

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SigmaDSP Digital Audio Processor

Data Sheet

ADAU1452/ADAU1451/ADAU1450

FEATURES

Qualified for automotive applications

Fully programmable audio DSP for enhanced sound processing Features SigmaStudio, a proprietary graphical programming tool for the development of custom signal flows

Up to 294.912 MHz, 32-bit SigmaDSP core at 1.2 V

Up to 6144 SIMD instructions per sample at 48 kHz

Up to 40 kWords of parameter/data RAM

Up to 800 ms digital audio delay pool at 48 kHz

Audio I/O and routing

4 serial input ports, 4 serial output ports

48-channel, 32-bit digital I/O up to a sample rate of 192 kHz Flexible configuration for TDM, I²S, left and right justified

formats, and PCM

Up to 8 stereo ASRCs from 1:8 up to 7.75:1 ratio and 139 dB DNR

Stereo S/PDIF input and output (not on the ADAU1450)

Four PDM microphone input channels

Multichannel, byte addressable TDM serial ports

Clock oscillator for generating master clock from crystal

Integer PLL and flexible clock generators

Integrated die temperature sensor

I²C and SPI control interfaces (both slave and master)

Standalone operation

Self boot from serial EEPROM

6-channel, 10-bit SAR auxiliary control ADC

14 multipurpose pins for digital controls and outputs

On-chip regulator for generating 1.2 V from 3.3 V supply

72-lead, 10 mm \times 10 mm LFCSP package with 5.3 mm

exposed pad

Temperature range: -40°C to +105°C

APPLICATIONS

Automotive audio processing

Head units

Navigation systems

Rear seat entertainment systems

DSP amplifiers (sound system amplifiers)

Commercial and professional audio processing

FUNCTIONAL BLOCK DIAGRAM—ADAU1452/ADAU1451

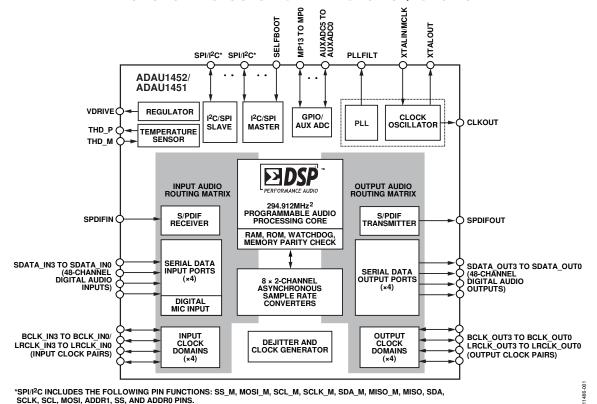


Figure 1.

Data Sheet

ADAU1452/ADAU1451/ADAU1450

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram—ADAU1452/ADAU1451	1
Revision History	3
General Description	4
Differences Between the ADAU1452, ADAU1451, and ADAU1450	4
Functional Block Diagram—ADAU1450	5
Specifications	6
Electrical Characteristics	8
Timing Specifications	9
Absolute Maximum Ratings	17
Thermal Characteristics	17
Maximum Power Dissipation	17
ESD Caution	17
Pin Configuration and Function Descriptions	18
Theory of Operation	22
System Block Diagram	22
Overview	22
Initialization	24
Master Clock, PLL, and Clock Generators	27
Power Supplies, Voltage Regulator, and Hardware Reset	32
Temperature Sensor Diode	33
Slave Control Ports	34
Master Control Ports	40
Self Boot	41
Audio Signal Routing	43
Serial Data Input/Output	53
Flexible TDM Interface	64
Asynchronous Sample Rate Converters	69
S/PDIF Interface	70
Digital PDM Microphone Interface	72
Multipurpose Pins	73

Auxiliary ADC76
SigmaDSP Core76
Software Features
Pin Drive Strength, Slew Rate, and Pull Configuration 81
Global RAM and Control Register Map83
Random Access Memory
Control Registers84
Control Register Details
PLL Configuration Registers94
Clock Generator Registers
Power Reduction Registers
Audio Signal Routing Registers105
Serial Port Configuration Registers111
Flexible TDM Interface Registers
DSP Core Control Registers118
Debug and Reliability Registers123
DSP Program Execution Registers
Multipurpose Pin Configuration Registers135
ASRC Status and Control Registers140
Auxiliary ADC Registers143
S/PDIF Interface Registers
Hardware Interfacing Registers157
Soft Reset Register175
Applications Information
PCB Design Considerations176
Typical Applications Block Diagram177
Example PCB Layout
PCB Manufacturing Guidelines179
Outline Dimensions
Ordering Guide180
Automotive Products 180

Data Sheet

ADAU1452/ADAU1451/ADAU1450

REVISION HISTORY

7/14—Rev. B to Rev. C
Changes to SCL_M/SCLK_M/MP2 Pin Description,
Table 23
Change to PLL Lock Register Section96
Changes to Ordering Guide180
5/14—Rev. A to Rev. B
Reorganized Layout
Added ADAU1452 and ADAU1451 Universal
Changes to Features Section
Moved Revision History Section
Changes to General Description Section4
Added Differences Between the ADAU1452, ADAU1451, and
ADAU1450 Section and Table 1, Renumbered Sequentially4
Added Functional Block Diagram—ADAU1450 Section and
Figure 2, Renumbered Sequentially5
Changes to Table 26
Changes to Table 3
Changes to Table 6
Changes to Maximum Power Dissipation Section, Table 19,
and Table 2017
Added Table 21 and Table 2217
Changes to Figure 12 and Table 2318
Changes to Overview Section
Change to Clocking Overview Section and Power-Up
Sequence Section24
Changes to Setting the Master Clock and PLL Mode Section 27
Changes to Example PLL Settings Section and Table 2528
Changed PLL Loop Filter Section to PLL Filter Section29
Changes to PLL Filter Section, Figure 17 Caption, and
Table 26

Changes to Clock Generators Section	30
Changes to Master Clock Output Section	31
Changes to I ² C Slave Port Section	35
Changes to Audio Signal Routing Section	43
Changes to Serial Audio Inputs to DSP Core Section	44
Changes to Asynchronous Sample Rate Converter Input	
Routing Section	49
Change to Serial Input Ports Section	61
Changes to Asynchronous Sample Rate Converters Section	ı68
Changes to S/PDIF Interface Section and S/PDIF Receiver	
Section	69
Changes to Auxiliary Output Mode Section	70
Change to Digital PDM Microphone Interface Section	71
Changes to SigmaDSP Core Section	76
Changes to Soft Reset Function Section	81
Changes to Random Access Memory Section	
Added Table 62 and Table 63	83
Changes to Table 84	109
Changed PLL Loop Filter Section to PLL Filter Section	176
Change to EOS/ESD Protection Section	177
Change to PCB Manufacturing Guidelines Section	
Changes to Ordering Guide	180
1/14—Rev O to Rev A	

Changed S/PDIF Transceiver and Receiver Maximum Audio Sample Rate from 192 kHz to 96 kHz; Table 9 and Table 10......9

10/13—Revision 0: Initial Version

GENERAL DESCRIPTION

The ADAU1452/ADAU1451/ADAU1450 are automotive qualified audio processors that far exceed the digital signal processing capabilities of earlier SigmaDSP® devices. The restructured hardware architecture is optimized for efficient audio processing. The audio processing algorithms are realized in sample-by-sample and block-by-block paradigms that can both be executed simultaneously in a signal processing flow created using the graphical programming tool, SigmaStudio™. The restructured digital signal processor (DSP) core architecture enables some types of audio processing algorithms to be executed using significantly fewer instructions than were required on previous SigmaDSP generations, leading to vastly improved code efficiency.

The 1.2 V, 32-bit DSP core can run at frequencies of up to 294.912 MHz and execute up to 6144 instructions per sample at the standard sample rate of 48 kHz. However, in addition to industry standard rates, a wide range of sample rates are available. The integer PLL and flexible clock generator hardware can generate up to 15 audio sample rates simultaneously. These clock generators, along with the on board asynchronous sample rate converters (ASRCs) and a flexible hardware audio routing matrix, make the ADAU1452/ADAU1451/ADAU1450 ideal audio hubs that greatly simplify the design of complex multirate audio systems.

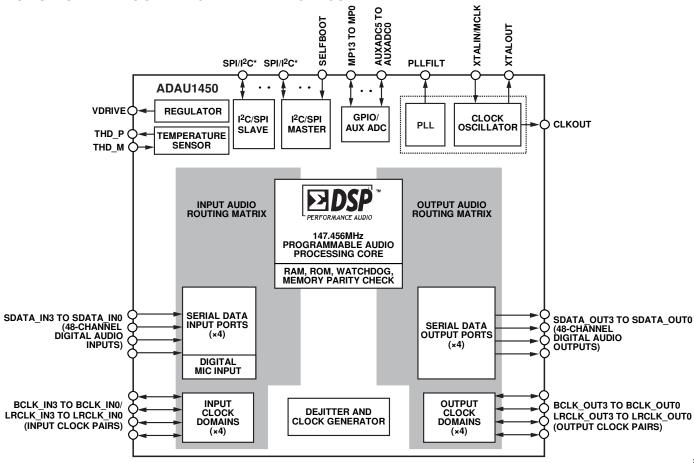
The ADAU1452/ADAU1451/ADAU1450 interface with a wide range of ADCs, DACs, digital audio devices, amplifiers, and control circuitry, due to their highly configurable serial ports, S/PDIF interfaces (on the ADAU1452 and ADAU1451), and multipurpose input/output pins. They can also directly interface with PDM output MEMS microphones, thanks to integrated decimation filters specifically designed for that purpose.

