2.25	2.66	2.90	W	Р	

DRIVER SPECIFICATIONS

 $\rm VIH-\rm VIL \geq 100~mV$ to meet dc and ac performance specifications.

Table 2.

Parameter	Min	Тур	Max	Unit	Test Level	Test Conditions/Comments
DC SPECIFICATIONS		<i>/</i>	-			
High Speed Differential Input Characteristics						
High Speed Input Ter <u>minat</u> ion Resistance: DATx/DATx, RCVx/RCVx	48	50	52	Ω	Р	Impedance between VTTDx and respective DATx and RCVx pins; force 4 mA into each pin, measure voltage from VTTDx; calculate resistance ($\Delta V/\Delta I$)
Input Voltage Range: DATx/DATx, RCVx/RCVx	0.0		1.8	V	P _F	
Input Voltage Differential	0.2	0.4	1.0	V	P _F	$ DATx - \overline{DATx} $, $ RCVx - \overline{RCVx} $
Output Characteristics						
Output Range						
High, VIH	-1.4		+4.5	V	D	
Low, VIL	-1.5		+4.4	V	D	
Output Term Range, VIT	-1.5		+4.5	V	D	
Functional Amplitude (VIH – VIL)	0.05		6.0	V	D	
DC Output Current Limit						
Source	75		120	mA	Р	Drive high, VIH = 4.5 V , $V_{DUTx} = -2.0 \text{ V}$, measure current
Sink	-120		-75	mA	Р	Drive low, VIL = -1.5 V, V _{DUTx} = 5.0 V, measure current
Output Resistance, ±40 mA	46	48.5	52	Ω	Р	$\Delta V_{DUTx}/\Delta I_{DUTx}$; source: VIHx = 3.0 V, I_{DUTx} = 1 mA, 40 mA; sink: VIL = 0.0 V, I_{DUTx} = -1 mA, -40 mA
DC ACCURACY						VIH tests with VIL = -2.5 V, VIT = -2.5 V; VIL tests with VIH =
						7.5 V, VIT = 7.5 V; VIT tests with VIL = -2.5 V, VIH = 7.5 V,
VIH, VIL, VIT						unless otherwise noted within this parameter
Offset Error	-500		+500	mV	Р	Measured at DAC Code 0x4000 (0.0 V), uncalibrated
Offset Temperature Coefficient (TC)		±200		μV/°C	CT	
Gain	1.0		1.1	V/V	Р	Gain derived from measurement at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V); based on an ideal DAC transfer function (see Table 24)
Gain TC		±50		ppm/°C	Ст	
Differential Nonlinearity (DNL)		±250		μV	Ст	After two-point gain/offset calibration; calibration points at 0x4000 (0.0 V) output; 0x8CCC (3.0 V); measured over full specified output range
Integral Nonlinearity (INL) Focused Range	-5		+5	mV	Р	After two-point gain/offset calibration; calibration points at 0x4000 (0.0 V) and 0x8CCC (3.0 V); measured over -0.5 V to +3.5 V output range
INL Full Range	-20		+20	mV	Р	After two-point gain/offset calibration; calibration points at 0x4000 (0.0 V) and 0x8CCC (3.0 V); measured over full specified output range
Resolution		153		μV	D	
DUTGND Voltage Accuracy	-5	±1	+5	mV	Р	Over ±0.1 V range; measured over –0.5 V to +3.5 V focused driver output range
DC Levels Interaction						DC interaction on VIL, VIH, and VIT output levels while other driver DAC levels are varied
VIH vs. VIL		±1.0		mV	CT	Monitor interaction on VIH = $+4.5$ V; sweep VIL = -1.5 V to $+4.4$ V, VIT = $+1.0$ V
VIH vs. VIT		±1.0		mV	C⊤	Monitor interaction on VIH = $+4.5$ V; sweep VIT = -1.5 V to $+4.5$ V, VIL = 0.0 V
VIL vs. VIH		±1.0		mV	CT	Monitor interaction on VIL = -1.5 V; sweep VIH = -1.4 V to $+4.5$ V, VIT = $+1.0$ V

Parameter	Min	Typ	Max	Unit	Test	Test Conditions/Comments
		+1.0	max	m\/	C-	Monitor interaction on VII $= -15$ V: sween VIT $= -15$ V
		1.0		IIIV	CT	to $+4.5$ V, VIH = $+2.0$ V
VIT vs. VIH		±2.0		mV	CT	Monitor interaction on VIT = 1.0 V; sweep VIH = -1.4 V to $+4.5$ V, VIL = -1.5 V
VIT vs. VIL		±2.0		mV	CT	Monitor interaction on VIT = 1.0 V ; sweep VIL = -1.5 V to $+4.4 \text{ V}$. VIH = $+4.5 \text{ V}$
Overall Voltage Accuracy Focused		±5		mV	CT	VIH – VIL ≥ 100 mV; sum of INL, dc interaction, DUTGND and TC errors over +5°C after calibration
VIH, VIL, VIT DC PSR		+15		mV/V	CT	Measured at calibration points, see Table 1 for power
						All ac specifications performed after dc calibration
Pico/Eall Timos						Togglo DATy VII $= 0.0V$ torminated
0.2 V Programmed Swing						loggie DAIX, VIE – 0.0 V, terminated
tors		150		nc	C	20% to $80%$ V/H = 0.2 V/
trise		130		ps ps	CB	20% to $80%$, VIII = 0.2 V
		170		ps	CB	20% to 80%, VIH = 0.2 V
0.5 V Programmed Swing		4.50			6	
t _{RISE}		150		ps	CB	20% to $80%$, VIH = 0.5 V
tFALL		170		ps	CB	20% to 80%, VIH = 0.5 V
1.0 V Programmed Swing						
t _{RISE}		150		ps	CB	20% to 80%, VIH = 1.0 V
t _{FALL}		170		ps	CB	20% to 80%, VIH = 1.0 V
2.0 V Programmed Swing						
t _{RISE}	120	160	230	ps	Р	20% to 80%, VIH = 2.0 V
t _{FALL}	120	180	230	ps	Р	20% to 80%, VIH = 2.0 V
4.0 V Programmed Swing						
t _{RISE}		320		ps	CB	10% to 90%, VIH = 4.0 V, unterminated
t _{FALL}		320		ps	CB	10% to 90%, VIH = 4.0 V, unterminated
trise to t _{fall} Mismatch		-20		ps	CB	$t_{RISE} - t_{FALL}$ (20% to 80%) within one channel, VIH = 2.0 V, VIL = 0.0 V, terminated
Trailing Edge Timing Error						Toggle DATx
Programmed Swing						VII = 0.0 V terminated. 400 ps < pulse width (PW) < 10 ns
0.2 V		+15		ps	C.	VIH = 0.2 V
0.5 V		+15		ns		VIH = 0.5V
10V		+15		ns		VIH = 1.0 V
201/		±15		ps ns		VH = 20V
2.0 V Maximum Togglo Pato		±15		h2	CB	
Brogrammed Swing						
		2.0		Church	C	$VIL = 0.0 V$, terminated $\leq 10\%$ amplitude loss
0.2 V		2.8		Gops	CB	
0.5 V		3.2		Gbps	CB	VIH = 0.5 V
1.0 V		3.2		Gbps	CB	VIH = 1.0 V
2.0 V		2.8		Gbps	CB	VIH = 2.0 V
Dynamic Performance						Toggle DATx, drive VIL to/from VIH
Propagation Delay						VIH = 2.0 V, VIL = 0.0 V, terminated
Time		750		ps	CB	
TC		2		ps/°C	CT	
Delay Matching						VIH = 2.0 V, VIL = 0.0 V, terminated
Edge to Edge		10		ps	CB	$t_{LH0} - t_{HL0}; t_{LH1} - t_{HL1}$
Channel to Channel		35		ps	CB	tlho — tlh1; thlo — thl1
Delay Change vs. Duty Cycle		±7		ps	CB	VIH = 2.0 V, VIL = 0.0 V, terminated, 1 MHz, 5% to 95%
Overshoot and Undershoot		50		mV	CB	VIH = 2.0 V, VIL = 0.0 V, terminated, minimum driver CLC
Settling Time (VIH to VIL)						Toggle DATx
To Within 3% of Final Value		1		ns	CB	VIH = 2.0 V, VIL = 0.0 V, from 50% crossing, terminated
To Within 1% of Final Value		10		ns	CB	VIH = 2.0 V, VIL = 0.0 V, from 50% crossing, terminated

