

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ADC1413D series

Dual 14-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; serial JESD204A interface

Rev. 6 — 8 June 2011

Product data sheet

1. General description

The ADC1413D is a dual-channel 14-bit Analog-to-Digital Converter (ADC) optimized for high dynamic performance and low power at sample rates up to 125 Msps. Pipelined architecture and output error correction ensure the ADC1413D is accurate enough to guarantee zero missing codes over the entire operating range. Supplied from a 3 V source for analog and a 1.8 V source for the output driver, it embeds two serial outputs. Each lane is differential and complies with the JESD204A standard. An integrated Serial Peripheral Interface (SPI) allows the user to easily configure the ADCs. A set of IC configurations is also available via the binary level control pins taken, which are used at power-up. The device also includes a programmable full-scale SPI to allow a flexible input voltage range of 1 V to 2 V (peak-to-peak).

Excellent dynamic performance is maintained from the baseband to input frequencies of 170 MHz or more, making the ADC1413D ideal for use in communications, imaging, and medical applications.

2. Features and benefits

- SNR, 72 dBFS; SFDR, 86 dBc
- Sample rate up to 125 Msps
- Clock input divided by 2 for less jitter contribution
- 3 V, 1.8 V power supplies
- Flexible input voltage range: 1 V (p-p) to 2 V (p-p)
- Two configurable serial outputs
- Compliant with JESD204A serial transmission standard
- Pin compatible with the ADC1613D series, ADC1213D series, and ADC1113D125

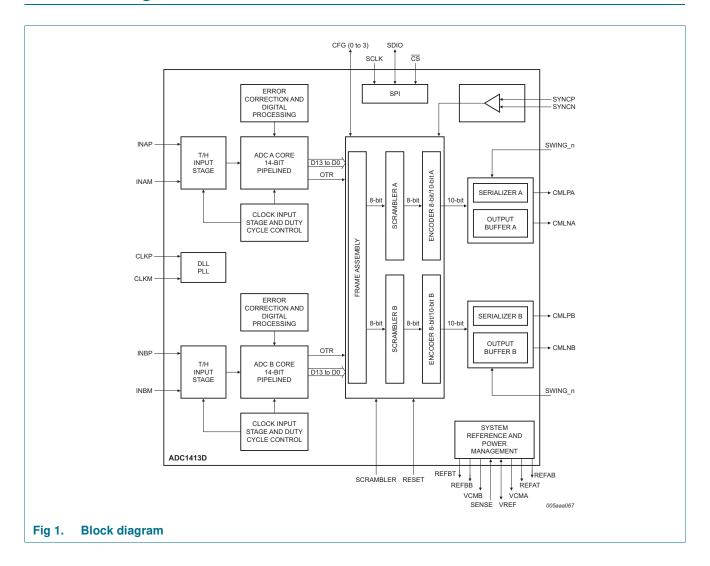
- Input bandwidth, 600 MHz
- Power dissipation, 995 mW at 80 Msps
- SPI register programming
- Duty cycle stabilizer (DCS)
- High IF capability
- Offset binary, two's complement, gray code
- Power-down mode and Sleep mode
- HVQFN56 package

ADC1413D series

Dual 14-bit ADC; serial JESD204A interface

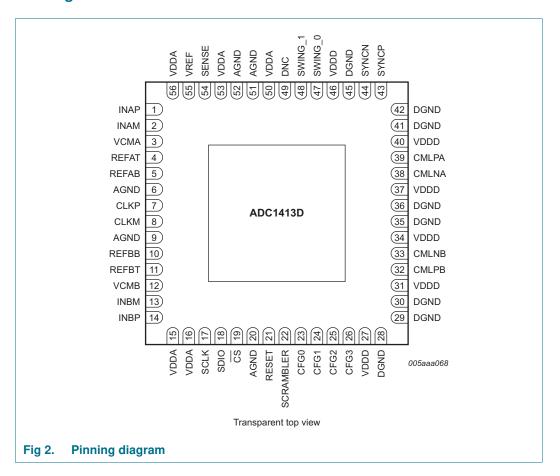
3. Applications

- Wireless and wired broadband communications
- Spectral analysis
- Ultrasound equipment


