

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Single 10-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; CMOS or LVDS DDR digital outputs

Rev. 03 — 2 July 2012

Product data sheet

General description

The ADC1010S is a single-channel 10-bit Analog-to-Digital Converter (ADC) optimized for high dynamic performance and low power consumption at sample rates up to 125 Msps. Pipelined architecture and output error correction ensure the ADC1010S is accurate enough to guarantee zero missing codes over the entire operating range. Supplied from a single 3 V source, it can handle output logic levels from 1.8 V to 3.3 V in CMOS mode, because of a separate digital output supply. It supports the Low Voltage Differential Signaling (LVDS) Double Data Rate (DDR) output standard. An integrated Serial Peripheral Interface (SPI) allows the user to easily configure the ADC. The device also includes a programmable full-scale SPI to allow a flexible input voltage range from 1 V to 2 V (peak-to-peak). With excellent dynamic performance from the baseband to input frequencies of 170 MHz or more, the ADC1010S is ideal for use in communications, imaging and medical applications.

Features and benefits 2.

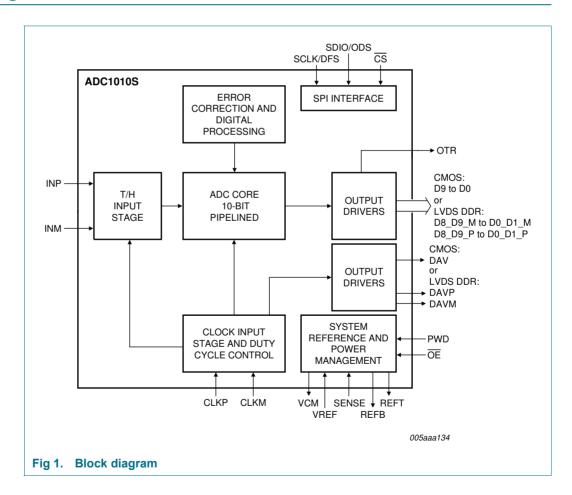
- SNR, 62 dBFS; SFDR, 86 dBc
- Sample rate up to 125 Msps
- 10-bit pipelined ADC core
- Clock input divided by 2 for less jitter
- Single 3 V supply
- Flexible input voltage range: 1 V (p-p) toOffset binary, two's complement, gray 2 V (p-p)
- CMOS or LVDS DDR digital outputs
- Pin compatible with the ADC1410S series and the ADC1210S series

- Input bandwidth, 600 MHz
- Power dissipation, 430 mW at 80 Msps
- Serial Peripheral Interface (SPI)
- Duty cycle stabilizer
- Fast OuT-of-Range (OTR) detection
- code
- Power-down and Sleep modes
- HVQFN40 package

Applications

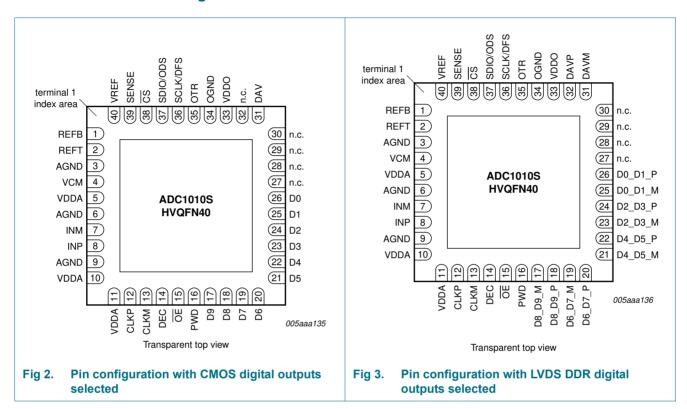
- Wireless and wired broadband communications
- Spectral analysis
- Ultrasound equipment

- Portable instrumentation
- Imaging systems
- Software defined radio



4. Ordering information

Table 1. Ordering information


Type number	f _s (Msps)	Package								
		Name	Description	Version						
ADC1010S125HN-C1	125	HVQFN40	plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6\times6\times0.85$ mm	SOT618-1						
ADC1010S105HN-C1	105	HVQFN40	plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6\times6\times0.85$ mm	SOT618-1						
ADC1010S080HN-C1	80	HVQFN40	plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6\times6\times0.85$ mm	SOT618-1						
ADC1010S065HN-C1	65	HVQFN40	plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6\times6\times0.85$ mm	SOT618-1						

5. Block diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description (CMOS digital outputs)

			o anguan o anparo,
Symbol	Pin	Type [1]	Description
REFB	1	0	bottom reference
REFT	2	0	top reference
AGND	3	G	analog ground
VCM	4	0	common-mode output voltage
VDDA	5	Р	analog power supply
AGND	6	G	analog ground
INM	7		complementary analog input
INP	8	I	analog input
AGND	9	G	analog ground
VDDA	10	Р	analog power supply
VDDA	11	Р	analog power supply
CLKP	12		clock input
CLKM	13	ļ	complementary clock input
DEC	14	0	regulator decoupling node
OE	15		output enable, active LOW
PWD	16	I	power down, active HIGH

 Table 2.
 Pin description (CMOS digital outputs) ...continued

		• •	. ,
Symbol	Pin	Type [1]	Description
D9	17	0	data output bit 9 (Most Significant Bit (MSB))
D8	18	0	data output bit 8
D7	19	0	data output bit 7
D6	20	0	data output bit 6
D5	21	0	data output bit 5
D4	22	0	data output bit 4
D3	23	0	data output bit 3
D2	24	0	data output bit 2
D1	25	0	data output bit 1
D0	26	0	data output bit 0 (Least Significant Bit (LSB))
n.c.	27	-	not connected
n.c.	28	-	not connected
n.c.	29	-	not connected
n.c.	30	-	not connected
DAV	31	0	data valid output clock
n.c.	32	-	not connected
VDDO	33	Р	output power supply
OGND	34	G	output ground
OTR	35	0	out of range
SCLK/DFS	36	I	SPI clock
			data format select
SDIO/ODS	37	I/O	SPI data IO
			output data standard
CS	38	I	SPI chip select
SENSE	39	I	reference programming pin
VREF	40	I/O	voltage reference input/output

^[1] P: power supply; G: ground; I: input; O: output; I/O: input/output.