Independent slave and master I²C/SPI control ports allow the ADAU1452/ADAU1451/ADAU1450 not only to be programmed and configured by an external master device, but also to act as masters that can program and configure external slave devices directly. This flexibility, combined with self boot functionality, enables the design of standalone systems that do not require any external input to operate.

The power efficient DSP core executes full programs while consuming only a few hundred milliwatts (mW) of power and can run at a maximum program load while consuming less than a watt, even in worst case temperatures exceeding 100°C. This relatively low power consumption and small footprint make the ADAU1452/ADAU1451/ADAU1450 ideal replacements for large, general-purpose DSPs that consume more power at the same processing load.

DIFFERENCES BETWEEN THE ADAU1452, ADAU1451, AND ADAU1450

The three variants of this device are differentiated by memory, DSP core frequency, availability of S/PDIF interfaces, and ASRC configuration. A detailed summary of the differences is listed in Table 1.


Because the ADAU1450 does not contain an S/PDIF receiver or transmitter, the SPDIFIN and SPDIFOUT pins are nonfunctional. Also, the settings of any registers related to the S/PDIF input or output in the ADAU1450 do not have any effect on the operation of the device.

Likewise, because the ADAU1450 does not contain ASRCs, the settings of any registers related to the ASRCs in the ADAU1450 do not have any effect on the operation of the device.

Table 1. Product Selection Table

Device Number	Data Memory (kWords)	Program Memory (kWords)	DSP Core Frequency	S/PDIF Input and Output	ASRC Configuration				
ADAU1452	40	8	294.912 MHz	Available	16 channels (8 rates × 2 channels per rate)				
ADAU1451	16	8	294.912 MHz	Available	16 channels (8 rates × 2 channels per rate)				
ADAU1450	8	8	147.456 MHz	Not available	No ASRCs included				

FUNCTIONAL BLOCK DIAGRAM—ADAU1450

*SPI/I²C INCLUDES THE FOLLOWING PIN FUNCTIONS: SS_M, MOSI_M, SCL_M, SCLK_M, SDA_M, MISO_M, MISO, SDA, SCLK, SCL, MOSI, ADDR1, SS, AND ADDR0 PINS.

Figure 2.

SPECIFICATIONS

 $AVDD = 3.3~V \pm 10\%, DVDD = 1.2~V \pm 5\%, PVDD = 3.3~V \pm 10\%, IOVDD = 1.8~V - 10\% \ to \ 3.3~V + 10\%, T_A = 25^{\circ}C, master clock input = 12.288~MHz, core clock (f_{CORE}) = 294.912~MHz, I/O pins set to low drive setting, unless otherwise noted.$

Table 2.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
POWER					
Supply Voltage					
Analog Voltage (AVDD)	2.97	3.3	3.63	V	Supply for analog circuitry, including auxiliary ADC
Digital Voltage (DVDD)	1.14	1.2	1.26	V	Supply for digital circuitry, including the DSP core, ASRCs, and signal routing
PLL Voltage (PVDD)	2.97	3.3	3.63	V	Supply for phase-locked loop (PLL) circuitry
I/O Supply Voltage (IOVDD)	1.71	3.3	3.63	V	Supply for input/output circuitry, including pads and level shifters
Supply Current					
Analog Current (AVDD)	1.5	1.73	2	mA	
Idle State	0	5	40	μΑ	Power applied, chip not programmed
Reset State	1.9	6.5	40	μΑ	Power applied, RESET held low
PLL Current (PVDD)	9.5	10	13	mA	12.288 MHz MCLK with default PLL settings
Idle State	0	7.3	40	μΑ	Power applied, PLL not configured
Reset State	3.9	8.5	40	μA	Power applied, RESET held low
I/O Current (IOVDD)				1	Dependent on the number of active serial ports, clock pins, and
, , , , , , , , , , , , , , , , , , , ,					characteristics of external loads
Operation State		53		mA	IOVDD = 3.3 V; all serial ports are clock masters
		22		mA	IOVDD = 1.8 V; all serial ports are clock masters
Power-Down State		0.3	2.5	mA	IOVDD = 1.8 V - 10% to 3.3 V + 10%
Digital Current (DVDD)					
Operation State, ADAU1452					
Maximum Program		350	415	mA	
Typical Program		100		mA	Test program includes 16-channel I/O, 10-band EQ per channel, all ASRCs active
Minimal Program		85		mA	Test program includes 2-channel I/O, 10-band EQ per channel
Operation State, ADAU1451					
Maximum Program		350	415	mA	
Typical Program		100		mA	Test program includes 16-channel I/O, 10-band EQ per channel, all ASRCs active
Minimal Program		85		mA	Test program includes 2-channel I/O, 10-band EQ per channel
Operation State, ADAU1450					
Maximum Program		125	250	mA	f _{CORE} = 147.456 MHz
Typical Program		65		mA	Test program includes 16-channel I/O, 10-band EQ per channel, $f_{CORE} = 147.456 \text{ MHz}$
Minimal Program		55		mA	Test program includes 2-channel I/O, 10-band EQ per channel, $f_{CORE} = 147.456$ MHz
Idle State		20	95	mA	Power applied, DSP not enabled
Reset State		20	95	mA	Power applied, RESET held low
ASYNCHRONOUS SAMPLE RATE CONVERTERS					
Dynamic Range		139		dB	A-weighted, 20 Hz to 20 kHz
I/O Sample Rate	6		192	kHz	
I/O Sample Rate Ratio	1:8		7.75:1		
THD + N			-120	dB	
CRYSTAL OSCILLATOR			-		
Transconductance	8.3	10.6	13.4	mS	
REGULATOR				1	
DVDD Voltage	1.14	1.2		V	Regulator maintains typical output voltage up to a maximum 800 mA load; IOVDD = $1.8 \text{ V} - 10\%$ to $3.3 \text{ V} + 10\%$

 $AVDD = 3.3~V \pm 10\%, DVDD = 1.2~V \pm 5\%, PVDD = 3.3~V \pm 10\%, IOVDD = 1.8~V - 10\% \ to \ 3.3~V + 10\%, T_A = -40^{\circ}C \ to \ +105^{\circ}C, master clock input = 12.288~MHz, core clock (<math>f_{CORE}$) = 294.912 MHz, I/O pins set to low drive setting, unless otherwise noted.

Table 3.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
POWER					
Supply Voltage					
Analog Voltage (AVDD)	2.97	3.3	3.63	٧	Supply for analog circuitry, including auxiliary ADC
Digital Voltage (DVDD)	1.14	1.2	1.26	V	Supply for digital circuitry, including the DSP core, ASRCs, and signal routing
PLL Voltage (PVDD)	2.97	3.3	3.63	V	Supply for PLL circuitry
IOVDD Voltage (IOVDD)	1.71	3.3	3.63	V	Supply for input/output circuitry, including pads and level shifters
Supply Current					
Analog Current (AVDD)	1.44	1.72	2	mA	
Idle State	0	6.3	40	μΑ	
Reset State	0.26	7.1	40	μA	
PLL Current (PVDD)	6	10.9	15	mA	12.288 MHz master clock; default PLL settings
Idle State	0	7.8	40	μΑ	Power applied, PLL not configured
Reset State	1.2	9.3	40	μA	Power applied, RESET held low
I/O Current (IOVDD)					Dependent on the number of active serial ports, clock pins, and
.,					characteristics of external loads
Operation State		47		mA	IOVDD = 3.3 V; all serial ports are clock masters
•		15		mA	IOVDD = 1.8 V; all serial ports are clock masters
Power-Down State		1.3	2.2	mA	IOVDD = 1.8 V – 10% to 3.3 V + 10%
Digital Current (DVDD)					
Operation State, ADAU1452					
Maximum Program		500	690	mA	
Typical Program		200		mA	Test program includes 16-channel I/O, 10-band EQ per channel, all ASRCs active
Minimal Program		160		mA	Test program includes 2-channel I/O, 10-band EQ per channel
Operation State, ADAU1451					, , , , ,
Maximum Program		500	690	mA	
Typical Program		200		mA	Test program includes 16-channel I/O, 10-band EQ per channel, all ASRCs active
Minimal Program		160		mA	Test program includes 2-channel I/O, 10-band EQ per channel
Operation State, ADAU1450					
Maximum Program		270	635	mA	f _{CORE} = 147.456 MHz
Typical Program		110		mA	Test program includes 16-channel I/O, 10-band EQ per channel, f _{CORE} = 147.456 MHz
Minimal Program		90		mA	Test program includes 2-channel I/O, 10-band EQ per channel, $f_{CORE} = 147.456$ MHz
Idle State		315	635	mA	
Reset State		315	635	mA	
ASYNCHRONOUS SAMPLE RATE CONVERTERS					
Dynamic Range		139		dB	A-weighted, 20 Hz to 20 kHz
I/O Sample Rate	6		192	kHz	
I/O Sample Rate Ratio	1:8		7.75:1		
THD + N			-120	dB	
CRYSTAL OSCILLATOR					
Transconductance	8.1	10.6	14.6	mS	
REGULATOR				-	
DVDD Voltage	1.14	1.2		V	Regulator maintains typical output voltage up to a maximum 800 m. load; $IOVDD = 1.8 V - 10\%$ to $3.3 V + 10\%$