- Portable instrumentation
- Imaging systems
- Software defined radio

4. Ordering information

Table 1. Ordering information


Type number	Sampling	Package		
	frequency (Msps)	Name	Description	Version
ADC1413D125HN/C1	125	HVQFN56	plastic thermal enhanced very thin quad flat package; no leads; 56 terminals; body $8\times8\times0.85$ mm	SOT684-7
ADC1413D105HN/C1	105	HVQFN56	plastic thermal enhanced very thin quad flat package; no leads; 56 terminals; body 8 \times 8 \times 0.85 mm	SOT684-7
ADC1413D080HN/C1	80	HVQFN56	plastic thermal enhanced very thin quad flat package; no leads; 56 terminals; body 8 \times 8 \times 0.85 mm	SOT684-7
ADC1413D065HN/C1	65	HVQFN56	plastic thermal enhanced very thin quad flat package; no leads; 56 terminals; body 8 \times 8 \times 0.85 mm	SOT684-7

5. Block diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type[1]	Description
INAP	1	I	channel A analog input
INAM	2	l	channel A complementary analog input
VCMA	3	0	channel A output common voltage
REFAT	4	0	channel A top reference
REFAB	5	0	channel A bottom reference
AGND	6	G	analog ground
CLKP	7	I	clock input
CLKM	8	I	complementary clock input
AGND	9	G	analog ground
REFBB	10	0	channel B bottom reference
REFBT	11	0	channel B top reference
VCMB	12	0	channel B output common voltage
INBM	13	1	channel B complementary analog input

4 of 43

 Table 2.
 Pin description ...continued

Table 2.	Fill desci	iption		
Symbol		Pin	Type ^[1]	Description
INBP		14	I	channel B analog input
VDDA		15	Р	analog power supply 3 V
VDDA		16	Р	analog power supply 3 V
SCLK		17	l	SPI clock
SDIO		18	I/O	SPI data input/output
CS		19	I	chip select
AGND		20	G	analog ground
RESET		21	I	JEDEC digital IP reset
SCRAMB	LER	22	I	scrambler enable and disable
CFG0		23	I/O	See Table 28 (input) or OTRA (output)[2]
CFG1		24	I/O	See Table 28 (input) or OTRB (output)[2]
CFG2		25	I/O	See Table 28 (input)
CFG3		26	I/O	See Table 28 (input)
VDDD		27	Р	digital power supply 1.8 V
DGND		28	G	digital ground
DGND		29	G	digital ground
DGND		30	G	digital ground
VDDD		31	Р	digital power supply 1.8 V
CMLPB		32	0	channel B output
CMLNB		33	0	channel B complementary output
VDDD		34	Р	digital power supply 1.8 V
DGND		35	G	digital ground
DGND		36	G	digital ground
VDDD		37	Р	digital power supply 1.8 V
CMLNA		38	0	channel A complementary output
CMLPA		39	0	channel A output
VDDD		40	Р	digital power supply 1.8 V
DGND		41	G	digital ground
DGND		42	G	digital ground
SYNCP		43	I	synchronization from FPGA
SYNCN		44	I	synchronization from FPGA
DGND		45	G	digital ground
VDDD		46	Р	digital power supply 1.8 V
SWING_0		47	I	JESD204 serial buffer programmable output swing
SWING_1		48	I	JESD204 serial buffer programmable output swing
DNC		49	0	do not connect
VDDA		50	Р	analog power supply 3 V
AGND		51	G	analog ground
AGND		52	G	analog ground

 Table 2.
 Pin description ...continued

Symbol	Pin	Type ^[1]	Description
VDDA	53	Р	analog power supply 3 V
SENSE	54	l	reference programming pin
VREF	55	I/O	voltage reference input/output
VDDA	56	Р	analog power supply 3 V

^[1] P: power supply; G: ground; I: input; O: output; I/O: input/output.

7. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

			•		
Symbol	Parameter	Conditions	Min	Max	Unit
V_{DDA}	analog supply voltage		-0.4	+4.6	V
V_{DDD}	digital supply voltage		-0.4	+2.5	V
T _{stg}	storage temperature		-55	+125	°C
T _{amb}	ambient temperature		-40	+85	°C
T _j	junction temperature		-	125	°C

8. Thermal characteristics

Table 4. Thermal characteristics

Symbol	Parameter	Conditions		Тур	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient		[1]	17.8	K/W
R _{th(j-c)}	thermal resistance from junction to case		[1]	6.8	K/W

^[1] Value for six layers board in still air with a minimum of 25 thermal vias.

^[2] OTRA stands for "OuT of Range A". OTRB stands for "OuT of Range B"

9. Static characteristics

Table 5. Static characteristics[1]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supplies						
V_{DDA}	analog supply voltage		2.85	3.0	3.4	V
V_{DDD}	digital supply voltage		1.65	1.8	1.95	V
I _{DDA}	analog supply current	f_{clk} = 125 Msps; f_i = 70 MHz	-	343	-	mA
I _{DDD}	digital supply current	$f_{clk} = 125 \text{ Msps};$ $f_i = 70 \text{ MHz}$	-	150	-	mA
P _{tot}	total power dissipation	$f_{clk} = 125 Msps$	-	1270	-	mW
		f _{clk} = 105 Msps	-	1150	-	mW
		f _{clk} = 80 Msps	-	995	-	mW
		f _{clk} = 65 Msps	-	885	-	mW
Р	power dissipation	Power-down mode	-	30	-	mW
		Standby mode	-	200	-	mW
Clock inp	outs: pins CLKP and CLKM (AC-coupled)				
Low-Volta	ge Positive Emitter-Coupled L	ogic (LVPECL)				
$V_{i(clk)dif}$	differential clock input voltage	peak-to-peak	-	1.6	-	V
SINE						
$V_{i(clk)dif}$	differential clock input voltage	peak	-	±3.0	-	V
Low Volta	ge Complementary Metal Oxic	le Semiconductor (LVCMO	S)			
V _{IL}	LOW-level input voltage		-	-	$0.3V_{DDA}$	V
V _{IH}	HIGH-level input voltage		$0.7V_{DDA}$	-	-	V
Logic inp	uts: Power-down: pins CFG	0 to CFG3, SCRAMBLER	, SWING_0, SW	ING_1, and RE	SET	
V _{IL}	LOW-level input voltage		-	0	-	V
V _{IH}	HIGH-level input voltage		-	$0.66V_{DDD}$	-	٧
I _{IL}	LOW-level input current		-6	-	+6	μΑ
I _{IH}	HIGH-level input current		-30	-	+30	μΑ
SPI: pins	CS, SDIO, and SCLK					
V _{IL}	LOW-level input voltage		0	-	$0.3V_{DDA}$	V
V _{IH}	HIGH-level input voltage		$0.7V_{DDA}$	-	V_{DDA}	V
I _{IL}	LOW-level input current		-10	-	+10	μΑ
I _{IH}	HIGH-level input current		-50	-	+50	μΑ
Cı	input capacitance		-	4	-	pF
Analog in	puts: pins INAP, INAM, INBF	P, and INBM				
l ₁	input current	track mode	-5	-	+5	μΑ
R _I	input resistance	track mode	-	15	-	Ω
Cı	input capacitance	track mode	-	5	-	pF
V _{I(cm)}	common-mode input voltage	track mode	0.9	1.5	2	V