Table 3. Pin description (LVDS DDR) digital outputs)

Symbol	Pin ^[1]	Type [2]	Description
D8_D9_M	17	0	differential output data D8 and D9 multiplexed, complement
D8_D9_P	18	0	differential output data D8 and D9 multiplexed, true
D6_D7_M	19	0	differential output data D6 and D7 multiplexed, complement
D6_D7_P	20	0	differential output data D6 and D7 multiplexed, true
D4_D5_M	21	0	differential output data D4 and D5 multiplexed, complement
D4_D5_P	22	0	differential output data D4 and D5 multiplexed, true
D2_D3_M	23	0	differential output data D2 and D3 multiplexed, complement
D2_D3_P	24	0	differential output data D2 and D3 multiplexed, true
D0_D1_M	25	0	differential output data D0 and D1 multiplexed, complement
D0_D1_P	26	0	differential output data D0 and D1 multiplexed, true
n.c.	27	-	not connected
n.c.	28	-	not connected
n.c.	29	-	not connected

Single 10-bit ADC; CMOS or LVDS DDR digital outputs

Table 3. Pin description (LVDS DDR) digital outputs) ...continued

Symbol	Pin ^[1]	Type [2]	Description
n.c.	30	-	not connected
DAVM	31	0	data valid output clock, complement
DAVP	32	0	data valid output clock, true

^[1] Pins 1 to 16 and pins 33 to 40 are the same for both CMOS and LVDS DDR outputs (see Table 2).

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
Vo	output voltage	pins D9 to D0 or pins D8_D9_P to D0_D1_Pand D8_D9_M to D0_D1_M	-0.4	+3.9	V
V_{DDA}	analog supply voltage		-0.4	+3.9	V
V_{DDO}	output supply voltage		-0.4	+3.9	V
T _{stg}	storage temperature		–55	+125	°C
T _{amb}	ambient temperature		-40	+85	°C
Tj	junction temperature		-	125	°C

8. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient		[1] 22.5	K/W
R _{th(j-c)}	thermal resistance from junction to case		^[1] 11.7	K/W

^[1] Value for six layers board in still air with a minimum of 25 thermal vias.

^[2] P: power supply; G: ground; I: input; O: output; I/O: input/output.

9. Static characteristics

Table 6. Static characteristics^[1]

	Static characteristics ^[1]					
Symbol	Parameter	Conditions	Min	Тур	Max	Uni
Supplies						
V_{DDA}	analog supply voltage		2.85	3.0	3.4	V
V_{DDO}	output supply voltage	CMOS mode	1.65	1.8	3.6	V
		LVDS DDR mode	2.85	3.0	3.6	V
I_{DDA}	analog supply current	f_{clk} = 125 Msps; f_i = 70 MHz	-	210	-	mΑ
I _{DDO}	output supply current	CMOS mode; f _{clk} = 125 Msps; f _i = 70 MHz	-	10	-	mA
		LVDS DDR mode: $f_{clk} = 125 \text{ Msps}$; $f_i = 70 \text{ MHz}$	-	35	-	mA
Р	power dissipation	ADC1010S125; analog supply only	-	630	-	mV
		ADC1010S105; analog supply only	-	550	-	mV
		ADC1010S080; analog supply only	-	430	-	mV
		ADC1010S065; analog supply only	-	380	-	mV
		Power-down mode	-	2	-	m۷
		Sleep mode	-	40	-	m۷
Clock inpu	ts: pins CLKP and CLKM					
Low-Voltage	e Positive Emitter-Coupled Logic (LV	PECL)				
V _{i(clk)dif}	differential clock input voltage	peak-to-peak	-	1.6	-	V
SINE wave						
V _{i(clk)dif}	differential clock input voltage	peak	-	±3.0	-	V
Low Voltage	e Complementary Metal Oxide Semi	conductor (LVCMOS)				
V _{IL}	LOW-level input voltage		-	-	$0.3V_{DDA}$	V
V _{IH}	HIGH-level input voltage		$0.7V_{DDA}$	-	-	V
Logic inpu	ts: pins PWD and OE					
V _{IL}	LOW-level input voltage		0	-	0.8	V
V _{IH}	HIGH-level input voltage		2	-	V_{DDA}	V
I _{IL}	LOW-level input current		-	55	-	μΑ
I _{IH}	HIGH-level input current		-	65	-	μΑ
Serial peri	pheral interface: pins CS, SDIO/OD	OS, SCLK/DFS				
V_{IL}	LOW-level input voltage		0	-	$0.3V_{DDA}$	V
V _{IH}	HIGH-level input voltage		$0.7V_{DDA}$	-	V_{DDA}	V
I _{IL}	LOW-level input current		-10	-	+10	μΑ
I _{IH}	HIGH-level input current		-50	-	+50	μA
C _I	input capacitance		-	4	-	pF