ADATE320

Parameter	Min	Тур	Max	Unit	Test Level	Test Conditions/Comments
Dynamic Performance						
Drive Active to/from VIT						Toggle RCVx, VIH = 2.0 V, VIT = 1.0 V, VIL = 0.0 V, terminated
Transition Time						20% to 80%
Active to VIT		200		ps	CB	
VIT to Active		170		ps	CB	
Propagation Delay		1.0		ns	CB	
TC		2		ps/°C	CT	
Drive Active to/from Inhibit						Toggle RCVx, VIH = 1.0 V , VIL = -1.0 V , terminated
Transition Time						20% to 80%
Inhibit to Active		250		ps	CB	
Active to Inhibit		850		ps	CB	
Propagation Delay						
Inhibit to VIH		2.1		ns	CB	
Inhibit to VIL		2.5		ns	CB	
Matching Inhibit to VIL vs. Inhibit to VIH		0.4		ns	CB	
VIH to Inhibit		2.5		ns	CB	
VIL to Inhibit		2.1		ns	CB	
Input/Output Spike		125		mV p-p	CB	VIH = 0.0 V, VIL = 0.0 V, terminated, toggle RCVx
Cable Loss Compensation (CLC)						VIH = 2.0 V, VIL = 0.0 V, terminated
Amplitude		20		%	CB	Maximum CLC setting
Resolution		3		Bits	D	
Time Constant 1		400		ps	S	Maximum CLC setting
Time Constant 2		1.5		ns	S	Maximum CLC setting

REFLECTION CLAMP SPECIFICATIONS

Clamp accuracy specifications apply only when VCHx – VCLx > 0.8 V.

Table 3.

					Test	
Parameter	Min	Тур	Max	Unit	Level	Test Conditions/Comments
VCH						
Functional Range	-0.5		+5.0	V	D	
Offset Error	-300		+300	mV	Р	Driver high-Z, sinking 1 mA, measured at DAC Code 0x4000 (0.0 V), uncalibrated
Offset TC		±0.25		mV/°C	CT	
Gain	1.0		1.1	V/V	Р	Driver high-Z, sinking 1 mA, gain derived from measurements at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V), based on an ideal DAC transfer function (see Table 24)
Gain TC		±25		ppm/°C	CT	
Resolution		153		μV	D	
DNL		±250		μV	CT	Driver high-Z, sinking 1 mA, after two-point gain/offset calibration; calibration points at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V), measured over the functional range
INL	-20		+20	mV	Ρ	Driver high-Z, sinking 1 mA, after two-point gain/offset calibration; calibration points at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V), measured over the functional range
VCL						
Functional Range	-2.0		+3.5	V	D	
Offset Error	-300		+300	mV	Р	Driver high-Z, sourcing 1 mA, measured at DAC Code 0x4000 (0.0 V), uncalibrated
Offset TC		±0.25		mV/°C	CT	

Parameter	Min	Тур	Мах	Unit	Test Level	Test Conditions/Comments
Gain	1.0		1.1	V/V	Ρ	Drive high-Z, sourcing 1 mA, gain derived from measure- ments at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V), based on an ideal DAC transfer function (see Table 24)
Gain TC		±25		ppm/°C	CT	
Resolution		153		μV	D	
DNL		±250		μV	CT	Drive high-Z, sourcing 1 mA, after two-point gain/offset calibration; calibration points at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V), measured over the functional range
INL	-20		+20	mV	Ρ	Drive high-Z, sourcing 1 mA, after two-point gain/offset calibration; calibration points at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V), measured over the functional range
DC CLAMP CURRENT LIMIT						Drive high-Z
VCHx	-105		-60	mA	Р	VCHx = -1.0 V, VCLx = -2.0 V, V _{DUTx} = 4.5 V
VCLx	+60		+105	mA	Р	VCHx = 5.0 V, VCLx = 4.0 V, V _{DUTx} = -1.5 V
DUTGND VOLTAGE ACCURACY	-10	±2	+10	mV	Р	Over ± 0.1 V range, measured at end points of VCHx and VCLx functional range

NORMAL WINDOW COMPARATOR (NWC) SPECIFICATIONS

Table 4.

-					Test	
Parameter	Min	Тур	Мах	Unit	Level	Test Conditions/Comments
DC SPECIFICATIONS						
Input Voltage Range	-1.5		+4.5	V	D	
Differential Voltage Range	±0.1		±6.0	V	D	
Input Offset Voltage	-250		+250	mV	Р	Measured at DAC Code 0x4000 (0.0 V); uncalibrated
Input Offset Voltage TC		+150		u\//°C	C-	
Gain	1.0	110	1 1			Coin derived from measurements at DAC Code 0v4000
Galli	1.0		1.1	V/V	F	(0.0 V) and DAC Code 0x8CCC (3.0 V); based on an ideal
						DAC transfer function (see Table 24)
Gain TC		±10		ppm/°C	CT	
Threshold Resolution		153		μV	D	
Threshold DNL		±0.25		mV	CT	Measured over – 1.5 V to +4.5 V functional range after
						two-point gain/offset calibration; calibration points at
						DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
Inresnoid INL						at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
Focused Range	-5		+5	mV	Р	Measured over –0.5 V to +3.5 V range
Full Range	-7		+7	mV	Р	Measured over –1.5 V to +4.5 V range
DUTGND Voltage Accuracy	-5	±1	+5	mV	Р	Over ±0.1 V range; measured over –0.5 V to +3.5 V focused NWC input range
Uncertainty Band		10		mV	CB	$V_{DUTx} = 0.0 V$, sweep comparator threshold to determine
						the uncertainty band
Programmable Hysteresis		100		mV	CB	
Hysteresis Resolution		4		Bits	D	
DC PSR		±5		mV/V	CT	Measured at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V) calibration points
Digital Output						
Characteristics						
Internal Pull-up	46	50	54	Ω	Р	Source 1 mA and 10 mA from the output pin in high state,
Resistance to						measure ΔV to calculate resistance; R = $\Delta V/9$ mA; repeat
Comparator, VIICx						for all output pins