ELECTRICAL CHARACTERISTICS

Digital Input/Output

Table 4.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DIGITAL INPUT					
Input Voltage					
IOVDD = 3.3 V					
High Level (V _{IH})¹	1.71		3.3	V	
Low Level (V _{IL}) ¹	0		1.71	V	
IOVDD = 1.8 V					
High Level (V _{IH})¹	0.92		1.8	V	
Low Level (V _{IL}) ¹	0.92		0.89	ľ	
Input Leakage	0		0.09	l v	
High Level (I _H)	-2		. 2		Digital input pine with pull up recietor
nign Level (I⊪)			+2	μΑ	Digital input pins with pull-up resistor
	2		12	μΑ	Digital input pins with pull-down resistor
	-2		+2	μΑ	Digital input pins with no pull resistor
	0		8	μΑ	MCLK
	80		120	μΑ	SPDIFIN
Low Level (I _{IL}) at 0 V	-12		-2	μΑ	Digital input pins with pull-up resistor
	-2		+2	μΑ	Digital input pins with pull-down resistor
	-2		+2	μΑ	Digital input pins with no pull resistor
	-8		0	μΑ	MCLK
	-120		-77	μΑ	SPDIFIN
Input Capacitance (C _I)		2		рF	Guaranteed by design
DIGITAL OUTPUT					
Output Voltage					
IOVDD = 3.3 V					
High Level (V _{он})	3.09		3.3	V	$I_{OH} = 1 \text{ mA}$
Low Level (V _{OI})	0		0.26	V	I _{OL} = 1 mA
IOVDD = 1.8 V			0.20	•	
High Level (V _{OH})	1.45		1.8		
Low Level (V _{OL})	0		0.33		
Digital Output Pins, Output Drive	0		0.55		The digital output pins are driving low impedance PCB traces
Digital Output Filis, Output Drive					to a high impedance digital input buffer
IOVDD = 1.8 V					to a riight impedance digital impac saire.
Drive Strength Setting					
Lowest			1	mA	The digital output pins are not designed for static current
Lowest			'	IIIA	draw; do not use these pins to drive LEDs directly
Low			2	mA	The digital output pins are not designed for static current draw; do not use these pins to drive LEDs directly
High			3	mA	The digital output pins are not designed for static current draw; do not use these pins to drive LEDs directly
Highest			5	mA	The digital output pins are not designed for static current draw; do not use these pins to drive LEDs directly
IOVDD = 3.3 V					araw, ao not use triese piris to drive LEDS directly
Drive Strength Setting			-	_	The design of the second secon
Lowest			2	mA	The digital output pins are not designed for static current draw; do not use these pins to drive LEDs directly
Low			5	mA	The digital output pins are not designed for static current draw; do not use these pins to drive LEDs directly
High			10	mA	The digital output pins are not designed for static current draw; do not use these pins to drive LEDs directly
Highest			15	mA	The digital output pins are not designed for static current draw; do not use these pins to drive LEDs directly

¹ Digital input pins except SPDIFIN, which is not a standard digital input.

Data Sheet

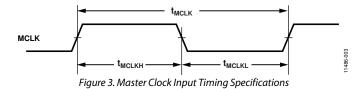
ADAU1452/ADAU1451/ADAU1450

Auxiliary ADC

 $T_A = -40$ °C to +105°C, DVDD = 1.2 V \pm 5%, AVDD = 3.3 V \pm 10%, IOVDD = 1.8 V - 10% to 3.3 V + 10%, unless otherwise noted.

Table 5.

Parameter	Min	Тур	Max	Unit	_
RESOLUTION		10		Bits	_
FULL-SCALE ANALOG INPUT		AVDD		V	_
NONLINEARITY					_
Integrated Nonlinearity (INL)	-2		+2	LSB	
Differential Nonlinearity (DNL)	-2		+2	LSB	
GAIN ERROR	-2		+2	LSB	
INPUT IMPEDANCE		200		kΩ	
SAMPLE RATE		f _{CORE} /6144	_	Hz	

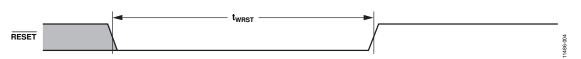

TIMING SPECIFICATIONS

Master Clock Input

 $T_A = -40$ °C to +105°C, DVDD = 1.2 V \pm 5%, IOVDD = 1.8 V - 10% to 3.3 V + 10%, unless otherwise noted.

Table 6.

Parameter	Min	Max	Unit	Description
MASTER CLOCK INPUT (MCLK)				
f _{MCLK}	2.375	36	MHz	MCLK frequency
t _{MCLK}	27.8	421	ns	MCLK period
t _{MCLKD}	25	75	%	MCLK duty cycle
t MCLKH	$0.25 \times t_{MCLK}$	$0.75 \times t_{MCLK}$	ns	MCLK width high
t mclkl	$0.25 \times t_{MCLK}$	$0.75 \times t_{\text{MCLK}}$	ns	MCLK width low
CLKOUT Jitter	12	106	ps	Cycle-to-cycle rms average
CORE CLOCK				
fcore				
ADAU1452 and ADAU1451	152	294.912	MHz	System (DSP core) clock frequency; PLL feedback divider ranges from 64 to 108
ADAU1450	76	147.456	MHz	System (DSP core) clock frequency; PLL feedback divider ranges from 64 to 108
tcore				
ADAU1452 and ADAU1451	3.39		ns	System (DSP core) clock period
ADAU1450	6.78		ns	System (DSP core) clock period



Reset

 $T_{\rm A}$ = $-40^{\circ}C$ to $+105^{\circ}C$, DVDD = 1.2 V \pm 5%, IOVDD = 1.8 V - 10% to 3.3 V + 10%.

Table 7.

Parameter	Min	Max	Unit	Description
RESET				
twrst	10		ns	Reset pulse width low

Serial Ports

 $T_A = -40^{\circ}\text{C}$ to $+105^{\circ}\text{C}$, DVDD = 1.2 V \pm 5%, IOVDD = 1.8 V - 10% to 3.3 V + 10%, unless otherwise noted. BCLK in Table 8 refers to BCLK_OUT3 to BCLK_OUT0 and BCLK_IN3 to BCLK_IN0. LRCLK refers to LRCLK_OUT3 to LRCLK_OUT0 and LRCLK_IN3 to LRCKL_IN0.

Table 8.

Parameter	Min	Max	Unit	Description
SERIAL PORT				
\mathbf{f}_{LRCLK}		192	kHz	LRCLK frequency
t _{LRCLK}	5.21		μs	LRCLK period
f_{BCLK}		24.576	MHz	BCLK frequency, sample rate ranging from 6 kHz to 192 kHz
t_{BCLK}	40.7		ns	BCLK period
$t_{\scriptscriptstyle{BIL}}$	10		ns	BCLK low pulse width, slave mode; BCLK frequency = 24.576 MHz; BCLK period = 40.6 ns
t _{BIH}	14.5		ns	BCLK high pulse width, slave mode; BCLK frequency = 24.576 MHz; BCLK period = 40.6 ns
t _{LIS}	20		ns	LRCLK setup to BCLK_INx input rising edge, slave mode; LRCLK frequency = 192 kHz
t _{LIH}	5		ns	LRCLK hold from BCLK_INx input rising edge, slave mode; LRCLK frequency = 192 kHz
t _{SIS}	5		ns	SDATA_INx setup to BCLK_INx input rising edge
t _{SIH}	5		ns	SDATA_INx hold from BCLK_INx input rising edge
t _{TS}		10	ns	BCLK_OUTx output falling edge to LRCLK_OUTx output timing skew, slave
tsods		35	ns	SDATA_OUTx delay in slave mode from BCLK_OUTx output falling edge; serial outputs function in slave mode at all valid sample rates, provided that the external circuit design provides sufficient electrical signal integrity
t _{SODM}		10	ns	SDATA_OUTx delay in master mode from BCLK_OUTx output falling edge
t _{TM}		5	ns	BCLK falling edge to LRCLK timing skew, master

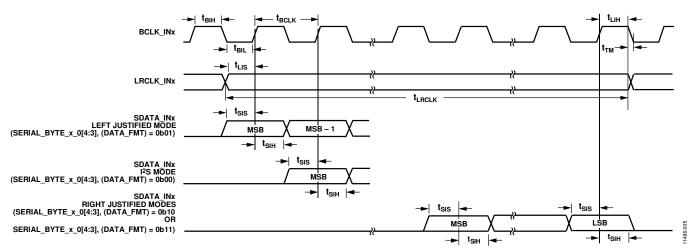


Figure 5. Serial Input Port Timing Specifications

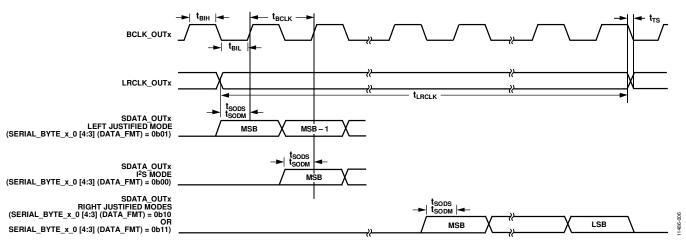


Figure 6. Serial Output Port Timing Specifications Rev. C | Page 10 of 180

Multipurpose Pins

 $T_{\rm A} = -40 {\rm ^{\circ}C}$ to $+105 {\rm ^{\circ}C}$, DVDD = 1.2 V \pm 5%, IOVDD = 1.8 V - 10% to 3.3 V + 10%.