Table 6. Static characteristics^[1] ...continued

Table 6.	Static characteristics[1]continued					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Digital ou	tputs, CMOS mode: pins D9 to D0, C	OTR, DAV				
Output lev	els, V _{DDO} = 3 V					
V_{OL}	LOW-level output voltage		OGND	-	$0.2V_{DDO}$	V
V_{OH}	HIGH-level output voltage		$0.8V_{DDO}$	-	V_{DDO}	V
Co	output capacitance	high impedance; \overline{OE} = HIGH	-	3	-	pF
Output lev	els, V _{DDO} = 1.8 V					
V_{OL}	LOW-level output voltage		OGND	-	$0.2V_{DDO}$	V
V_{OH}	HIGH-level output voltage		$0.8V_{DDO}$	-	V_{DDO}	V
Digital ou	tputs, LVDS mode: pins D8_D9_P to	D0_D1_P, D8_D9_M to D0_D1_N	I, DAVP and	d DAVM		
Output lev	els, V_{DDO} = 3 V only, R_L = 100 Ω					
$V_{O(offset)}$	output offset voltage	output buffer current set to 3.5 mA	-	1.2	-	V
V _{O(dif)}	differential output voltage	output buffer current set to 3.5 mA	-	350	-	mV
Co	output capacitance		-	3	-	pF
Analog in	puts: pins INP and INM					
I	input current		-5	-	+5	μΑ
$R_{i(dif)}$	differential input resistance		-	19.8	-	$k\Omega$
$C_{i(dif)}$	differential input capacitance		-	2.8	-	pF
$V_{I(cm)}$	common-mode input voltage	$V_{INP} = V_{INM}$	1.1	1.5	2.5	V
B _i	input bandwidth		-	650	-	МН
$V_{I(dif)}$	differential input voltage	peak-to-peak	1	-	2	V
Common	mode output voltage: pin VCM					
$V_{O(cm)}$	common-mode output voltage		-	V_{DDA} / 2	-	V
$I_{O(cm)}$	common-mode output current		-	4	-	mΑ
I/O refere	nce voltage: pin VREF					
V_{VREF}	voltage on pin VREF	output	0.5	-	1	V
		input	0.5	-	1	V
Accuracy						
INL	integral non-linearity		-	±0.07	-	LSE
DNL	differential non-linearity	guaranteed no missing codes	-0.06	±0.04	+0.06	LSE
E _{offset}	offset error		-	±2	-	mV
E _G	gain error	full-scale		±0.5		%
Supply						
PSRR	power supply rejection ratio	200 mV (p-p) on V_{DDA} ; $f_i = DC$	-	-54	-	dB

^[1] Typical values measured at V_{DDA} = 3 V, V_{DDO} = 1.8 V, T_{amb} = 25 °C and C_L = 5 pF; minimum and maximum values are across the full temperature range T_{amb} = -40 °C to +85 °C at V_{DDA} = 3 V, V_{DDO} = 1.8 V; $V_{INP} - V_{INM}$ = -1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified.

Integrated Device

Technology

10. Dynamic characteristics

10.1 Dynamic characteristics

Table 7. Dynamic characteristics^[1]

Symbol	Parameter	Conditions	AD	C1010S	065	AD	C1010S	080	AD	C1010S	105	ADO	125	Unit	
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Analog s	signal processin	g	'				•	'					'	•	'
α _{2H}	second	f _i = 3 MHz	-	87	-	-	87	-	-	89	-	-	91	-	dBc
	harmonic level	f _i = 30 MHz	-	86	-	-	86	-	-	89	_	-	90	-	dBc
		f _i = 70 MHz	-	85	-	-	85	-	-	87	_	-	88	-	dBc
		f _i = 170 MHz	-	82	-	-	82	-	_	84	-	-	86	-	dBc
хзн	third harmonic	f _i = 3 MHz	-	86	-	-	86	-	-	88	-	-	90	-	dBc
	level	f _i = 30 MHz	-	85	-	-	85	-	-	88	-	-	89	-	dBc
		f _i = 70 MHz	-	84	-	-	84	-	-	86	_	-	87	-	dBc
		f _i = 170 MHz	-	81	-	-	81	-	-	83	-	-	85	-	dBc
ΓHD	total harmonic	f _i = 3 MHz	-	83	-	-	83	-	-	85	-	-	87	-	dBc
	distortion	f _i = 30 MHz	-	82	-	-	82	-	-	85	-	-	86	-	dBc
		f _i = 70 MHz	-	81	-	-	81	-	-	83	-	-	84	-	dBc
		f _i = 170 MHz	-	78	-	-	78	-	-	80	-	-	82	-	dBc
ENOB	effective	f _i = 3 MHz	-	9.9	-	-	9.9	-	-	9.9	-	-	9.9	-	bits
	number of bits	f _i = 30 MHz	-	9.9	-	-	9.9	-	-	9.9	-	-	9.9	-	bits
		f _i = 70 MHz	-	9.9	-	-	9.9	-	-	9.9	-	-	9.9	-	bits
		f _i = 170 MHz	-	9.9	-	-	9.9	-	-	9.9	-	-	9.9	-	bits
SNR	signal-to-noise	f _i = 3 MHz	-	61.7	-	-	61.7	-	-	61.6	-	-	61.6	-	dBF
	ratio	f _i = 30 MHz	-	61.6	-	-	61.6	-	-	61.6	-	-	61.6	-	dBF
		f _i = 70 MHz	-	61.6	-	-	61.6	-	-	61.5	-	-	61.5	-	dBF:
		f _i = 170 MHz	-	61.5	-	-	61.5	-	-	61.5	-	-	61.5	-	dBF:
SFDR	spurious-free	f _i = 3 MHz	-	86	-	-	86	-	-	88	-	-	90	-	dBc
	dynamic range	f _i = 30 MHz	-	85	-	-	85	-	-	88	-	-	89	-	dBc
		f _i = 70 MHz	-	84	-	-	84	-	-	86	-	-	87	-	dBc
		f _i = 170 MHz	-	81	-	_	81	-	_	83	-	_	85	-	dBc

Product data sheet

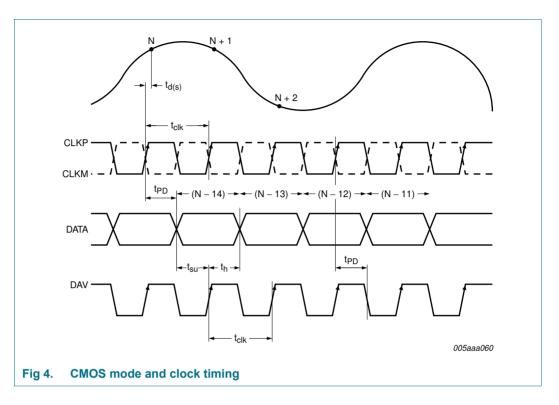
Symbol Parameter		Conditions	ADC1010S065			ADC1010S080			ADC1010S105			ADO	Unit		
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
IMD		$f_i = 3 \text{ MHz}$	-	89	-	-	89	-	-	92	-	-	93	-	dBc
	distortion	f _i = 30 MHz	-	88	-	-	88	-	-	92	-	-	92	-	dBc
		f _i = 70 MHz	-	87	-	-	87	-	-	90	-	-	90	-	dBc
		f _i = 170 MHz	-	84	-	-	85	-	-	87	-	-	88	-	dBc