Parameter	Min	Typ	Max	Unit	Test Level	Test Conditions/Comments
Common-Mode Voltage		тур	Max	Unit	Level	Mossured relative to $V_{}$ with 100 O differential termination
		250		m\/	C-	
		-230		m\/	C _T	
Differential Mode Voltage		-400			CT	Mossured differentially
						Measured differentially
Termination						
ADATE320		250		mV	C⊤	
ADATE320-1		400		mV	CT	
No External Termination					-1	
ADATE320	450	500	550	mV	Р	
ADATE320-1	700	800	900	mV	P	
AC SPECIFICATIONS						Unless otherwise specified, all ac tests are performed after
						dc levels calibration; input transition time: 50 ps 20% to 80%; outputs terminated 50 Ω to 0.0 V; comparator CLC set to ¼ scale (010)
Rise/Fall Times, 20% to 80%		100		ps	CB	Measured with 50 Ω to 0.0 V
Propagation Delay		580		ps	Св	$V_{DUTx} = 0.0 \text{ V}$ to 1.0 V swing, drive term mode, VIT = 0.0 V, comparator threshold = 0.5 V
Propagation Delay TC		1		ps/°C	C⊤	$V_{DUTx} = 0.0 \text{ V}$ to 1.0 V swing, drive term mode, VIT = 0.0 V, comparator threshold = 0.5 V
Propagation Delay Matching High Transition to Low Transition		10		ps	C _B	V_{DUTx} = 0.0 V to 1.0 V swing, drive term mode, VIT = 0.0 V, comparator threshold = 0.5 V
Propagation Delay Matching High to Low Comparator		10		ps	CB	$V_{DUTx} = 0.0 \text{ V}$ to 1.0 V swing, drive term mode, VIT = 0.0 V, comparator threshold = 0.5 V
Propagation Delay Dispersion						Drive term mode, VIT = 0.0 V
Slew Rate: 400 ps vs. 1.0 ns (20% to 80%)		20		ps	C _B	$V_{DUTx} = 0.0 V$ to 0.5 V swing, comparator threshold = 0.25 V
Overdrive: 250 mV vs. 1.0 V		25		ps	CB	For 250 mV: V_{DUTx} : 0.0 V to 0.50 V swing; for 1.0 V: V_{DUTx} : 0.0 V to 1.25 V swing, comparator threshold = 0.25 V
1.0 V Pulse Width: 0.4 ns, 0.5 ns, 1 ns, 5 ns, 10 ns		25		ps	C _B	$V_{DUTx} = 0.0 V$ to 1.0 V swing, 32 MHz, comparator threshold = 0.5 V
0.5 V Pulse Width: 0.4 ns, 0.5 ns, 1 ns, 5 ns, 10 ns		25		ps	CB	V_{DUTx} = 0.0 V to 0.5 V swing, 32 MHz, comparator threshold = 0.25 V
Duty Cycle: 5% to 95%		10		ps	CB	V_{DUTx} = 0.0 V to 1.0 V swing, 32 MHz, comparator threshold = 0.5 V
Minimum Detectable Pulse Width		200		ps	CB	$V_{DUTx} = 0.0 V$ to 1.0 V swing, 32 MHz, greater than 50% output differential amplitude
Input Equivalent Rise/Fall Time, 1.0 V, Terminated		110		ps	CB	$V_{DUTx} = 0.0 V$ to 1.0 V swing, drive term mode, VIT = 0.0 V, CLC = 010, measured from digitized plot, 20% to 80% transition time of digitized plot is root-sum square (RSS) of input equivalent rise/fall and 50 ps input stimulus
Input Equivalent Rise/Fall Time, 2.0 V, Unterminated		500		ps	Св	$V_{DUTx} = 0.0 V$ to 2.0 V swing, drive high-Z, measured from digitized plot, 20% to 80% transition time of digitized plot is root-sum square (RSS) of input equivalent rise/fall and 50 ps input stimulus
Cable Loss Compensation (CLC)						$V_{DUTx} = 0.0 V$ to 1.0 V swing, drive term mode, VIT = 0.0 V, maximum CLC setting
CLC Amplitude		20		%	CB	
CLC Resolution		3		Bits	D	
CLC Time Constant 1		280		ps	S	
CLC Time Constant 2		4.8		ns	S	

DIFFERENTIAL MODE COMPARATOR (DMC) SPECIFICATIONS

Table 5.

Parameter	Min	Tun	Max	Unit	Test	Test Conditions/Commonts
	MIN	тур	Max	Unit	Level	
	1.5				5	VOHX tests at VOLX = -1.5 V, VOLX tests at VOHX = 1.5 V
Input voltage Range	-1.5		+4.5	V	D	
Functional Differential Range	±0.05		±1.1	V	D	
Maximum Differential Input			±6.0	V	D	
Input Offset Voltage	-250		+250	mV	Р	Offset interpolated from measurements at DAC Code 0x2666 (-1.0 V) and DAC Code 0x5999 (1.0 V) , with V _{CM} = 0.0 V
Input Offset Voltage TC		±150		μV/°C	CT	
Gain	1.0		1.1	V/V	Ρ	Gain derived from measurements at DAC Code 0x2666 (–1.0 V) and DAC Code 0x5999 (1.0 V); based on an ideal DAC transfer function (see Table 24)
Gain TC		±40		ppm/°C	CT	
VOHx, VOLx Resolution		153		μV	D	
VOHx, VOLx DNL		±250		μV	CT	After two-point gain/offset calibration; $V_{CM} = 0.0 V$; calibration points at DAC Code 0x2666 (-1.0 V) and DAC Code 0x5999 (1.0 V)
VOHx, VOLx INL	-8		+8	mV	Ρ	After two-point gain/offset calibration; $V_{CM} = 0.0 V$; calibration points DAC Code 0x2666 (-1.0 V) and DAC Code 0x5999 (1.0 V), measured over VOHx/VOLx range of -1.1 V to +1.1 V
Uncertainty Band		11		mV	Св	$V_{DUTx} = 0.0 V$, sweep comparator threshold to determine the uncertainty band
Programmable Hysteresis		200		mV	CB	
Hysteresis Resolution		4		Bits	D	
Common-Mode Rejection Ratio (CMRR)	-1.0		+1.0	mV/V	Р	$\Delta Offset$ measured at V_{CM} = -1.5 V and +4.5 V, V_{DM} = 0.0 V
DC PSR		±5		mV/V	C⊤	Δ Offset measured at V _{CM} = 0.0 V, V _{DM} = calibration points DAC Code 0x2666 (-1.0 V) and DAC Code 0x5999 (1.0 V)
AC SPECIFICATIONS						All ac tests are performed after dc levels calibration; input transition time = 50 ps 20% to 80%; outputs terminated 50 Ω to VTTCx, comparator CLC set to ½ scale (010)
Propagation Delay		580		ps	CB	$V_{DUT0} = 0.0 V$, $V_{DUT1} = -0.5 V$ to $+0.5 V$ swing, drive termination mode, VIT = 0.0 V, comparator threshold = 0.0 V, repeat with VDUTx inputs reversed
Propagation Delay TC		2		ps/°C	C⊤	$V_{DUT0} = 0.0 V$, $V_{DUT1} = -0.5 V$ to $+0.5 V$ swing, drive termination mode, VIT = 0.0 V, comparator threshold = 0.0 V, repeat with VDUTx inputs reversed
Propagation Delay Matching High Transition to Low Transition		15		ps	C _B	$V_{DUT0} = 0.0 V$, $V_{DUT1} = -0.5 V$ to $+0.5 V$ swing, drive termination mode, VIT = 0.0 V, comparator threshold = 0.0 V, repeat with VDUTx inputs reversed
Propagation Delay Matching High to Low Comparator		15		ps	C _B	$V_{DUT0} = 0.0 V$, $V_{DUT1} = -0.5 V$ to $+0.5 V$ swing, drive termination mode, VIT = 0.0 V, comparator threshold = 0.0 V, repeat with VDUTx inputs reversed
Propagation Delay Dispersion						$V_{DUT0} = 0.0 V$, VIT = 0.0 V, drive termination mode, repeat with VDUTx inputs reversed
Slew Rate: 400 ps vs. 1 ns (20% to 80%)		30		ps	C _B	$V_{DUT1} = -0.5 V$ to $+0.5 V$ swing, comparator threshold $= 0.0 V$
Overdrive: 250 mV vs. 750 mV		25		ps	Св	For 250 mV: $V_{DUT1} = 0.0$ V to 0.5 V swing; for 750 mV: $V_{DUT1} = 0.0$ V to 1.0 V swing, comparator threshold = -0.25 V, repeat with VDUTx inputs reversed with comparator threshold = $+0.25$ V
1.0 V Pulse Width: 0.7 ns, 1.0 ns, 5.0 ns, 10 ns		25		ps	CB	$V_{DUT1} = -0.5 V$ to $+0.5 V$ swing, 32 MHz, comparator threshold = 0.0 V
0.5 V Pulse Width: 0.6 ns, 1.0 ns, 5.0 ns, 10 ns		25		ps	C _B	$V_{DUT1} = -0.25 \text{ V}$ to $+0.25 \text{ V}$ swing, 32 MHz, comparator threshold = 0.0 V