Table 9.

Parameter	Min	Max	Unit	Description
MULTIPURPOSE PINS (MPx)				
f_{MP}^{1}		24.576	MHz	MPx maximum switching rate when pin is configured as a general-purpose input or general-purpose output
t _{MPIL} 1	10 × t _{CORE}	$6144 \times t_{CORE}$	sec	MPx pin input latency until high/low value is read by core; the duration in the Max column is equal to the period of one audio sample when the DSP is processing 6144 instructions per sample

¹ Guaranteed by design.

S/PDIF Transmitter

 $T_{\rm A} = -40 {\rm ^{\circ}C}$ to $+105 {\rm ^{\circ}C}$, DVDD = 1.2 V \pm 5%, IOVDD = 1.8 V - 10% to 3.3 V + 10%.

Table 10.

Parameter	Min	Max	Unit	Description	
S/PDIF Transmitter					
Audio Sample Rate	18	96	kHz	Audio sample rate of data output from S/PDIF transmitter	

S/PDIF Receiver

 $T_{\rm A}$ = $-40^{\circ}C$ to $+105^{\circ}C$, DVDD = 1.2 V \pm 5%, IOVDD = 1.8 V - 10% to 3.3 V + 10%.

Table 11.

Parameter	Min	Max	Unit	Init Description	
S/PDIF Receiver					
Audio Sample Rate	18	96	kHz	Audio sample rate of data input to S/PDIF receiver	

I²C Interface—Slave

 $T_A = -40$ °C to +105°C, DVDD = 1.2 V \pm 5%, IOVDD = 1.8 V - 10% to 3.3 V + 10%, default drive strength (f_{SCL}) = 400 kHz.

Table 12.

Parameter	Min	Max	Unit	Description
I ² C SLAVE PORT				
f _{SCL}		400	kHz	SCL clock frequency
t _{SCLH}	0.6		μs	SCL pulse width high
t _{SCLL}	1.3		μs	SCL pulse width low
t _{scs}	0.6		μs	Start and repeated start condition setup time
t _{sch}	0.6		μs	Start condition hold time
t _{DS}	100		ns	Data setup time
t_DH	0.9		μs	Data hold time
tsclr		300	ns	SCL rise time
t _{SCLF}		300	ns	SCL fall time
t _{SDR}		300	ns	SDA rise time
t _{SDF}		300	ns	SDA fall time
t _{BFT}	1.3		μs	Bus-free time between stop and start
t _{SUSTO}	0.6		μs	Stop condition setup time

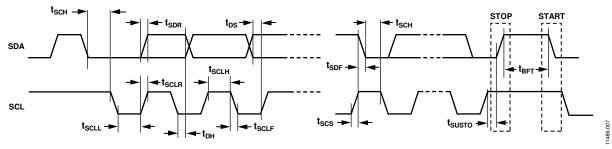


Figure 7. I²C Slave Port Timing Specifications

I²C Interface—Master

 $T_{\rm A}$ = $-40^{\circ}C$ to $+105^{\circ}C$, DVDD = 1.2 V \pm 5%, IOVDD = 1.8 V - 10% to 3.3 V + 10%.

Table 13

Parameter	Min	Max	Unit	Description
I ² C MASTER PORT				
f_{SCL}		400	kHz	SCL clock frequency
t sclH	0.6		μs	SCL pulse width high
t _{SCLL}	1.3		μs	SCL pulse width low
t _{scs}	0.6		μs	Start and repeated start condition setup time
t _{SCH}	0.6		μs	Start condition hold time
t _{DS}	100		ns	Data setup time
t_DH	0.9		μs	Data hold time
t _{SCLR}		300	ns	SCL rise time
t _{SCLF}		300	ns	SCL fall time
t _{SDR}		300	ns	SDA rise time
t _{SDF}		300	ns	SDA fall time
t _{BFT}	1.3		μs	Bus-free time between stop and start
t susto	0.6		μs	Stop condition setup time

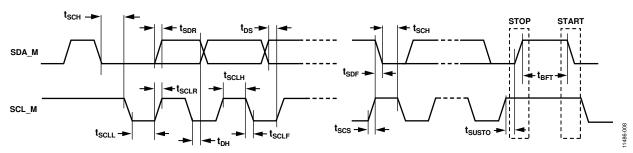


Figure 8. I²C Master Port Timing Specifications

SPI Interface—Slave

 $T_A = -40$ °C to +105°C, DVDD = 1.2 V ± 5%, IOVDD = 1.8 V – 10% to 3.3 V + 10%.

Table 14.

Parameter	Min	Max	Unit	Description	
SPI SLAVE PORT					
f _{SCLKWRITE}		22	MHz	SCLK write frequency	
$\mathbf{f}_{SCLK_{READ}}$		22	MHz	SCLK read frequency	
t _{SCLKPWL}	6		ns	SCLK pulse width low, SCLK = 22 MHz	
t _{SCLKPWH}	21		ns	SCLK pulse width high, SCLK = 22 MHz	
t _{sss}	1	1		SS setup to SCLK rising edge	
t _{SSH}	2		ns	SS hold from SCLK rising edge	
t sspwh	10		ns	SS pulse width high	
t sspwl	10		ns	SS pulse width low; minimum low pulse width for SS when entering SPI mode by toggling the SS pin three times	
t _{MOSIS}	1		ns	MOSI setup to SCLK rising edge	
t _{MOSIH}	2		ns	MOSI hold from SCLK rising edge	
tmisod		39	ns	MISO valid output delay from SCLK falling edge	

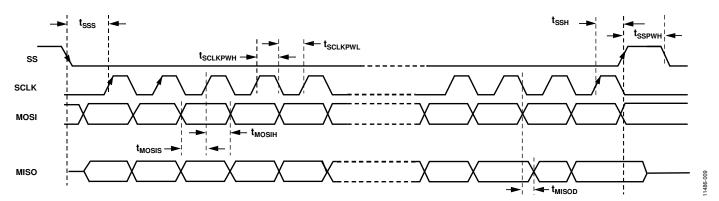


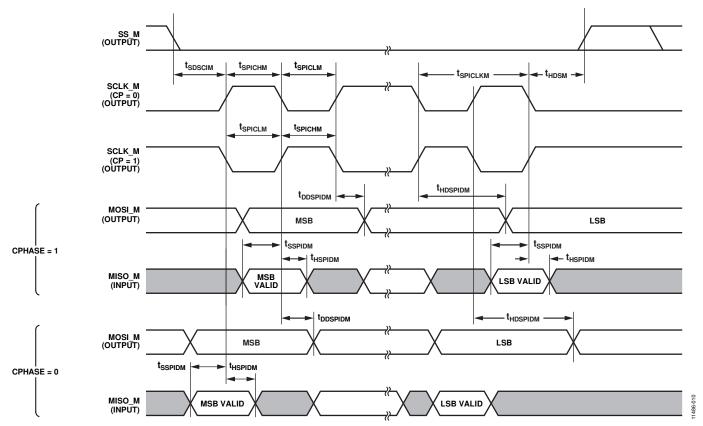
Figure 9. SPI Slave Port Timing Specifications

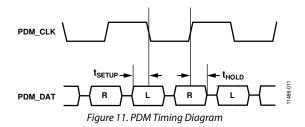
SPI Interface—Master

 $T_{\rm A}$ = $-40^{\rm o}C$ to $+105^{\rm o}C$, DVDD = 1.2 V \pm 5%, IOVDD = 1.8 V - 10% to 3.3 V + 10%.

Table 15.