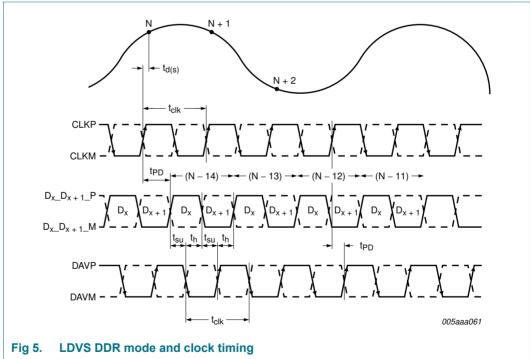
^[1] Typical values measured at V_{DDA} = 3 V, V_{DDO} = 1.8 V, V_{amb} = 25 °C and C_L = 5 pF; minimum and maximum values are across the full temperature range V_{amb} = -40 °C to +85 °C at V_{DDA} = 3 V, V_{DDO} = 1.8 V; V_{INP} - V_{INM} = -1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified.

10.2 Clock and digital output timing

Table 8. Clock input and digital output timing characteristics^[1]

Symbol	Parameter	Conditions		ADO	C1010S	065	AD	C1010S	080	AD	C1010S	105	ADC1010S125			Unit
			N	Vlin	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Clock tim	ing input: pins	CLKP and CLKM		'			1				ı					
f _{clk}	clock frequency			40	-	65	60	-	80	75	-	105	100	-	125	MHz
t _{lat(data)}	data latency time			-	13.5	-	-	13.5	-	-	13.5	-	-	13.5	-	clock
δ_{clk}	clock duty	DCS_EN = logic 1		30	50	70	30	50	70	30	50	70	30	50	70	%
	cycle	DCS_EN = logic 0		45	50	55	45	50	55	45	50	55	45	50	55	%
$t_{d(s)}$	sampling delay time			-	8.0	-	-	8.0	-	-	8.0	-	-	8.0	-	ns
t _{wake}	wake-up time			-	76	-	-	76	-	-	76	-	-	76	-	μS
CMOS Mo	de timing outp	out: pins D9 to D0 and	DAV				!						!			
t _{PD}	propagation	DATA	1	13.6	14.9	16.4	11.9	12.9	14.4	8.0	10.8	12.4	8.2	9.7	11.3	ns
	delay	DAV		-	4.2	-	-	3.6	-	-	3.3	-	-	3.4	-	ns
t _{su}	set-up time			-	12.5	-	-	9.8	-	-	6.8	-	-	5.6	-	ns
t _h	hold time			-	3.4	-	-	3.3	-	-	3.1	-	-	2.8	-	ns
t _r	rise time	DATA	[2] 0	0.39	-	2.4	0.39	-	2.4	0.39	-	2.4	0.39	-	2.4	ns
		DAV	0).26	-	2.4	0.26	-	2.4	0.26	-	2.4	0.26	-	2.4	ns
t _f	fall time	DATA	[2] 0).19	-	2.4	0.19	-	2.4	0.19	-	2.4	0.19	-	2.4	ns


Table 8. Clock input and digital output timing characteristics^[1] ...continued


Symbol	Parameter	Conditions	ADC1010S065		ADC1010S080		ADC1010S105		ADC1010S125		Unit				
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
LVDS DDR	R mode timing	output: pins D8_D9_P to [00_D1_F	P, D8_D9	_M to D	0_D1_N	, DAVP	and DA	VM						'
t _{PD}	propagation	DATA	3.3	5.1	7.6	2.9	4.6	7.1	2.5	4.2	6.8	2.2	4.0	6.6	ns
	delay	DAV	-	2.8	-	-	2.5	-	-	2.3	-	-	2.2	-	ns
t _{su}	set-up time		-	5.4	-	-	4.1	-	-	2.6	-	-	1.9	-	ns
t _h	hold time		-	2.2	-	-	2.0	-	-	1.8	-	-	1.7	-	ns
t _r	rise time	DATA [3]	0.5	-	5	0.5	-	5	0.5	-	5	0.5	-	5	ns
		DAV	0.18	-	2.4	0.18	-	2.4	0.18	-	2.4	0.18	-	2.4	ns
t _f	fall time	DATA [3]	0.15	-	1.6	0.15	-	1.6	0.15	-	1.6	0.15	-	1.6	ns

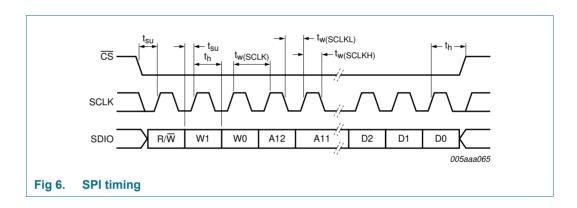
^[1] Typical values measured at V_{DDA} = 3 V, V_{DDO} = 1.8 V, V_{amb} = 25 °C and C_L = 5 pF; minimum and maximum values are across the full temperature range T_{amb} = -40 °C to +85 °C at V_{DDA} = 3 V, V_{DDO} = 1.8 V; V_{INP} - V_{INM} = -1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified.

^[2] Measured between 20 % to 80 % of V_{DDO}.

^[3] Rise time measured from -50 mV to +50 mV; fall time measured from +50 mV to -50 mV.