ADATE320

Parameter	Min Typ	Max	Unit	Test Level	Test Conditions/Comments
Duty Cycle: 5% to 95%	5		ps	C _B	$V_{DUT1} = -0.5$ V to +0.5 V swing, 32 MHz, comparator threshold = 0.0 V
Minimum Detectable Pulse Width	200		ps	CB	$V_{DUT0} = 0.0 \text{ V}$, $V_{DUT1} = -0.5 \text{ V}$ to $+0.5 \text{ V}$ swing, 32 MHz, drive term mode, VIT = 0.0 V, comparator threshold = 0.0 V, greater than 50% output differential amplitude, repeat with VDUTx inputs reversed
Input Equivalent Rise/Fall Time	110	•	ps	Св	$ \begin{split} V_{DUT0} &= 0.0 \text{ V}, V_{DUT1} = -0.5 \text{ V to } +0.5 \text{ V swing, drive term mode,} \\ \text{VIT} &= 0.0 \text{ V, comparator threshold} = 0.0 \text{ V, CLC} = \frac{1}{4} \text{ scale,} \\ \text{measured from digitized plot, t} = \sqrt{(t_{CMP}^2 - t_{IN}^2)} \end{split} $
Cable Loss Compensation (CLC)					$V_{DUT0} = 0.0 \text{ V}$, $V_{DUT1} = -0.8 \text{ V}$ to $+0.8 \text{ V}$ swing, drive term mode, VIT = 0.0 V, comparator threshold = 0.0 V, comparator CLC set to maximum CLC setting, repeat with VDUTx inputs reversed
CLC Amplitude	20		%	CB	
CLC Resolution	3		Bits	D	
CLC Time Constant 1	280)	ps	S	
CLC Time Constant 2	4.8		ns	S	

ACTIVE LOAD SPECIFICATIONS

Table 6.

					Test	
Parameter	Min	Тур	Max	Unit	Level	Test Conditions/Comments
DC SPECIFICATIONS						Load in active on state, RCVx active
Input Characteristics						
Active Load Commutation Voltage (VCOMx) Range	-1.5		+4.5	V	D	IOHx = IOLx = 1 mA, VDUTx open circuit
VCOMx Offset	-200		+200	mV	Р	Measured at DAC Code 0x4000 (0.0 V), uncalibrated
VCOMx Offset TC		±100		μV/°C	CT	
VCOMx Gain	1.0		1.1	V/V	Р	Gain derived from measurements at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
VCOMx Gain TC		±20		ppm/°C	CT	
VCOMx Resolution		153		μV	D	
VCOMx DNL		±250		μV	CT	IOHx = IOLx = 12.5 mA, after two-point gain/offset calibration; measured over VCOMx range -1.5 V to +4.5 V; calibration points DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
VCOMx INL						IOHx = IOLx = 12.5 mA; after two-point gain/offset calibration; calibration points DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
Focused Range	-5		+5	mV	Р	Measured over VCOMx range of -0.5 V to +3.5 V
Full Range	-10		+10	mV	Р	Measured over VCOMx range of -1.5 V to +4.5 V
DUTGND Voltage Accuracy	-5	±1	+5	mV	Р	Over ± 0.1 V range; measured over -0.5 V to $+3.5$ V focused VCOMx range
Output Characteristics						
Maximum Source Current (IOLx)	25			mA	D	$V_{DUTx} \le 3.5 V$ (a compliance limit is set by a 50 Ω internal resistor as illustrated in Figure 142)
IOLx Offset	-600		+600	μΑ	Р	$IOHx = -2.5 \text{ mA}$, VCOMx = 1.5 V, $V_{DUTx} = 0.0 \text{ V}$; offset extrapolated from measurements at DAC Code 0x451F (1 mA) and DAC Code 0xA666 (20 mA)
IOLx Offset TC		±1		μA/°C	CT	
IOLx Gain Error	0		+25	%	Ρ	IOHx = -2.5 mA, VCOMx = 1.5 V, V _{DUTx} = 0.0 V; gain derived from measurements at DAC Code 0x451F (1 mA) and DAC Code 0xA666 (20 mA); based on an ideal dc transfer function
IOLx Gain TC		±100		ppm/°C	CT	

					Test	
Parameter	Min	Тур	Мах	Unit	Level	Test Conditions/Comments
IOLx Resolution		763		nA	D	
IOLx DNL		±1.25		μΑ	Ст	$IOHx = -2.5 \text{ mA}$, VCOMx = 1.5 V, $V_{DUTx} = 0.0 \text{ V}$; after two-point gain/offset calibration; measured over IOLx range 0 mA to 25 mA; calibrated at DAC Code 0x451F (1 mA) and DAC Code 0xA666 (20 mA)
IOLx INL	-100		+100	μΑ	Р	$IOHx = -2.5 \text{ mA}$, VCOM = 1.5 V, $V_{DUTx} = 0.0 \text{ V}$, after two-point gain/offset calibration
IOLx 90% Commutation Voltage		0.25	0.4	V	Р	IOHx = IOLx = 25 mA, VCOM = 2.0 V, measure IOLx reference at $V_{DUTx} = -1.0 \text{ V}$, measure IOLx current at $V_{DUTx} = 1.6 \text{ V}$, check > 90% of reference current
		0.1		V	CT	$\label{eq:optimal_constraint} \begin{array}{l} \text{IOHx} = \text{IOLx} = 1 \text{ mA}, \text{VCOM} = 2.0 \text{ V}, \text{ measure IOLx} \\ \text{reference at } V_{\text{DUTx}} = -1.0 \text{ V}, \text{ measure IOLx current at} \\ V_{\text{DUTx}} = 1.9 \text{ V}, \text{ check} > 90\% \text{ of reference current} \end{array}$
Maximum Sink Current (IOHx)	25			mA	D	$V_{DUTx} \ge -0.5 V$ (a compliance limit is set by a 50 Ω internal resistor as illustrated in Figure 142)
IOHx Offset	-600		+600	μΑ	Р	$IOLx = -2.5 \text{ mA}$, VCOM = 1.5 V, $V_{DUTx} = 3.0 \text{ V}$, offset extrapolated from measurements at DAC Code 0x451F (1 mA) and DAC Code 0xA666 (20 mA)
IOHx Offset TC		±1		μA/°C	CT	
IOHx Gain Error	0		+25	%	Ρ	IOLx = -2.5 mA, VCOM = 1.5 V, V _{DUTx} = 3.0 V, gain derived from measurements at DAC Code 0x451F (1 mA) and DAC Code 0xA666 (20 mA); based on an ideal DAC transfer function
IOHx Gain TC		±100		ppm/°C	CT	
IOHx Resolution		763		nA	D	
IOHx DNL		±1.25		μA	CT	IOLx = -2.5 mA, VCOM = 1.5 V, V _{DUTx} = 3.0 V, after two-point gain/offset calibration; measured over IOHx range of 0 mA to 25 mA; calibrated at DAC Code 0x451F (1 mA) and DAC Code 0xA666 (20 mA)
IOHx INL	-100		+100	μΑ	Р	$IOLx = -2.5 \text{ mA}$, VCOM = 1.5 V, $V_{DUTx} = 3.0 \text{ V}$, after two-point gain/offset calibration
IOHx 90% Commutation Voltage		0.25	0.4	V	Р	IOHx = IOLx = 25 mA, VCOM = 2.0 V, measure IOHx reference at V _{DUTx} = 4.0 V, measure IOHx current at V _{DUTx} = 2.4 V, ensure > 90% of reference current
		0.1		V	CT	$\begin{array}{l} \text{IOHx} = \text{IOLx} = 1 \text{ mA}, \text{VCOM} = 2.0 \text{ V}, \text{ measure IOHx} \\ \text{reference at } V_{\text{DUTx}} = 4.0 \text{ V}, \text{ measure IOHx current at} \\ V_{\text{DUTx}} = 2.1 \text{ V}_{\text{DUTx}}, \text{ ensure } > 90\% \text{ of reference current} \end{array}$
AC SPECIFICATIONS						All ac measurements are performed after dc calibration unless noted, load active on
Dynamic Performance						Toggle RCVx; DUTx terminated 50 Ω to 0.0 V; IOLx = IOHx = 20 mA, VIH = VIL = 0.0 V; VCOM = +1.5 V for IOLx and -1.5 V for IOHx
Propagation Delay, Load Active On to Load Active Off		1.7		ns	CB	Measured from zero crossing of RCVx – $\overline{\text{RCVx}}$ to 50% of final output value; repeat for drive low and drive high
Propagation Delay, Load Active Off to Load Active On		2.9		ns	CB	Measured from zero crossing of RCVx – $\overline{\text{RCVx}}$ to 50% of final output value; repeat for drive low and drive high
Propagation Delay Matching		1.2		ns	CB	Active on vs. active off; repeat for drive low and drive high
Load Spike		140		mV	CB	Repeat for drive low and drive high
Settling Time to Within 5%		2.5		ns	CB	Measured from output crossing 50% final value to output within 5% final value

PPMU SPECIFICATIONS

PPMU enabled in force voltage mode unless noted.