Parameter	Min	Max	Unit	Description
SPI MASTER PORT				
Timing Requirements				
t sspidm	15		ns	MISO_M data input valid to SCLK_M edge (data input setup time)
thspidm	5		ns	SCLK_M last sampling edge to data input not valid (data input hold time)
Switching Characteristics				
t spiclkm	41.7		ns	SPI master clock cycle period
f_{SCLK_M}		24	MHz	SPI master clock frequency
t spichm	17		ns	$SCLK_M$ high period ($f_{SCLK_M} = 24 \text{ MHz}$)
t spiclm	17		ns	SCLK_M low period ($f_{SCLK_M} = 24 \text{ MHz}$)
t ddspidm		16.9	ns	SCLK_M edge to data out valid (data out delay time) ($f_{SCLK_M} = 24 \text{ MHz}$)
t hdspidm	21		ns	SCLK_M edge to data out not valid (data out hold time) (fsclk_m = 24 MHz)
t sdscim	36		ns	SS_M (SPI device select) low to first SCLK_M edge ($f_{SCLK_M} = 24 \text{ MHz}$)
t _{HDSM}	95		ns	Last SCLK_M edge to SS_M high (f _{SCLK_M} = 24 MHz)




Figure 10. SPI Master Port Timing Specifications

PDM Inputs

 $T_A = -40$ °C to +105°C, DVDD = 1.2 V \pm 5%, IOVDD = 1.8 V - 10% to 3.3 V + 10%. PDM data is latched on both edges of the clock (see Figure 11).

Table 16.

Parameter	t _{MIN}	t _{MAX}	Unit	Description
Timing Requirements				
t setup	10		ns	Data setup time
t _{HOLD}	5		ns	Data hold time

ABSOLUTE MAXIMUM RATINGS

Table 17.

Parameter	Rating
DVDD to Ground	0 V to 1.4 V
AVDD to Ground	0 V to 4.0 V
IOVDD to Ground	0 V to 4.0 V
PVDD to Ground	0 V to 4.0 V
Digital Inputs	DGND – 0.3 V to IOVDD + 0.3 V
Maximum Ambient Temperature Range	-40°C to +105°C
Maximum Junction Temperature	125°C
Storage Temperature Range	−65°C to +150°C
Soldering (10 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL CHARACTERISTICS

 θ_{JA} represents the junction-to-ambient thermal resistance; θ_{JC} represents the junction-to-case thermal resistance. All characteristics are for a 4-layer JEDEC board. The exposed pad has 49 vias that are arranged in a 7×7 grid.

Table 18. Thermal Resistance

Package Type	θ_{JA}	θ_{JC}	Unit
72-Lead LFCSP	23.38	3.3	°C/W

MAXIMUM POWER DISSIPATION

The characteristics listed in Table 19 show the absolute worst case power dissipation for the ADAU1452, ADAU1451, and ADAU1450. These tests were conducted at an ambient temperature of 105°C, with a completely full DSP program that executes an endless loop of the most power intensive core calculations and with all power supplies at their maximum values.

Thus, the conditions described in Table 19 are intended as a stress test only and are not representative of realistic device operation in a real-world application. In a system where the operating conditions and limits outlined in the Specifications section of this document are not exceeded, and where the device is mounted to a printed circuit board (PCB) that follows the design recommendations in the PCB Design Considerations section of this document, the values that are listed represent the total power consumption of the device. In actual applications, the power consumption of the device is far lower. Table 20, Table 21, and Table 22 show more realistic estimates for power consumption in a typical use case.

Table 19. Worst Case Maximum Power Dissipation

Parameter	Value	Unit	Test Conditions/Comments
AVDD, DVDD, PVDD During ADAU1452 Operation	960	mW	Ambient temperature = 105°C, all supplies at maximum, full DSP program using most power intensive calculations; measure- ment does not include IOVDD
AVDD, DVDD, PVDD During ADAU1451 Operation	960	mW	Ambient temperature = 105°C, all supplies at maximum, full DSP program using most power intensive calculations; measure- ment does not include IOVDD
AVDD, DVDD, PVDD During ADAU1450 Operation	960	mW	Ambient temperature = 105°C, all supplies at maximum, full DSP program using most power intensive calculations; measure- ment does not include IOVDD
Reset All Supplies	570	mW	Ambient temperature = 105°C, all supplies at maximum, reset mode enabled; measurement does not include IOVDD

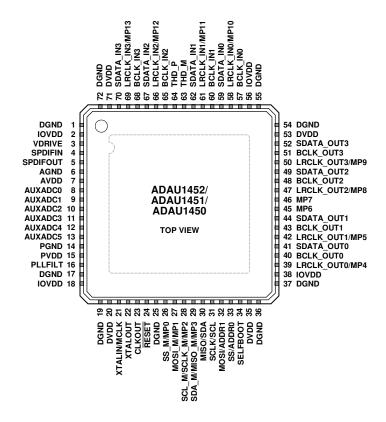
Table 20. ADAU1452 Typical Power Dissipation Estimates

Ambient Temperature (°C)	Full Program (mW)	Typical (mW)
25	420	250
85	700	420
105	885	530

Table 21. ADAU1451 Typical Power Dissipation Estimates

Ambient		
Temperature (°C)	Full Program (mW)	Typical (mW)
25	420	250
85	700	420
105	885	530

Table 22. ADAU1450 Typical Power Dissipation Estimates


Ambient Temperature (°C)	Full Program (mW)	Typical (mW)
25	170	100
85	385	230
105	480	290

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES
1. THE EXPOSED PAD MUST BE GROUNDED BY SOLDERING IT TO A COPPER SQUARE
OF EQUIVALENT SIZE ON THE PCB. IDENTICAL COPPER SQUARES MUST EXIST ON
ALL LAYERS OF THE BOARD, CONNECTED BY VIAS, AND THEY MUST BE CONNECTED
TO A DEDICATED COPPER GROUND LAYER WITHIN THE PCB.

Figure 12. Pin Configuration

Table 23. Pin Function Descriptions

Pin		Internal Pull	
No.	Mnemonic	Resistor	Description
1	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane.
2	IOVDD	None	Input/Output Supply, $1.8 \text{V} - 10\%$ to $3.3 \text{V} + 10\%$. Bypass this pin with decoupling capacitors to Pin 1 (DGND).
3	VDRIVE	None	PNP Bipolar Junction Transistor-Base Drive Bias Pin for the Digital Supply Regulator. Connect VDRIVE to the base of an external PNP pass transistor (STD2805 is recommended). If an external supply is provided directly to DVDD, connect the VDRIVE pin to ground.
4	SPDIFIN	None	Input to the Integrated Sony/Philips Digital Interface Format Receiver. Disconnect this pin when not in use. This pin is internally biased to IOVDD/2. This pin is nonfunctional on the ADAU1450 and should be left disconnected.
5	SPDIFOUT	Configurable	Output from the Integrated Sony/Philips Digital Interface Format Transmitter. Disconnect this pin when not in use. This pin is internally biased to IOVDD/2. This pin is nonfunctional on the ADAU1450 and should be left disconnected.
6	AGND	None	Analog Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane.
7	AVDD	None	Analog (Auxiliary ADC) Supply. Must be $3.3\mathrm{V}\pm10\%$. Bypass this pin with decoupling capacitors to Pin 6 (AGND).
8	AUXADC0	None	Auxiliary ADC Input Channel 0. This pin reads an analog input signal and uses its value in the DSP program. Disconnect this pin when not in use.
9	AUXADC1	None	Auxiliary ADC Input Channel 1. This pin reads an analog input signal and uses its value in the DSP program. Disconnect this pin when not in use.