12 of 37

Product data sheet


Single 10-bit ADC; CMOS or LVDS DDR digital outputs

10.3 SPI timings

SPI timings characteristics^[1] Table 9.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$t_{w(\text{SCLK})}$	SCLK pulse width		-	40	-	ns
$t_{w(SCLKH)}$	SCLK HIGH pulse width		-	16	-	ns
t _{w(SCLKL)}	SCLK LOW pulse width		-	16	-	ns
t _{su}	set-up time	data to SCLK HIGH	-	5	-	ns
		CS to SCLK HIGH	-	5	-	ns
t _h	hold time	data to SCLK HIGH	-	2	-	ns
		CS to SCLK HIGH	-	2	-	ns
$f_{clk(max)}$	maximum clock frequency		-	25	-	MHz

[1] Typical values measured at V_{DDA} = 3 V, V_{DDO} = 1.8 V, T_{amb} = 25 °C and C_L = 5 pF; minimum and maximum values are across the full temperature range T_{amb} = -40 °C to +85 °C at V_{DDA} = 3 V, V_{DDO} = 1.8 V

10.4 Typical characteristics

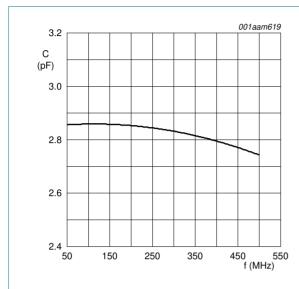
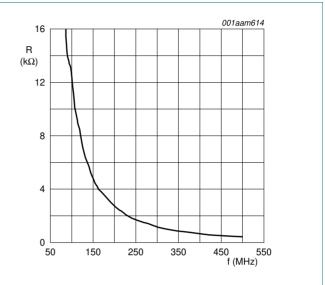
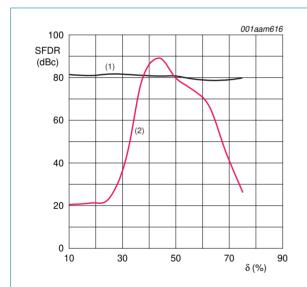
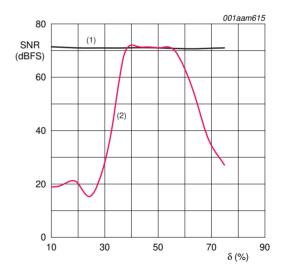


Fig 7. Capacitance as a function of frequency

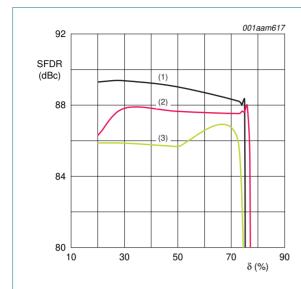




Fig 8. Resistance as a function of frequency

T = 25 °C; V_{DD} = 3 V; f_i = 170 MHz; f_s = 125 Msps

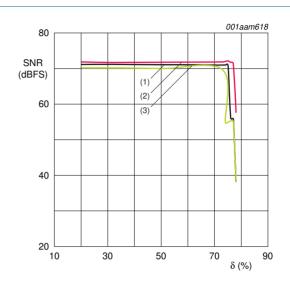
- (1) DCS on
- (2) DCS off

Fig 9. SFDR as a function of duty cycle (δ)



T = 25 °C; V_{DD} = 3 V; f_i = 170 MHz; f_s = 125 Msps

- (1) DCS on
- (2) DCS off


Fig 10. SNR as a function of duty cycle (δ)

Single 10-bit ADC; CMOS or LVDS DDR digital outputs

- (1) $T_{amb} = -40 \, ^{\circ}\text{C/typical supply voltages}$
- (2) T_{amb} = +25 °C/typical supply voltages
- (3) T_{amb} = +90 °C/typical supply voltages

Fig 11. SFDR as a function of duty cycle (δ)

- (1) $T_{amb} = -40 \,^{\circ}\text{C/typical supply voltages}$
- (2) T_{amb} = +25 °C/typical supply voltages
- (3) $T_{amb} = +90 \text{ °C/typical supply voltages}$

Fig 12. SNR as a function of duty cycle (δ)

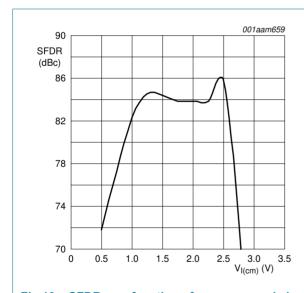


Fig 13. SFDR as a function of common-mode input voltage $(V_{I(cm)})$

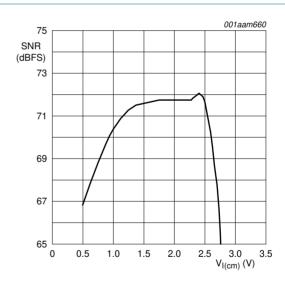
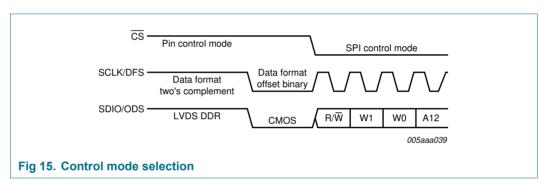


Fig 14. SNR as a function of common-mode input voltage $(V_{I(cm)})$

11. Application information


11.1 Device control

The ADC1010S can be controlled via SPI or directly via the I/O pins (Pin control mode).

11.1.1 SPI and Pin control modes

The device enters Pin control mode at power-up, and remains in this mode as long as pin $\overline{\text{CS}}$ is held HIGH. In Pin control mode, the SPI pins SDIO, $\overline{\text{CS}}$ and SCLK are used as static control pins.

SPI control mode is enabled by forcing pin $\overline{\text{CS}}$ LOW. Once SPI control mode has been enabled, the device remains in this mode. The transition from Pin control mode to SPI control mode is illustrated in Figure 15.