Table 7.

_		_			Test	
Parameter	Min	Тур	Мах	Unit	Level	Test Conditions/Comments
FORCE VOLTAGE (FV)						
Current Range A	-40		+40	mA	D	
Current Range B	-1		+1	mA	D	
Current Range C	-100		+100	μΑ	D	
Current Range D	-10		+10	μA	D	
Current Range E	-2		+2	μΑ	D	
FV Range at Output, Range A	-1.0		+4.0	V	D	Output range for full-scale source/sink
	-1.5		+4.5	V	D	Output range for ±25 mA or less
FV Range at Output, Range B, Range C, Range D, and Range E	-1.5		+4.5	V	D	Output range for full-scale source/sink
FV Offset, Range C	-100		+100	mV	Р	Measured at DAC Code 0x4000 (0.0 V) in Range C
FV Offset, All Ranges		±30		mV	C⊤	Measured at DAC Code 0x4000 (0.0 V) applies to all other ranges
FV Offset TC, All Ranges		±100		μV/°C	CT	Measured at DAC Code 0x4000 (0.0 V)
FV Gain, Range C	1.0		1.1	V/V	Ρ	Gain derived from measurements at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V); based on an ideal DAC transfer function
FV Gain, All Ranges		1.05		V/V	Cτ	Gain derived from measurements at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V); based on an ideal DAC transfer function
FV Gain TC, All Ranges		±10		ppm/°C	C⊤	Gain derived from measurements at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
FV INL						
Range A		±1.5		mV	CT	After two-point gain/offset calibration, output range of –1.5 V to +4.5 V; calibration points DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V), PPMU Current Range A
Range C, Focused Range	-1.7		+1.7	mV	Ρ	After two-point gain/offset calibration, output range of -0.5 V to +3.5 V; calibration points DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
Range C, Full Range	-5		+5	mV	Ρ	After two-point gain/offset calibration, output range of –1.5 V to +4.5 V; calibration points DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
Range B, Range D, and Range E		±1.0		mV	CT	After two-point gain/offset calibration, output range of -1.5 V to $+4.5$ V; calibration points DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
FV Compliance vs. Source/Sink Current, Range A (±40 mA)		±1		mV	CT	Force – 1.0 V; measure voltage while sinking 0.0 mA and full-scale current; measure ΔV ; force 4.0 V; measure voltage while sourcing 0.0 mA and full-scale current; measure ΔV
FV Compliance vs. Source/Sink Current, Range A (±25 mA)		±1		mV	C⊤	Force – 1.5 V; measure voltage while sinking 0.0 mA and 25 mA; measure Δ V; force 4.5 V; measure voltage while sourcing 0.0 mA and 25 mA; measure Δ V

		-			Test	
Parameter	Min	Тур	Мах	Unit	Level	lest Conditions/Comments
FV Compliance vs. Source/Sink Current, Range B, Range C, Range D, and Range E		±1		mV	CT	Force – 1.5 V; measure voltage while sinking 0.0 mA and full-scale current; measure ΔV ; force 4.5 V; measure voltage while sourcing 0.0 mA and full-scale current; measure ΔV
DUTGND Voltage Accuracy	-5	±1	+5	mV	Р	Over ± 0.1 V range; measured over -0.5 V to $+3.5$ V focused PPMU output range
FORCE CURRENT (FI)						PPMU enabled in force current/measure current (FIMI)
DUTx Pin Voltage Range, Range A	-1.0		+4.0	V	D	Full-scale source and sink current
	-1.5		+4.5	V	D	DUTx pin source and sink 25 mA or less
DUTx Pin Voltage Range, Range B, Range C, Range D, and Range E	-1.5		+4.5	V	D	Full-scale source and sink current
Zero-Current Offset, All Ranges	-14.5		+14.5	% FSR	Ρ	Interpolated from measurements at PPMU DAC Code 0x4CCC (–80% FS) and DAC Code 0xB333 (80% FS) for each range
Zero-Current Offset TC		±0.02		% FSR/°C	Ст	
Gain Error, All Ranges	0		30	%	Ρ	Derived from measurements at PPMU DAC Code 0x4CCC (–80% FS) and DAC Code 0xB333 (80% FS) for each range
Gain Drift						
Range A		±50		ppm/°C	CT	PPMU self heating effects in Range A can influence gain drift measurements
Range B		±50		ppm/°C	Ст	
Range C, Range D, and Range E INL		±50		ppm/°C	CT	After two-point gain/offset calibration
Range A	-0.12		+0.12	% FSR	Р	Measured over FSR output of Range A (±40 mA)
Range B, Range C, and Range D	-0.04		+0.04	% FSR	Ρ	Measured over FSR output of Range B (± 1 mA), Range C ($\pm 100 \mu$ A), and Range D ($\pm 10 \mu$ A)
Range E	-0.045		+0.045	% FSR	Р	Measured over FSR output of Range E ($\pm 2 \ \mu A$)
FI Compliance vs. Voltage Load						
Range A	-0.3		+0.3	% FSR	Ρ	Force positive full-scale current driving -1.0 V and +4.0 V, measure ΔI at DUTx pin; force negative full-scale current driving -1.0 V and +4.0 V, measure ΔI at DUTx pin
	-0.1		+0.1	% FSR	Ρ	Force positive full-scale current driving 0.0 V and 3.0 V, measure ΔI at DUTx pin; force negative full-scale current driving 0.0 V and 3.0 V. measure ΔI at DUTx pin
Range B and Range C	-0.3		+0.3	% FSR	Ρ	Force positive full-scale current driving -1.5 V and +4.5 V, measure ΔI at DUTx pin; force negative full-scale current driving -1.5 V and +4.5 V, measure ΔI at DUTx pin
	-0.06		+0.06	% FSR	Ρ	Force positive full-scale current driving 0.0 V and 3.0 V, measure ΔI at DUTx pin; force negative full-scale current driving 0.0 V and 3.0 V, measure ΔI at DUTx pin
Range D	-0.3		+0.3	% FSR	Ρ	Force positive full-scale current driving -1.5 V and +4.5 V, measure ΔI at DUTx pin; force negative full-scale current driving -1.5 V and +4.5 V, measure ΔI at DUTx pin
Range E	-0.85		+0.85	% FSR	Ρ	Force positive full-scale current driving -1.5 V and $+4.5$ V, measure Δ I at DUTx pin; force negative full-scale current driving -1.5 V and $+4.5$ V, measure Δ I at DUTx pin; allows 10 nA DUTx pin leakage