	T		
Pin No.	Mnemonic	Internal Pull Resistor	Description
10	AUXADC2	None	Auxiliary ADC Input Channel 2. This pin reads an analog input signal and uses its value in the DSP program. Disconnect this pin when not in use.
11	AUXADC3	None	Auxiliary ADC Input Channel 3. This pin reads an analog input signal and uses its value in the DSP program. Disconnect this pin when not in use.
12	AUXADC4	None	Auxiliary ADC Input Channel 4. This pin reads an analog input signal and uses its value in the DSP program. Disconnect this pin when not in use.
13	AUXADC5	None	Auxiliary ADC Input Channel 5. This pin reads an analog input signal and uses its value in the DSP program. Disconnect this pin when not in use.
14	PGND	None	PLL Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane.
15	PVDD	None	PLL Supply. Must be $3.3 \text{ V} \pm 10\%$. Bypass this pin with decoupling capacitors to Pin 14 (PGND).
16	PLLFILT	None	PLL Filter. The voltage on the PLLFILT pin, which is internally generated, is typically between 1.65 V and 2.10 V.
17	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane.
18	IOVDD	None	Input/Output Supply, 1.8 V – 10% to 3.3 V + 10%. Bypass this pin to Pin 17 (DGND) with decoupling capacitors.
19	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane.
20	DVDD	None	Digital Supply. Must be $1.2 \text{ V} \pm 5\%$. This pin can be supplied externally or by using the internal regulator and external pass transistor. Bypass this pin to Pin 19 (DGND) with decoupling capacitors.
21	XTALIN/MCLK	None	Crystal Oscillator Input (XTALIN)/Master Clock Input to the PLL (MCLK). This pin can be supplied directly or generated by driving a crystal with the internal crystal oscillator via Pin 22 (XTALOUT). If a crystal is used, refer to the circuit shown in Figure 15.
22	XTALOUT	None	Crystal Oscillator Output for Driving an External Crystal. If a crystal is used, refer to the circuit shown in Figure 15. Disconnect this pin when not in use.
23	CLKOUT	Configurable	Master Clock Output. This pin drives a master clock signal to other ICs in the system. CLKOUT can be configured to output a clock signal with a frequency of $1\times$, $2\times$, $4\times$, or $8\times$ the frequency of the divided clock signal being input to the PLL. Disconnect this pin when not in use.
24	RESET	Pull-down	Active Low Reset Input. A reset is triggered on a high-to-low edge and exited on a low-to-high edge. A reset event sets all RAMs and registers to their default values.
25	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane.
26	SS_M/MP0	Pull-up; nominally 250 k Ω ; can be disabled by a write to control register	SPI Master/Slave Select Port (SS_M)/Multipurpose, General-Purpose Input/Output (MP0). When in SPI master mode, this pin acts as the slave select signal to slave devices on the SPI bus. The pin must go low at the beginning of a master SPI transaction and high at the end of a transaction. This pin has an internal pull-up resistor that is nominally 250 k Ω . When the SELFBOOT pin is held high and the RESET pin has a transition from low to high, Pin 26 sets the communications
			protocol for self boot operation. If this pin is left floating, the SPI communications protocol is used for self boot operation. If this pin has a 10 k Ω pull-down resistor to GND, the I ² C communications protocol is used for self boot operation. When self boot operation is not used and this pin is not needed as a general-purpose input or output, leave it disconnected.
27	MOSI_M/MP1	Pull-up; can be disabled by a write to control register	SPI Master Data Output Port (MOSI_M)/Multipurpose, General-Purpose Input/Output (MP1). When in SPI master mode, this pin sends data from the SPI master port to slave devices on the SPI bus. Disconnect this pin when not in use.
28	SCL_M/ SCLK_M/MP2	Pull-up; can be disabled by a write to control register	I ² C Master Serial Clock Port (SCL_M)/SPI Master Mode Serial Clock (SCLK_M)/Multipurpose, General-Purpose Input/Output (MP2). When in I ² C master mode, this pin functions as an open collector output and drives a serial clock to slave devices on the I ² C bus; use a 2.0 kΩ pull-up resistor to IOVDD on the line connected to this pin. When in SPI master mode, this pin drives the clock signal to slave devices on the SPI bus. Disconnect this pin when not in use.
29	SDA_M/ MISO_M/MP3	Pull-up; can be disabled by a write to control register	I ² C Master Port Serial Data (SDA_M)/SPI Master Mode Data Input (MISO_M)/Multipurpose, General-Purpose Input/Output (MP3). When in I ² C master mode, this pin functions as a bidirectional open collector data line between the I ² C master port and slave devices on the I ² C bus; use a 2.0 kΩ pull-up resistor to IOVDD on the line connected to this pin. When in SPI master mode, this pin receives data from slave devices on the SPI bus. Disconnect this pin when not in use.

Pin		Internal Pull	
No.	Mnemonic	Resistor	Description
30	MISO/SDA	Pull-up; can be disabled by a write to control register	SPI Slave Data Output Port (MISO)/I ² C Slave Serial Data Port (SDA). In SPI slave mode, this pin outputs data to the master device on the SPI bus. In I ² C slave mode, this pin functions as a bidirectional open collector data line between the I ² C slave port and the master device on the I ² C bus; use a 2.0 k Ω pull-up resistor to IOVDD on the line connected to this pin. When this pin is not in use, connect it to IOVDD with a 10.0 k Ω pull-up resistor.
31	SCLK/SCL	Pull-up; can be disabled by a write to control register	SPI Slave Port Serial Clock (SCLK)/ I^2 C Slave Port Serial Clock (SCL). In SPI slave mode, this pin receives the serial clock signal from the master device on the SPI bus. In I^2 C slave mode, this pin receives the serial clock signal from the master device on the I^2 C bus; use a 2.0 k Ω pull-up resistor to IOVDD on the line connected to this pin. When this pin is not in use, connect it to IOVDD with a 10.0 k Ω pull-up resistor.
32	MOSI/ADDR1	Pull-up; can be disabled by a write to control register	SPI Slave Port Data Input (MOSI)/I ² C Slave Port Address MSB (ADDR1). In SPI slave mode, this pin receives a data signal from the master device on the SPI bus. In I ² C slave mode, this pin acts as an input and sets the chip address of the I ² C slave port, in conjunction with Pin 33 (SS/ADDR0).
33	SS/ADDR0	Pull-up, nominally 250 kΩ; can be disabled by a write to control register	SPI Slave Port Slave Select (SS)/l ² C Slave Port Address LSB (ADDR0). In SPI slave mode, this pin receives the slave select signal from the master device on the SPI bus. In l ² C slave mode, this pin acts as an input and sets the chip address of the l ² C slave port in conjunction with Pin 32 (MOSI/ADDR1).
34	SELFBOOT	Pull-up	Self Boot Select. This pin allows the device to perform a self boot, in which it loads its RAM and register settings from an external EEPROM. Connecting Pin 34 to logic high (IOVDD) initiates a self boot operation the next time there is a rising edge on Pin 24 (RESET). When this pin is connected to ground, no self boot operation is initiated. This pin can be connected to IOVDD or to ground either directly or pulled up or down with a $1.0 \mathrm{k}\Omega$ or larger resistor.
35	DVDD	None	Digital Supply. Must be $1.2V\pm5\%$. This pin can be supplied externally or by using the internal regulator and external pass transistor. Bypass this pin to Pin 36 (DGND) with decoupling capacitors.
36	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane.
37	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane.
38	IOVDD	None	Input/Output Supply, 1.8 V – 10% to 3.3 V + 10%. Bypass this pin with decoupling capacitors to Pin 37 (DGND).
39	LRCLK_OUT0/ MP4	Configurable	Frame Clock, Serial Output Port 0 (LRCLK_OUT0)/Multipurpose, General-Purpose Input/Output (MP4). This pin is bidirectional, with the direction depending on whether Serial Output Port 0 is a master or slave. Disconnect this pin when not in use.
40	BCLK_OUT0	Configurable	Bit Clock, Serial Output Port 0. This pin is bidirectional, with the direction depending on whether the Serial Output Port 0 is a master or slave. Disconnect this pin when not in use.
41	SDATA_OUT0	Configurable	Serial Data Output Port 0 (Channel 0 to Channel 15). Capable of 2-channel, 4-channel, 8-channel, and 16-channel modes. Disconnect this pin when not in use.
42	LRCLK_OUT1/ MP5	Configurable	Frame Clock, Serial Output Port 1 (LRCLK_OUT1)/Multipurpose, General-Purpose Input/Output (MP5). This pin is bidirectional, with the direction depending on whether Serial Output Port 1 is a master or slave. Disconnect this pin when not in use.
43	BCLK_OUT1	Configurable	Bit Clock, Serial Output Port 1. This pin is bidirectional, with the direction depending on whether Output Serial Port 1 is a master or slave. Disconnect this pin when not in use.
44	SDATA_OUT1	Configurable	Serial Data Output Port 1 (Channel 16 to Channel 31). Capable of 2-channel, 4-channel, 8-channel, and 16-channel modes. Disconnect this pin when not in use.
45	MP6	Configurable	Multipurpose, General-Purpose Input/Output 6. Disconnect this pin when not in use.
46	MP7	Configurable	Multipurpose, General-Purpose Input/Output 7. Disconnect this pin when not in use.
47	LRCLK_OUT2/ MP8	Configurable	Frame Clock, Serial Output Port 2 (LRCLK_OUT2)/Multipurpose, General-Purpose Input/Output (MP8). This pin is bidirectional, with the direction depending on whether Serial Output Port 2 is a master or slave. Disconnect this pin when not in use.
48	BCLK_OUT2	Configurable	Bit Clock, Serial Output Port 2. This pin is bidirectional, with the direction depending on whether Serial Output Port 2 is a master or slave. Disconnect this pin when not in use.
49	SDATA_OUT2	Configurable	Serial Data Output Port 2 (Channel 32 to Channel 39). Capable of 2-channel, 4-channel, 8-channel, or flexible TDM mode. Disconnect this pin when not in use.
50	LRCLK_OUT3/ MP9	Configurable	Frame Clock, Serial Output Port 3 (LRCLK_OUT3)/Multipurpose, General-Purpose Input/Output (MP9). This pin is bidirectional, with the direction depending on whether Serial Output Port 3 is a master or slave. Disconnect this pin when not in use.