When the device enters SPI control mode, the output data standard and data format are determined by the level on pin SDIO at the instant a transition is triggered by a falling edge on $\overline{\text{CS}}$.

11.1.2 Operating mode selection

The active ADC1010S operating mode (Power-up, Power-down or Sleep) can be selected via the SPI interface (see Table 20) or by using pins PWD and \overline{OE} in Pin control mode, as described in Table 10.

Table 10. Operating mode selection via pin PWD and OE

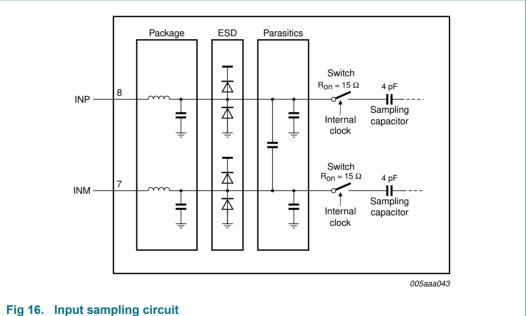
Pin PWD	Pin OE	Operating mode	Output high-Z
LOW	LOW	Power-up	no
LOW	HIGH	Power-up	yes
HIGH	LOW	Sleep	yes
HIGH	HIGH	Power-down	yes

11.1.3 Selecting the output data standard

The output data standard (CMOS or LVDS DDR) can be selected via the SPI interface (see Table 23) or by using pin ODS in Pin control mode. LVDS DDR is selected when ODS is HIGH, otherwise CMOS is selected.

11.1.4 Selecting the output data format

The output data format can be selected via the SPI interface (offset binary, two's complement or gray code; see Table 23) or by using pin DFS in Pin control mode (offset binary or two's complement). Offset binary is selected when DFS is LOW. When DFS is HIGH, two's complement is selected.

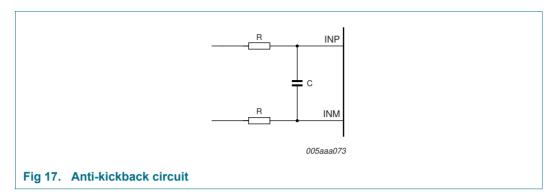

11.2 Analog inputs

11.2.1 Input stage

The analog input of the ADC1010S supports a differential or a single-ended input drive. Optimal performance is achieved using differential inputs with the common-mode input voltage (V_{I(cm)}) on pins INP and INM set to 0.5V_{DDA}.

The full-scale analog input voltage range is configurable between 1 V (p-p) and 2 V (p-p) via a programmable internal reference (see Section 11.3 and Table 22).

The equivalent circuit of the sample and hold input stage, including Electrostatic Discharge (ESD) protection and circuit and package parasitics, is shown in Figure 16.



The sample phase occurs when the internal clock (derived from the clock signal on pin CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the clock signal goes LOW, the stage enters the hold phase and the voltage information is transmitted to the ADC core.

11.2.2 Anti-kickback circuitry

Anti-kickback circuitry (R-C filter in Figure 17) is needed to counteract the effects of a charge injection generated by the sampling capacitance.

The RC filter is also used to filter noise from the signal before it reaches the sampling stage. The value of the capacitor should be chosen to maximize noise attenuation without degrading the settling time excessively.

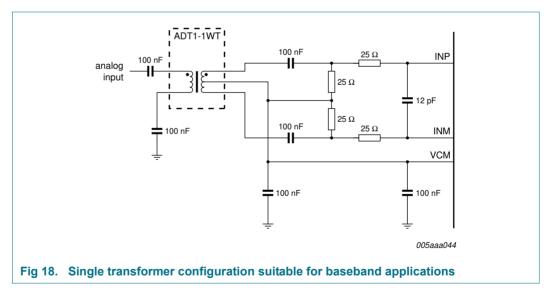
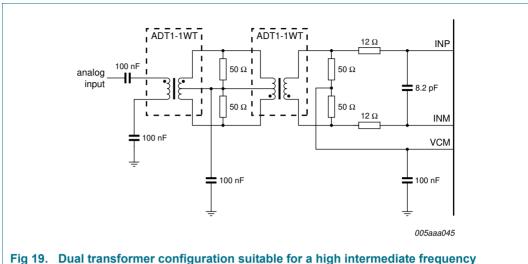

The component values are determined by the input frequency and should be selected so as not to affect the input bandwidth.

Table 11. RC coupling versus input frequency - typical values

Input frequency	R	С
3 MHz	25 Ω	12 pF
70 MHz	12 Ω	8 pF
170 MHz	12 Ω	8 pF

11.2.3 Transformer

The configuration of the transformer circuit is determined by the input frequency. The configuration shown in Figure 18 would be suitable for a baseband application.

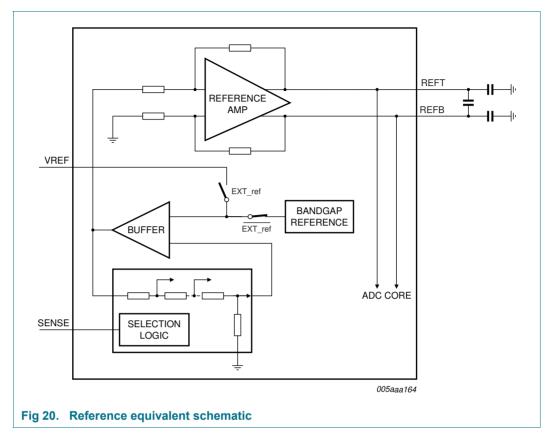


The configuration shown in Figure 19 is recommended for high frequency applications. In both cases, the choice of transformer is a compromise between cost and performance.