					Test	
Parameter	Min	Тур	Max	Unit	Level	Test Conditions/Comments
MEASURE VOLTAGE (MV)						PPMU enabled, force voltage/measure voltage (FVMV)
Range	-1.5		+4.5	V	D	
Offset	-25		+25	mV	Р	Range B, $V_{DUTx} = 0.0 V$, offset = (PPMU_Mx -
Offset TC		±50		μV/°C	C⊤	V DUTx)
Gain	0.98		1.02	V/V	Р	Range B, derived from measurements at
Gain TC		+5		nnm/°C	C-	
INI	_17	<u>+</u> 5	⊥1 7	mV	D	Range B measured over $-15V$ to $\pm 45V$
	-1.7		+1.7	1110	1	
DUTy Pin Voltage Pange						Full scale source and sink current
Do IX Pin Voltage Range	1.0		140	V	D	Full-scale source and sink current
Ralige A Banga B. Banga C. Banga D. and	-1.0		+4.0	v		
Range E Range E	-1.5		+4.5	v	D	
Zero-Current Offset						
Range B	-4		+4	%FSR	Р	Interpolated from measurements sourcing and sinking 80% FS current each range; for example, 2% FSR is 40 µA in Range B
All Ranges Zero-Current Offset TC		±0.5		%FSR	CT	
Range A		±0.01		%FSR/°C	Cτ	
Range B. Range C. and Range D		±0.01		%FSR/°C	CT	
Range E		±0.02		%FSR/°C	C _T	
Gain Error				,	-1	Derived from measurements sourcing and
						sinking 80% FS current
Range B	-30		+5	%	Р	
All Ranges		-10		%	CT	
Gain TC						
Range A		±50		ppm/°C	CT	
Range B, Range C, and Range D		±50		ppm/°C	CT	
Range E		±50		ppm/°C	CT	
INL						After two-point gain/offset calibration at ±80% FS current
Range A		±0.02		%FSR	CT	Measured over FSR output of –40 mA to +40 mA
Range B	-0.02		+0.02	%FSR	Р	Measured over FSR output of -1 mA to $+1 \text{ mA}$
Range C, Range D, and Range E		±0.01		%FSR	C⊤	Measured over FSR output of Range C, Range D, and Range E
DUTx Pin Voltage Rejection	-1.3		+1.3	μA	Ρ	Range B, FVMI, force −1.0 V and +4.0 V into 0.5 mA load, measure ΔI reported at PPMU_Mx pin
DUTGND Voltage Accuracy	-5	±1	+5	mV	Р	Over ±0.1 V range
MEASURE PIN DC CHARACTERISTICS						
Output Range	-1.5		+5.0	V	D	
Output Impedance			200	Ω	Ρ	PPMU enabled in FVMV, source resistance: PPMU force 4.5 V into 0.0 mA, -1.0 mA, sink resistance: PPMU force -1.5 V into 0.0 mA, 1.0 mA, resistance = $\Delta V/\Delta I$ at PPMU_Mx pin
Output Leakage Current When Tristated	-1		+1	μA	Р	Tested at –1.7 V and +5.2 V
Output Short Circuit Current	-10		+10	mA	Р	PPMU enabled in FVMV, source: PPMU force +4.5 V, PPMU_Mx = -1.5 V, sink: PPMU force -1.5 V, PPMU_Mx = 5.0 V

Parameter	Min	Тур	Max	Unit	Test Level	Test Conditions/Comments
PPMU_Mx Pin, Parasitic Output Capacitance			2	pF	S	Parasitic capacitance contributed by pin
PPMU_Mx Pin, External Load Capacitance	100			pF	S	External capacitance tolerated by pin (exceeding this value may cause instability)
PPMU VOLTAGE CLAMPS (FI)						PPMU enabled in FIMI, PPMU clamps enabled; clamp accuracy applies only when PCHx – PCLx ≥ 1.0 V
Low Voltage Clamp Range (PCLx)	-1.5		+3.5	V	D	
High Voltage Clamp Range (PCHx)	-0.5		+4.5	V	D	
Offset, Voltage Clamps (PCHx/PCLx)	-300		+300	mV	Ρ	Range B, PPMU force ± 0.5 mA into open; PCHx measured at DAC Code 0x4000 (0.0 V) with PCLx at DAC Code 0x0000 (-2.5 V); PCLx measured at DAC Code 0x4000 (0.0 V) with PCHx at DAC Code 0xFFFF (+7.5 V)
Offset TC, Voltage Clamps (PCHx/PCLx)		±0.5		mV/°C	CT	
Gain, Voltage Clamps (PCHx/PCLx)	1.0		1.1	V/V	Ρ	Range B, PPMU force ± 0.5 mA into open; PCHx gain derived from measurements at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V) with PCLx at DAC Code 0x0000 (-2.5 V); PCLx gain derived from measure- ments at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V) with PCHx at DAC Code 0xFFFF (7.5 V)
Gain TC, Voltage Clamps (PCHx/PCLx)		±25		ppm/°C	CT	
INL, Voltage Clamps (PCHx/PCLx)	-20		+20	mV	Ρ	Range B, PPMU force ±0.5 mA into open after two-point gain/offset calibration; measured over PPMU clamp functional range
Positive Voltage Clamp, Voltage Droop (Source)	-50		+50	mV	Р	ΔV at DUTx pin, Range A, PCHx = +4.0 V, PCLx = -1.0 V, PPMU force 5.0 mA and 40 mA into open circuit, calibrated
Negative Voltage Clamp, Voltage Droop (Sink)	-50		+50	mV	Ρ	ΔV at DUTx pin, Range A, PCHx = +4.0 V, PCLx = -1.0 V, PPMU force -5.0 mA and -40 mA into open circuit, calibrated
DUTGND Voltage Accuracy	-5	±1	+5	mV	Р	Over ±0.1 V range; measured at end points of clamp functional range
PPMU CURRENT CLAMPS (FV)						PPMU enabled in FVMV, dc accuracy of the current clamps only applies over the following conditions: 30% FS ≤ PCHx ≤
						100% FS or -100% FS \le PCLx $\le -30\%$ FS
Functional Range						
Low Current Clamp (PCLx)	-120		-20	%FS	S	For example, –120% FS in Range A is –48 mA and –20% FS in Range A is –8 mA
High Current Clamp (PCHx)	20		120	%FS	S	For example, 20% FS in Range A is 8 mA and 120% FS in Range A is 48 mA
DC Accuracy Range						_
Low Current Clamp (PCLx)	-100		-30	%FS	D	For example, –100% FS in Range A is –40 mA and –30% FS in Range A is –12 mA
High Current Clamp (PCHx)	30		100	%FS	D	For example, 30% FS in Range A is 12 mA and 100% FS in Range A is 40 mA
Static Current Limit, Source and Sink, All Ranges	±120	±140	±160	%FS	Ρ	PCLx at DAC Code 0x0000 (-2.5 V), PCHx at DAC Code 0xFFF (7.5 V), sink: force -1.5 V, short DUTx to 4.5 V, source: force 4.5 V, short DUTX to -1.5 V
Offset, Current Clamps (PCHx/PCLx)	-10		+10	%FSR	Р	All ranges; PPMU force ± 1.0 V into 0.0 V ¹
Offset TC, Current Clamps (PCHx/PCLx)		±0.02	-	%FSR/°C	C⊤	All ranges