	1	I	
Pin No.	Mnemonic	Internal Pull Resistor	Description
51	BCLK_OUT3	Configurable	Bit Clock, Serial Output Port 3. This pin is bidirectional, with the direction depending on whether Serial Output Port 3 is a master or slave. Disconnect this pin when not in use.
52	SDATA_OUT3	Configurable	Serial Data Output Port 3 (Channel 40 to Channel 47). Capable of 2-channel, 4-channel, 8-channel, and flexible TDM modes. Disconnect this pin when not in use.
53	DVDD	None	Digital Supply. Must be $1.2 \text{ V} \pm 5\%$. This pin can be supplied externally or by using the internal regulator and external pass transistor. Bypass Pin 53 with decoupling capacitors to Pin 54 (DGND).
54	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane.
55	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane.
56	IOVDD	None	Input/Output Supply, 1.8 V – 10% to 3.3 V + 10%. Bypass this pin with decoupling capacitors to Pin 55 (DGND).
57	BCLK_IN0	Configurable	Bit Clock, Serial Input Port 0. This pin is bidirectional, with the direction depending on whether Serial Input Port 0 is a master or slave. Disconnect this pin when not in use.
58	LRCLK_IN0/ MP10	Configurable	Frame Clock, Serial Input Port 0 (LRCLK_IN0)/Multipurpose, General-Purpose Input/Output (MP10). This pin is bidirectional, with the direction depending on whether Serial Input Port 0 is a master or slave. Disconnect this pin when not in use.
59	SDATA_IN0	Configurable	Serial Data Input Port 0 (Channel 0 to Channel 15). Capable of 2-channel, 4-channel, 8-channel, or 16-channel mode. Disconnect this pin when not in use.
60	BCLK_IN1	Configurable	Bit Clock, Serial Input Port 1. This pin is bidirectional, with the direction depending on whether the Serial Input Port 1 is a master or slave. Disconnect this pin when not in use.
61	LRCLK_IN1/ MP11	Configurable	Frame Clock, Serial Input Port 1 (LRCLK_IN1)/Multipurpose, General-Purpose Input/Output (MP11). This pin is bidirectional, with the direction depending on whether the Serial Input Port 1 is a master or slave. Disconnect this pin when not in use.
62	SDATA_IN1	Configurable	Serial Data Input Port 1 (Channels 16 to Channel 31). Capable of 2-channel, 4-channel, 8-channel, or 16-channel mode. Disconnect this pin when not in use.
63	THD_M	None	Thermal Diode Negative (–) Input. Connect this pin to the D– pin of an external temperature sensor IC. Disconnect this pin when not in use.
64	THD_P	None	Thermal Diode Positive (+) Input. Connect this pin to the D+ pin of an external temperature sensor IC. Disconnect this pin when not in use.
65	BCLK_IN2	Configurable	Bit Clock, Serial Input Port 2. This pin is bidirectional, with the direction depending on whether the Serial Input Port 2 is a master or slave. Disconnect this pin when not in use.
66	LRCLK_IN2/ MP12	Configurable	Frame Clock, Input Serial Port 2 (LRCLK_IN2)/Multipurpose, General-Purpose Input/Output (MP12). This pin is bidirectional, with the direction depending on whether Serial Input Port 2 is a master or slave. Disconnect this pin when not in use.
67	SDATA_IN2	Configurable	Serial Data Input Port 2 (Channel 32 to Channel 39). Capable of 2-channel, 4-channel, 8-channel, or flexible TDM mode. Disconnect this pin when not in use.
68	BCLK_IN3	Configurable	Bit Clock, Input Serial Port 3. This pin is bidirectional, with the direction depending on whether Input Serial Port 3 is a master or slave. Disconnect this pin when not in use.
69	LRCLK_IN3/ MP13	Configurable	Frame Clock, Serial Input Port 3 (LRCLK_IN3)/Multipurpose, General-Purpose Input/Output (MP13). This pin is bidirectional, with the direction depending on whether Serial Input Port 3 is a master or slave. Disconnect this pin when not in use.
70	SDATA_IN3	Configurable	Serial Data Input Port 3 (Channel 40 to Channel 47). Capable of 2-channel, 4-channel, 8-channel, or flexible TDM mode. Disconnect this pin when not in use.
71	DVDD	None	Digital Supply. Must be $1.2 \text{ V} \pm 5\%$. This pin can be supplied externally or by using the internal regulator and external pass transistor. Bypass with decoupling capacitors to Pin 72 (DGND).
72	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane.
EP	Exposed Pad	None	The exposed pad must be grounded by soldering it to a copper square of equivalent size on the PCB. Identical copper squares must exist on all layers of the board, connected by vias, and they must be connected to a dedicated copper ground layer within the PCB. For more detailed information, see Figure 84 and Figure 85.

THEORY OF OPERATION SYSTEM BLOCK DIAGRAM

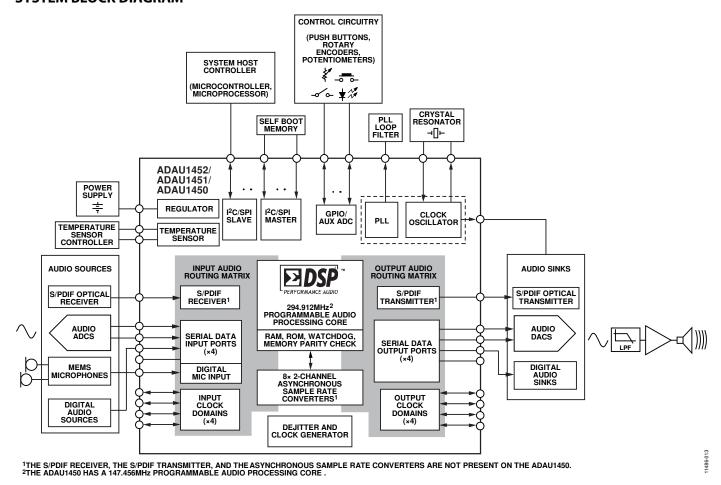


Figure 13. System Block Diagram with Example Connections to External Components

OVERVIEW

The ADAU1452/ADAU1451/ADAU1450 are enhanced audio processors with 48 channels of input and output. They include options for the hardware routing of audio signals between the various inputs, outputs, SigmaDSP core, and integrated sample rate converters. The SigmaDSP core features full 32-bit processing (that is, 64-bit processing in double precision mode) with an 80-bit arithmetic logic unit (ALU). By using a quadruple multiply accumulator (MAC) data path, the ADAU1452/ADAU1451 can execute more than 1.2 billion MAC operations per second, which allows for processing power that far exceeds the predecessors in the SigmaDSP family of products. The powerful DSP core can process over 3000 double precision biquad filters or 24,000 FIR filter taps per sample at the standard 48 kHz audio sampling rate. The ADAU1450 features half the processing power of the ADAU1452/ADAU1451. Other features, including synchronous parameter loading for ensuring filter stability and 100% code efficiency with the SigmaStudio tools, reduce complexity in audio system development. The SigmaStudio library of audio processing algorithms allows system designers to compensate for real-world

limitations of speakers, amplifiers, and listening environments, through speaker equalization, multiband compression, limiting, and third party branded algorithms.

The input audio routing matrix and output audio routing matrix allow the user to multiplex inputs from multiple sources that are running at various sample rates to or from the SigmaDSP core, and then to pass them on to the desired hardware outputs. This drastically reduces the complexity of signal routing and clocking issues in the audio system. The audio subsystem includes up to eight stereo asynchronous sample rate converters (ASRCs), depending on the device model; Sony/Philips Digital Interconnect Format (S/PDIF) input and output (available on the ADAU1452/ ADAU1451); and serial (I²S) and time division multiplexing (TDM) I/Os. Any of these inputs can be routed to the SigmaDSP core or to any of the ASRCs (except on the ADAU1450, which does not have ASRCs). Similarly, the output signals can be taken from the SigmaDSP core, any of the ASRC outputs, the serial inputs, the PDM microphones, or the S/PDIF receiver. This routing scheme, which can be modified at any time using control registers, allows for maximum system flexibility without requiring hardware design changes.

Data Sheet

ADAU1452/ADAU1451/ADAU1450

Two serial input ports and two serial output ports can operate as pairs in a special flexible TDM mode, allowing the user to independently assign byte specific locations to audio streams at varying bit depths. This mode ensures compatibility with codecs that use similar flexible TDM streams.

The DSP core is optimized for audio processing, and it can process audio at sample rates of up to 192 kHz. The program and parameter/data RAMs can be loaded with a custom audio processing signal flow built with the SigmaStudio graphical programming software from Analog Devices, Inc. The values that are stored in the parameter RAM can control individual signal processing blocks, such as IIR and FIR equalization filters, dynamics processors, audio delays, and mixer levels. A software safeload feature allows for transparent parameter updates and prevents clicks on the output signals.

Reliability features, such as memory parity checking and a program counter watchdog, help ensure that the system can detect and recover from any errors related to memory corruption.

On the ADAU1452/ADAU1451, S/PDIF signals can be routed through an ASRC for processing in the DSP or can be sent directly to output on the multipurpose pins (MPx) for recovery of the embedded audio signal. Other components of the embedded signal, including status and user bits, are not lost and can be output on the MPx pins as well. The user can also independently program the nonaudio data that is embedded in the output signal of the S/PDIF transmitter.