18 of 37

Product data sheet

Single 10-bit ADC; CMOS or LVDS DDR digital outputs



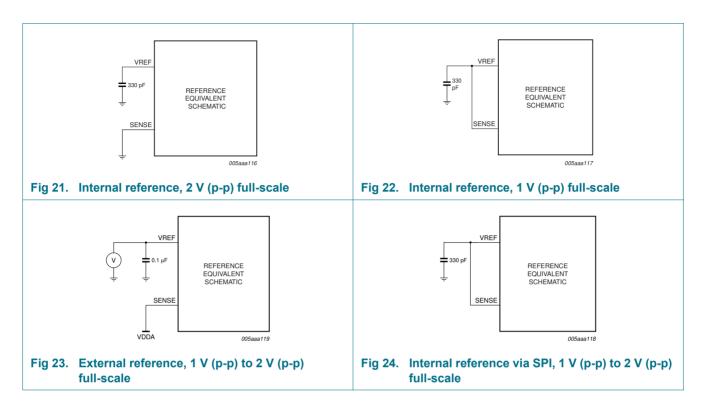
application

11.3 System reference and power management

11.3.1 Internal/external references

The ADC1010S has a stable and accurate built-in internal reference voltage to adjust the ADC full-scale. This reference voltage can be set internally via SPI or with pins VREF and SENSE (programmable in 1 dB steps between 0 dB and -6 dB via control bits INTREF[2:0] when bit INTREF EN = logic 1; see Table 22). See Figure 21 to Figure 24. The equivalent reference circuit is shown in Figure 20. An external reference is also possible by providing a voltage on pin VREF as described in Figure 23.

If bit INTREF_EN is set to logic 0, the reference voltage is determined either internally or externally as detailed in Table 12.


Table 12. Reference selection

Selection	SPI bit INTREF_EN	SENSE pin	VREF pin	Full-scale (p-p)
internal (Figure 21)	0	AGND	330 pF capacitor to AGND	2 V
internal (Figure 22)	0	pin VREF conr a 330 pF capac	1 V	
external (Figure 23)	0	V_{DDA}	external voltage between 0.5 V and 1 $V^{[1]}$	1 V to 2 V
internal via SPI (Figure 24)	1	pin VREF conr 330 pF capacit	1 V to 2 V	

^[1] The voltage on pin VREF is doubled internally to generate the internal reference voltage.

Figure 21 to Figure 24 illustrate how to connect the SENSE and VREF pins to select the required reference voltage source.

Single 10-bit ADC; CMOS or LVDS DDR digital outputs

11.3.2 Programmable full-scale

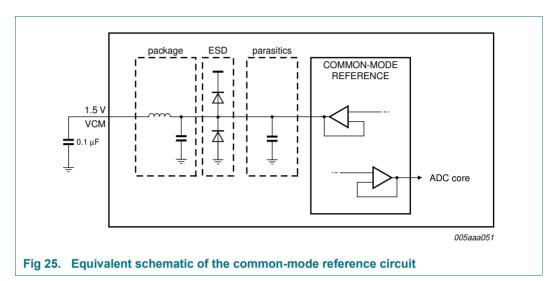
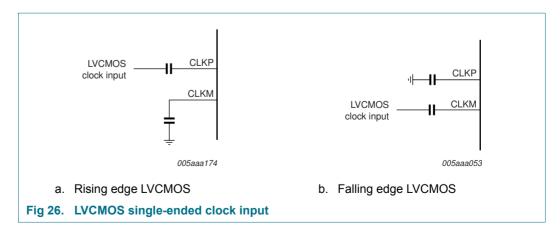

The full-scale is programmable between 1 V (peak-to-peak) to 2 V (peak-to-peak) (see Table 13).

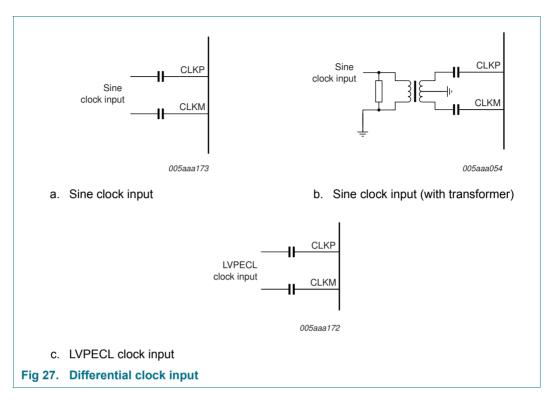
Table 13. Reference SPI gain control

INTREF[2:0]	Gain (dB)	Full-scale (V (p-p))
000	0	2
001	-1	1.78
010	-2	1.59
011	-3	1.42
100	-4	1.26
101	-5	1.12
110	-6	1
111	reserved	X

11.3.3 Common-mode output voltage (V_{O(cm)})

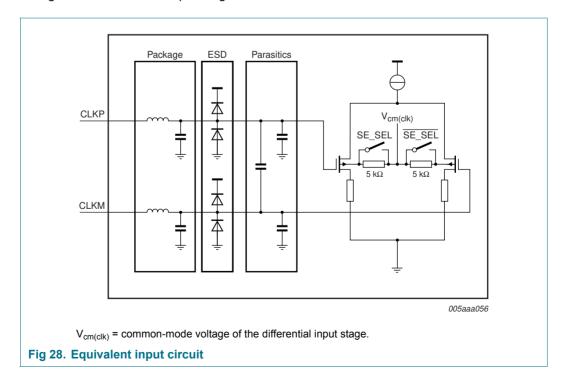
A 0.1 μ F filter capacitor should be connected between pin VCM and ground to ensure a low-noise common-mode output voltage. When AC-coupled, pin VCM can then be used to set the common-mode reference for the analog inputs, for instance via a transformer middle point.


11.3.4 Biasing


The common-mode input voltage ($V_{l(cm)}$) on pins INP and INM should be set externally to 0.5 V_{DDA} for optimal performance and should always be between 0.9 V and 2 V.

11.4 Clock input

11.4.1 Drive modes


The ADC1010S can be driven differentially (LVPECL). It can also be driven by a single-ended Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS) signal connected to pin CLKP (pin CLKM should be connected to ground via a capacitor) or pin CLKM (pin CLKP should be connected to ground via a capacitor).