Parameter	Min	Typ	May	Unit	Test	Test Conditions/Comments
Gain Error Current Clamps	0	176	30	%	P	All ranges: PPMU force ± 1.0 V into 0.0 V ²
(PCHx/PCLx)	0		50	⁹⁰	r -	
Gain TC, Current Clamps (PCHx/PCLx)		±50		ppm/°C	CT	All ranges
INL, Current Clamps (PCHx/PCLx)	-0.15		+0.15	%FSR	Ρ	All ranges; PPMU force ± 1.0 V into 0.0 V, after two-point gain/offset calibration; PCHx calibration at DAC Code 0xA000 (3.75 V or 50% FS) and DAC Code 0xB333 (4.50 V or 80% FS); PCLx calibration at DAC Code 0x6000 (1.25 V or -50% FS) and DAC Code 0x4CCC (0.50 V or -80% FS); measured over dc accuracy range
Current Droop	2		. 2	0/ 500		
Low Current Clamp (PCLx), Sink	-2		+2	%FSR	P	PCLx = 0.5 V (-80% FS), PCHx = 4.5 V (80% FS), PPMU force -0.5 V and +3.5 V into $V_{DUTx} = 4.5 V$, measure ΔI at the DUTx pin in Range A
High Current Clamp (PCHx), Source	-2		+2	%FSR	P	PCLx = 0.5 V (-80% FS), PCHx = 4.5 V (80% FS), PPMU force -0.5 V and $+3.5$ V into V _{DUTx} = -1.5 V, measure Δ I at the DUTx pin in Range A
SETTLING/SWITCHING TIMES						
FV Settling Time to 0.1% of Final Value						
Range A, 200 pF and 2000 pF Load		20		μs	S	PPMU enabled in FV, Range A, step from 0.0 V to 4.0 V
Range B, 200 pF and 2000 pF Load		25		μs	S	PPMU enabled in FV, Range B, DCL disabled, step from 0.0 V to 4.0 V
Range C, 200 pF Load		25		μs	S	PPMU enabled in FV, Range C, DCL disabled, step from 0.0 V to 4.0 V
Range C, 2000 pF Load		65		μs	S	PPMU enabled in FV, Range C, DCL disabled, step from 0.0 V to 4.0 V
FV Settling Time to 1.0% of Final Value						
Range A, 200 pF and 2000 pF Load		16		μs	CB	PPMU enabled in FV, Range A, DCL disabled, step from 0.0 V to 4.0 V
Range B, 200 pF and 2000 pF Load		14		μs	C _B	PPMU enabled in FV, Range B, DCL disabled, step from 0.0 V to 4.0 V
Range C, 200 pF and 2000 pF Load		18		μs	CB	PPMU enabled in FV, Range C, DCL disabled enabled, step from 0.0 V to 4.0 V
FI Settling Time to 0.1% of Final Value						
Range A, 200 pF in Parallel with 120 Ω		16		μs	S	PPMU enabled in FI, Range A, DCL disabled, step from 0.0 mA to 40 mA
Range B, 200 pF in Parallel with 1.5 kΩ		10		μs	S	PPMU enabled in FI, Range B, DCL disabled, step from 0.0 mA to 1 mA
Range C, 200 pF in Parallel with 15.0 kΩ		40		μs	S	PPMU enabled in FI, Range C, DCL disabled, step from 0.0 mA to 100 μA
FI Settling Time to 1.0% of Final Value						
Range A, 200 pF in Parallel with 120 Ω		8		μs	CB	PPMU enabled in FI, Range A, DCL disabled, step from 0.0 mA to 40 mA
Range B, 200 pF in Parallel with 1.5 k Ω		8		μs	CB	PPMU enabled in FI, Range B, DCL disabled, step from 0.0 mA to 1 mA
Range C, 200 pF in Parallel with 15.0 kΩ		8		μs	CB	PMU enabled in FI, Range C, DCL disabled, step from 0.0 mA to 100 μA

Parameter	Min	Тур	Max	Unit	Test Level	Test Conditions/Comments
INTERACTION AND CROSSTALK						
Measure Voltage Channel to Channel Crosstalk		10		μV	CT	PPMU enabled in FIMV, Range B, channel under test: force 0.0 mA into 0.0 V; other channel: force 0.0 mA into V_{DUTx} ; sweep V_{DUTx} from -1.5 V to +4.5 V; measure ΔV at PPMU_Mx under test
Measure Current Channel to Channel Crosstalk		0.0001		%FSR	CT	PPMU enabled in FVMI, Range B; channel under test: force 0.0 V into open circuit; other channel: force 0.0 V into I_{DUTx} ; sweep I_{DUTx} from -1.0 mA to +1.0 mA; measure ΔV at PPMU_Mx under test

¹ PCHx offset is derived from measurements at DAC Code 0xA000 (3.75 V or 50% FS) and DAC Code 0xB333 (4.50 V or 80% FS), with PCLx at DAC Code 0x0000 (-2.5 V). PCLx offset is derived from measurements at DAC Code 0x6000 (1.25 V or -50% FS) and DAC Code 0x4CCC (0.50 V or -80% FS), with PCLx at DAC Code 0xFFFF (7.5 V). ² PCHx gain is derived from the measurements at DAC Code 0xA000 (3.75 V or 50% FS) and DAC Code 0xB333 (4.50 V or 80% FS), with PCLx at DAC Code 0x0000 (-2.5 V). PCLx gain is derived from the measurements at DAC Code 0xA000 (3.75 V or 50% FS) and DAC Code 0xB333 (4.50 V or 80% FS), with PCLx at DAC Code 0x0000 (-2.5 V). PCLx gain is derived from measurements at DAC Code 0x6000 (1.25 V or -50% FS) and DAC Code 0x4CCC (0.50 V or -80% FS), with PCLx at DAC Code 0xFFFF (7.5 V). For example, the ideal gain is ±FS per 2.5 V in all ranges; in Range B, the ideal gain is ±400 μA/V; therefore, 30% error is ±520 μA/V.

PPMU GO/NO-GO COMPARATORS SPECIFICATIONS

Table 8.

					Test	
Parameter	Min	Тур	Max	Unit	Level	Test Conditions/Comments
DC SPECIFICATIONS						
Compare Voltage Range	-1.5		+5.0	V	D	
Input Offset Voltage	-250		+250	mV	Р	Measured at DAC Code 0x4000 (0 V)
Input Offset Voltage TC		±100		μV/°C	CT	
Gain	1.0		1.1	V/V	Р	Gain derived from measurements at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
Gain TC		±10		ppm/°C	Ст	Gain derived from measurements at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
Comparator Threshold Resolution		153		μV	D	
Comparator Threshold DNL		±250		μV	C⊤	After two-point calibration; measured over POHx/POLx range –1.5 V to +5.0 V; calibration points DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
Comparator Threshold INL	-7		+7	mV	Р	After two-point calibration; measured over POHx/POLx range –1.5 V to +5.0 V; calibration points DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V)
DUTGND Voltage Accuracy	-5	±1	+5	mV	Р	Over ±0.1 V range

PPMU EXTERNAL SENSE PINS SPECIFICATIONS

Table 9.

Parameter	Min	Тур	Max	Unit	Test Level	Test Conditions/Comments
DC SPECIFICATIONS						
Voltage Range	-1.5		+4.5	V	D	PPMU input select, in all states
Leakage	-2	0.0	+2	nA	Р	Tested at –1.5 V and +4.5 V
Maximum Load Capacitance	2000			pF	S	Capacitive load tolerated at DUTx sense pins

VREF, VREFGND, AND DUTGND REFERENCE INPUT PINS SPECIFICATIONS

Table 10.

					Test	
Parameter	Min	Тур	Max	Unit	Level	Test Conditions/Comments
DC SPECIFICATIONS						
VREF Input Voltage Range	2.475	2.500	2.525	V	D	Provided externally, $V_{REF} = 2.500 \text{ V}$, $V_{REFGND} = 0.000 \text{ V}$
VREF Input Bias Current			10	μΑ	Р	Tested with 2.500 V applied
DUTGND Input Voltage Range, Referenced to AGND	-0.1		+0.1	V	D	
DUTGND Input Bias Current	-10		+10	μΑ	Р	Tested at -100 mV and +100 mV

TEMPERATURE MONITOR SPECIFICATIONS

Table 11.

					Test	
Parameter	Min	Тур	Max	Unit	Level	Test Conditions/Comments
DC SPECIFICATIONS						
Temperature Sensor Gain		10		mV/K	D	3.00 V at room temperature, 300 K (23°C)
Temperature Sensor Accuracy		±10		°C	CT	$20^{\circ}C < T_C < 80^{\circ}C$, V _{CCTHERM} only (T _J = T _C)

ALARM FUNCTIONS SPECIFICATIONS

Table 12.