The 14 MPx pins are available for providing a simple user interface without the need for an external microcontroller. These multipurpose pins are available to input external control signals and output flags or controls to other devices in the system. As inputs, the MPx pins can be connected to push buttons, switches, rotary encoders, or other external control circuitry to control the internal signal processing program. When configured as outputs, these pins can be used to drive LEDs (with a buffer), output flags to a microcontroller, control other ICs, or connect to other external circuitry in an application. In addition to the multipurpose pins, six dedicated input pins (AUXADC5 to AUXADC0) are connected to an auxiliary ADC for use with analog controls such as potentiometers or system voltages.

The SigmaStudio software programs and controls the device through the control port. In addition to designing and tuning a signal flow, the software can configure all of the DSP registers in real time and download a new program and parameters into the external self boot EEPROM. The easy to use SigmaStudio graphical interface allows anyone with audio processing knowledge to easily design a DSP signal flow and port it to a target application without the need for writing line level code. At the same time, the software provides enough flexibility and programmability to allow an experienced DSP programmer to have in-depth control of the design.

In SigmaStudio, the user can add signal processing cells from the library by dragging and dropping cells, connect them together in a flow, compile the design, and load the program and parameter files into memory through the control port. The complicated tasks of linking, compiling, and downloading the project are all handled automatically by the software.

Signal processing algorithms that are available in the provided libraries include the following:

- Single and double precision biquad filter
- Mono and multichannel dynamics processors with peak or rms detection
- Mixer and splitter
- Tone and noise generator
- Fixed and variable gain
- Loudness
- Delay
- Stereo enhancement
- Dynamic bass boost
- Noise and tone source
- Level detector
- MPx pin control and conditioning
- FFT and frequency domain processing algorithms

Analog Devices continuously develops new processing algorithms and provides proprietary and third party algorithms for applications such as matrix decoding, bass enhancement, and surround virtualizers.

Several power-saving mechanisms are available, including programmable pad strength for digital I/O pins and the ability to power down unused subsystems.

Fabricated on a single monolithic integrated circuit for operation over the -40° C to $+105^{\circ}$ C temperature range, the device is housed in a 72-lead LFCSP package with an exposed pad to assist in heat dissipation.

The device can be controlled in one of two operational modes, as follows:

- The settings of the chip can be loaded and dynamically updated through the SPI/I²C port.
- The DSP can self boot from an external EEPROM in a system with no microcontroller.

The ADAU1452WBCPZ, ADAU1452WBCPZ-RL, ADAU1451WBCPZ, ADAU1451WBCPZ-RL, ADAU1450WBCPZ, and ADAU1450WBCPZ-RL models are qualified for use in automotive applications.

INITIALIZATION

Power-Up Sequence

The first step in the initialization sequence is to power up the device. First, apply voltage to the power pins. All power pins can be supplied simultaneously. If the power pins are not supplied simultaneously, then supply IOVDD first because the internal ESD protection diodes are referenced to the IOVDD voltage. AVDD, DVDD, and PVDD can be supplied at the same time as IOVDD or after, but they must not be supplied prior to IOVDD. The order in which AVDD, DVDD, and PVDD are supplied does not matter.

When the internal regulator is not used and DVDD is directly supplied, no special sequence is required when providing the proper voltages to AVDD, DVDD, and PVDD.

When the internal regulator is used, DVDD is generated by the regulator, in combination with an external pass transistor, after AVDD, IOVDD, and PVDD are supplied. See the Power Supplies section for more information.

Each power supply domain has its own power-on reset (POR) circuits (also known as power OK circuits) to ensure that the level shifters attached to each power domain can be initialized properly. AVDD and PVDD must reach their nominal level before the auxiliary ADC and PLL can be used, respectively.

However, the AVDD and PVDD supplies have no role in the rest of the power-up sequence. After AVDD power reaches its nominal threshold, the regulator becomes active and begins to charge up the DVDD supply. The DVDD also has a POR circuit to ensure that the level shifters initialize during power-up.

The POR signals are combined into three global level shifter resets that properly initialize the signal crossings between each separate power domain and DVDD.

The digital circuits remain in reset until the IOVDD to DVDD level shifter reset is released. At that point, the digital circuits exit reset.

When a crystal is in use, the crystal oscillator circuit must provide a stable master clock to the XTALIN/MCLK pin by the time the PVDD supply reaches its nominal level. The XTALIN/MCLK pin is restricted from passing into the PLL circuitry until the DVDD POR signal becomes active and the PVDD to DVDD level shifter is initialized.

When all four POR circuits signal that the power-on conditions are met, a reset synchronizer circuit releases the internal digital circuitry from reset, provided the following conditions are met:

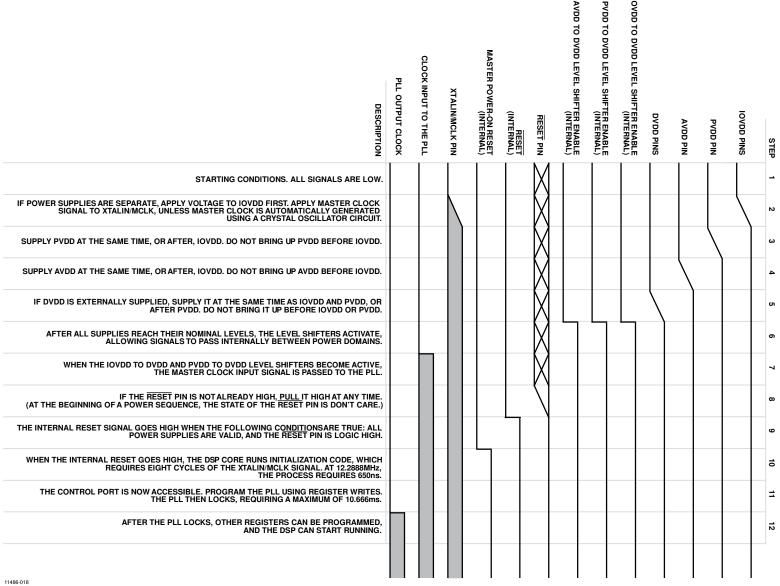
- A valid MCLK signal is provided to the digital circuitry and the PLL.
- The RESET pin is high.

When the internal digital circuitry becomes active, the DSP core runs eight lines of initialization code stored in ROM, requiring eight cycles of the MCLK signal. For a 12.288 MHz MCLK input, this process takes 650 ns.

After the ROM program completes its execution, the PLL is ready to be configured using register writes to Register 0xF000 (PLL_CTRL0), Register 0xF001 (PLL_CTRL1), Register 0xF002 (PLL_CLK_SRC), and Register 0xF003 (PLL_ENABLE).

When the PLL is configured and enabled, the PLL starts to lock to the incoming master clock signal. The absolute maximum PLL lock time is $32 \times 1024 = 32,768$ clock cycles on the clock signal (after the input prescaler), which is fed to the input of the PLL. In a standard 48 kHz use case, the PLL input clock frequency after the prescaler is 3.072 MHz; therefore, the maximum PLL lock time is 10.666 ms.

Typically, the PLL locks much faster than 10.666 ms. In most systems, the PLL locks within about 3.5 ms. The PLL_LOCK register (Address 0xF004) can be polled via the control port until Bit 0 (PLL_LOCK) goes high, signifying that the PLL lock has completed successfully.


While the PLL is attempting to lock to the input clock, the I²C slave and SPI slave control ports are inactive; therefore, no other registers are accessible over the control port. While the PLL is attempting to lock, all attempts to write to the control port fail.

Figure

14 shows an example power-up sequence with all relevant

signals labeled. If possible, apply the required voltage to all four simultaneously. If the power supplies are separate, IOVDD, which is the reference for the ESD protection diodes that are situated power supply domains (IOVDD, AVDD, PVDD, and DVDD) IOVDD TO DVDD LEVEL SHIFTER ENABLE (INTERNAL) AVDD TO DVDD LEVEL SHIFTER ENABLE (INTERNAL) PVDD TO DVDD LEVEL SHIFTER ENABLE (INTERNAL) MASTER POWER-ON RESET (INTERNAL) **CLOCK INPUT TO THE PLL** PLL OUTPUT CLOCK XTALIN/MCLK PIN DESCRIPTION RESET (INTERNAL) OVDD PINS DVDD PINS RESET PIN AVDD PIN PVDD PIN STARTING CONDITIONS. ALL SIGNALS ARE LOW. IF POWER SUPPLIES ARE SEPARATE, APPLY VOLTAGE TO IOVDD FIRST. APPLY MASTER CLOCK SIGNAL TO XTALIN/MCLK, UNLESS MASTER CLOCK IS AUTOMATICALLY GENERATED USING A CRYSTAL OSCILLATOR CIRCUIT. SUPPLY PVDD AT THE SAME TIME, OR AFTER, IOVDD. DO NOT BRING UP PVDD BEFORE IOVDD. SUPPLY AVDD AT THE SAME TIME, OR AFTER, IOVDD. DO NOT BRING UP AVDD BEFORE IOVDD.

> stressing these diodes. PVDD, AVDD, and DVDD can then be figure represent clock signals. section for more information). Note that the gray areas in this supplied in any order (see the System Initialization Sequence inside the input and output pins, must be applied first to avoid