11.4.2 Equivalent input circuit

The equivalent circuit of the input clock buffer is shown in Figure 28. The common-mode voltage of the differential input stage is set via internal 5 k Ω resistors.

Single 10-bit ADC; CMOS or LVDS DDR digital outputs

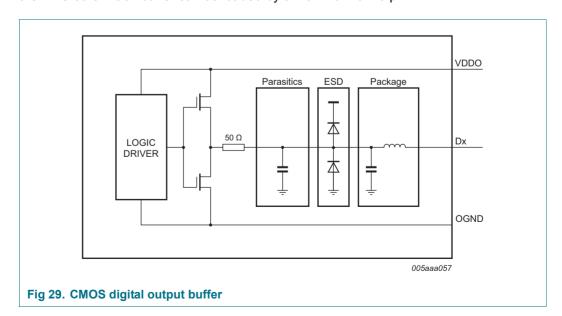
Single-ended or differential clock inputs can be selected via the SPI interface (see Table 21). If single-ended is enabled, the input pin (CLKM or CLKP) is selected via control bit SE_SEL.

If single-ended is implemented without setting bit SE_SEL to the appropriate value, the unused pin should be connected to ground via a capacitor.

11.4.3 Duty cycle stabilizer

The duty cycle stabilizer can improve the overall performance of the ADC by compensating the duty cycle of the input clock signal. When the duty cycle stabilizer is active (bit DCS_EN = logic 1; see Table 21), the circuit can handle signals with duty cycles of between 30 % and 70 % (typical). When the duty cycle stabilizer is disabled (DCS_EN = logic 0), the input clock signal should have a duty cycle of between 45 % and 55 %.

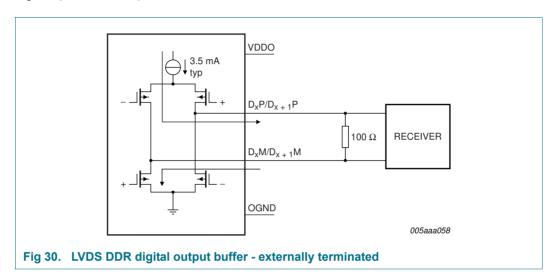
11.4.4 Clock input divider

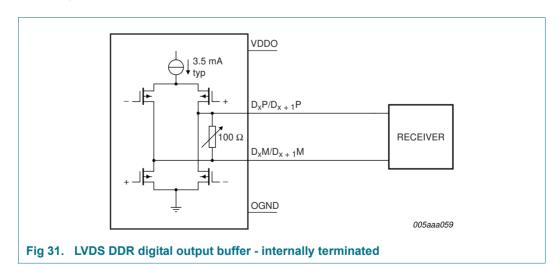

The ADC1010S contains an input clock divider that divides the incoming clock by a factor of 2 (when bit CLKDIV = logic 1; see Table 21). This feature allows the user to deliver a higher clock frequency with better jitter performance, leading to a better SNR result once acquisition has been performed.

11.5 Digital outputs

11.5.1 Digital output buffers: CMOS mode

The digital output buffers can be configured as CMOS by setting bit LVDS_CMOS to logic 0 (see Table 23).


Each digital output has a dedicated output buffer. The equivalent circuit of the CMOS digital output buffer is shown in Figure 29. The buffer is powered by a separate power supply, pins OGND and VDDO, to ensure 1.8 V to 3.3 V compatibility and is isolated from the ADC core. Each buffer can be loaded by a maximum of 10 pF.


The output resistance is 50 Ω and is the combination of an internal resistor and the equivalent output resistance of the buffer. There is no need for an external damping resistor. The drive strength of both data and DAV buffers can be programmed via the SPI in order to adjust the rise and fall times of the output digital signals (see Table 30):

11.5.2 Digital output buffers: LVDS DDR mode

The digital output buffers can be configured as LVDS DDR by setting bit LVDS_CMOS to logic 1 (see Table 23).

Each output should be terminated externally with a 100 Ω resistor (typical) at the receiver side (Figure 30) or internally via SPI control bits LVDS_INT_TER[2:0] (see Figure 31 and Table 32).

The default LVDS DDR output buffer current is set to 3.5 mA. It can be programmed via the SPI (bits DAVI[1:0] and DATA[1:0]; see Table 31) in order to adjust the output logic voltage levels.

Table 14. LVDS DDR output register 2

LVDS_INT_TER[2:0]	Resistor value (Ω)
000	no internal termination
001	300
010	180
011	110
100	150
101	100
110	81
111	60

11.5.3 DAta Valid (DAV) output clock

A data valid output clock signal (DAV) can be used to capture the data delivered by the ADC1010S. Detailed timing diagrams for CMOS and LVDS DDR modes are shown in Figure 4 and Figure 5 respectively.

11.5.4 OuT-of-Range (OTR)

An out-of-range signal is provided on pin OTR. The latency of OTR is fourteen clock cycles. The OTR response can be speeded up by enabling Fast OTR (bit FASTOTR = logic 1; see Table 29). In this mode, the latency of OTR is reduced to only four clock cycles. The Fast OTR detection threshold (below full-scale) can be programmed via bits FASTOTR DET[2:0].

Table 15. Fast OTR register

FASTOTR_DET[2:0]	Detection level (dB)
000	-20.56
001	-16.12
010	-11.02
011	-7.82
100	-5.49
101	-3.66
110	-2.14
111	-0.86

11.5.5 Digital offset

By default, the ADC1010S delivers output code that corresponds to the analog input. However it is possible to add a digital offset to the output code via the SPI (bits DIG_OFFSET[5:0]; see Table 25).

11.5.6 Test patterns

For test purposes, the ADC1010S can be configured to transmit one of a number of predefined test patterns (via bits TESTPAT_SEL[2:0]; see Table 26). A custom test pattern can be defined by the user (TESTPAT_USER[9:0]; see Table 27 and Table 28) and is selected when TESTPAT_SEL[2:0] = 101. The selected test pattern is transmitted regardless of the analog input.