Davameter	Min	Turn	Max	llmit	Test	Test Conditions/Commonts
Parameter	wiin	тур	iviax	Unit	Level	lest Conditions/Comments
DC SPECIFICATIONS						
Overvoltage Alarm High, OVDH						
Functional Voltage Range	-1.0		+5.0	V	D	OVDL DAC set to DAC Code 0x0000 (-2.5 V)
Uncalibrated Error at –1.0 V	-300		+200	mV	Р	Includes 5% uncalibrated gain ± 250 mV offset
Uncalibrated Error at 5.0 V	0		500	mV	Р	Includes 5% uncalibrated gain ± 250 mV offset
Offset Voltage TC		±0.5		mV/°C	CT	
Gain		1.05		V/V	CT	Gain derived from measurements at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V); based on an ideal DAC transfer function (see Table 24)
Hysteresis		140		mV	CT	Hysteresis is only applied coming out of alarm
Overvoltage Alarm Low, OVDL						
Functional Voltage Range	-2.0		+4.0	V	D	OVDH DAC set to DAC Code 0xFFFF (7.5 V)
Uncalibrated Error at –2.0 V	-350		+150	mV	Р	Includes 5% uncalibrated gain ±250 mV offset
Uncalibrated Error at 4.0 V	-50		+450	mV	Р	Includes 5% uncalibrated gain ±250 mV offset
Offset Voltage TC		±0.5		mV/°C	CT	
Gain		1.05		V/V	Cτ	Gain derived from measurements at DAC Code 0x4000 (0.0 V) and DAC Code 0x8CCC (3.0 V); based on an ideal DAC transfer function (see Table 24)
Hysteresis		140		mV	CT	Hysteresis is only applied coming out of alarm
Thermal Alarm						
Setpoint Error		±10		°C	CT	Relative to default alarm value, T _J = 100°C
Thermal Hysteresis		15		°C	Ст	

Parameter	Min	Тур	Max	Unit	Test Level	Test Conditions/Comments
ALARM Output Characteristics						
Off State Leakage		10	500	nA	Ρ	Disable alarm, apply V_{DD} to ALARM pin, and measure leakage current
Maximum On Voltage at 200 μA		0.1	0.7	V	Ρ	$\overline{\text{ALARM}}$ pin asserted, force 200 μA into pin and measure voltage
AC SPECIFICATIONS						
Propagation Delay		0.5		μs	CB	For OVDH: $V_{DUTx} = 0.0 V$ to 4.5 V step, OVDH = 4.0 V, OVDL = -1.0 V; for OVDL: $V_{DUTx} = 0.0 V$ to -1.5 V step, OVDH = 4.0 V, OVDL = -1.0 V

SERIAL PROGRAMMABLE INTERFACE (SPI) SPECIFICATIONS

Table 13.

					Test	
Parameter	Min	Тур	Max	Unit	Level	Test Conditions/Comments
DC SPECIFICATIONS						
Input Voltage						RST, CS, SCLK, SDI
Logic High	$V_{\text{DD}} - 0.7$		V_{DD}	V	PF	
Logic Low	0.0		0.7	V	PF	
Input Bias Current	-10	1	+10	μΑ	Р	Tested at 0.0 V and V_{DD} ; \overline{RST} tested at V_{DD} ; \overline{RST} has an internal
						50 k Ω pull-up to V _{DD}
SCLK Crosstalk on DUTx Pin		1		mV	CB	DCL disabled, PPMU forcing 0.0 V
Serial Output						
Logic High	$V_{\text{DD}}-0.5$		V_{DD}	V	PF	SDO, sourcing 2 mA
Logic Low	0.0		0.5	V	PF	Sinking 2 mA
BUSY Output Characteristics						Open-drain output
Off State Leakage		10	500	nA	Р	\overline{BUSY} pin not asserted, apply V_{DD} to pin and measure
						leakage current
Maximum On Voltage at 2 mA		0.01	0.7	V	Р	BUSY pin asserted, force 2 mA into pin and measure voltage

SPI TIMING SPECIFICATIONS

Table 14.

						Test	
Parameter	Symbol	Min	Тур	Max	Unit	Level	Description
SCLK Operating Frequency	f _{CLK}		50		MHz	PF	
		0.5		100	MHz	S	
SCLK High Time	tсн	4.5			ns	S	
SCLK Low Time	t _{CL}	4.5			ns	S	
CS to SCLK Setup at Assert	tcsas	1.5			ns	S	Setup time of \overline{CS} assert to next rising edge of SCLK.
CS to SCLK Hold at Assert	t csah	1.5			ns	S	Hold time of \overline{CS} assert to next rising edge of SCLK.
CS to SCLK Setup at	t _{csrs}	1.5			ns	S	Setup time of CS release to next rising edge of SCLK.
Release							
CS to SCLK Hold at Release	tcsrh	1.5			ns	S	Hold time of CS release to next rising edge of SCLK. This parameter
							is only critical if the number of SCLK cycles from previous release of
							CS is the minimum specified by the t_{CSAM} parameter.
CS Assert to SDO Active	t _{cso}	0		4	ns	S	Delay time from CS assert to SDO active state.
CS Release to SDO High-Z	tcsz	0		11	ns	S	Delay from CS release to SDO high-Z state, strongly influenced
							by external SDO pin loading.
CS Release to Next Assert	t csam	3			Cycles	D	Minimum release time of \overline{CS} between consecutive assertions of
							CS. This parameter is specified in units of SCLK cycles, more
							specifically in terms of rising edges of the SCLK input.

ADATE320

12160-002

						Test	
Parameter	Symbol	Min	Тур	Max	Unit	Level	Description
SDI to SCLK Setup	t _{DS}	3			ns	S	Setup time of SDI data prior to next rising edge of SCLK.
SDI to SCLK Hold	t _{DH}	4			ns	S	Hold time of SDI data following previous rising edge of SCLK.
SCLK to Valid SDO	t _{DO}	0		6	ns	S	Propagation delay from rising edge of SCLK to valid SDO data.
BUSY Assert from CS/RST	t _{BUSA}	0		6	ns	S	Propagation delay from first rising SCLK following valid \overline{CS} release
							(or \overline{RST} release in the case of hardware reset) to \overline{BUSY} assert.
BUSY Width	t _{BUSW}						
Following CS		3		21	Cycles	D	Delay time from first rising SCLK after valid \overline{CS} release to \overline{BUSY}
-					-		release. Satisfies the requirements detailed in the SPI Clock
							Cycles and the Pin section, except following RST or software reset.
Following RST		744			Cycles	D	Delay time from first rising SCLK after $\overline{\text{RST}}$ release (or valid $\overline{\text{CS}}$
							release in the case of software reset) to BUSY release. Satisfies
							the requirement of synchronous reset sequence detailed in the
							SPI Clock Cycles and the Pin section.
BUSY Release from SCLK	t _{BUSR}	0		10	ns	S	Propagation delay from qualifying SCLK edge to BUSY release.
Width of RST Assert	t _{RMIN}	5			ns	S	Minimum width of asynchronous RST assert, 5 pF external loading.
RST to SCLK Setup at Assert	t _{RS}	1.5			ns	S	Minimum setup time of $\overline{\text{RST}}$ release to next rising edge of SCLK.
SCLK Cycles per SPI Word	t _{SPI}	29			Cycles	D	Minimum number of SCLK rising edge cycles required per valid
							SPI operation <u>, in</u> cluding the minimum t_{CSAM} requirement between
							consecutive CS assertions.
Internal DAC Settling to	tdac		10		μs	CB	Settling time of internal analog DAC levels to within ± 2 mV.
Within ±2 mV from							Settling time is relative to the release of BUSY. ¹
BUSY Release							

¹ The overall settling time may be dominated by the characteristics of an analog block (such as the PPMU or driver) and its respective mode setting (such as Range A or Range B).

SPI TIMING DIAGRAMS

Figure 2. SPI Detailed Read/Write Timing Diagram

REMAINS ACTIVE INDEPENDENT OF CS.

Figure 4. SPI Read Request Instruction Timing Diagram (Prior to Readout Instruction)

Figure 6. SPI Detailed Hardware Reset Timing Diagram

Figure 7. SPI Detailed Software Reset Timing Diagram