 Table 5.
 Static characteristics
 [1]
 ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
B _i	input bandwidth		-	600	-	MHz
$V_{I(dif)}$	differential input voltage	peak-to-peak	1	-	2	V
Voltage co	ntrolled regulator output: p	ins VCMA and VCMB				
$V_{O(cm)}$	common-mode output voltage		-	V _{DDA} / 2	-	V
O(cm)	common-mode output current		-	4	-	mA
Reference	voltage input/output: pin V	REF				
V_{VREF}	voltage on pin VREF	output	0.5	-	1	V
		input	0.5	-	1	V
Data outpu	ts: pins CMLPA, CMLNA					
Output leve	ls, V _{DDD} = 1.8 V; SWING_SE	EL[2:0] = 000				
V _{OL}	LOW-level output	DC coupled; output	-	1.5	-	V
	voltage	AC coupled	-	1.35	-	V
V _{OH}	HIGH-level output	DC coupled; output	-	1.8	-	V
	voltage	AC coupled	-	1.65	-	V
Output leve	ls, V _{DDD} = 1.8 V; SWING_SE	EL[2:0] = 001				
V _{OL}	LOW-level output	DC coupled; output	-	1.45	-	V
	voltage	AC coupled	-	1.275	-	V
V _{OH}	HIGH-level output	DC coupled; output	-	1.8	-	V
	voltage	AC coupled	-	1.625	-	V
Output leve	ls, V _{DDD} = 1.8 V; SWING_SE	EL[2:0] = 010				
V _{OL}	LOW-level output	DC coupled; output	-	1.4	-	V
	voltage	AC coupled	-	1.2	-	V
V _{OH}	HIGH-level output	DC coupled; output	-	1.8	-	V
	voltage	AC coupled	-	1.6	-	V
Output leve	ls, V _{DDD} = 1.8 V; SWING_SE	EL[2:0] = 011				
V _{OL}	LOW-level output	DC coupled; output	-	1.35	-	V
	voltage	AC coupled	-	1.125	-	V
V _{OH}	HIGH-level output	DC coupled; output	-	1.8	-	V
	voltage	AC coupled	-	1.575	-	V
Output leve	ls, V _{DDD} = 1.8 V; SWING_SE	EL[2:0] = 100				
V _{OL}	LOW-level output	DC coupled; output	-	1.3	-	V
	voltage	AC coupled	-	1.05	-	V
V _{OH}	HIGH-level output	DC coupled; output	-	1.8	-	V
	voltage	AC coupled	-	1.55	-	V
Serial conf	iguration: pins SYNCCP, S	YNCCN				
V _{IL}	LOW-level input voltage	differential; input	-	0.95	-	V
V _{IH}	HIGH-level input voltage	differential; input	-	1.47	-	V
Accuracy						
INL	integral non-linearity		-	±5	-	LSB

Product data sheet

ADC1413D series

Dual 14-bit ADC; serial JESD204A interface

 Table 5.
 Static characteristics
 [1]
 ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DNL	differential non-linearity	guaranteed no missing codes	-0.95	±0.5	+0.95	LSB
E _{offset}	offset error		-	±2	-	mV
E _G	gain error	full-scale	-	± 0.5	-	%
$M_{G(CTC)}$	channel-to-channel gain matching		-	1.1	-	%
Supply						
PSRR	power supply rejection ratio	200 mV (p-p) on pin VDDA; $f_i = DC$	-	–54	-	dB

^[1] Typical values measured at $V_{DDA} = 3 \text{ V}$, $V_{DDD} = 1.8 \text{ V}$, $T_{amb} = 25 ^{\circ}\text{C}$. Minimum and maximum values are across the full temperature range $T_{amb} = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$ at $V_{DDA} = 3 \text{ V}$, $V_{DDD} = 1.8 \text{ V}$; V_{I} (INAP, INBP) $-V_{I}$ (INAM, INBM) = -1 dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

NXP Semiconductors

10.1 Dynamic characteristics

Dynamic characteristics[1] Table 6.

Symbol	Parameter	Conditions	AD	C1413D	065	AD	C1413D	080	AD	C1413D	105	ADO	C1413E	125	Unit
			Min	Тур	Max										
Analog si	gnal processing														
α_{2H}	second harmonic level	$f_i = 3 \text{ MHz}$	-	87	-	-	87	-	-	86	-	-	88	-	dBc
		f _i = 30 MHz	-	86	-	-	86	-	-	86	-	-	87	-	dBc
		f _i = 70 MHz	-	85	-	-	85	-	-	84	-	-	85	-	dBc
		f _i = 170 MHz	-	82	-	-	82	-	-	81	-	-	83	-	dBc
αзн	third harmonic level	$f_i = 3 \text{ MHz}$	-	86	-	-	86	-	-	85	-	-	87	-	dBc
		$f_i = 30 \text{ MHz}$	-	85	-	-	85	-	-	85	-	-	86	-	dBc
		f _i = 70 MHz	-	84	-	-	84	-	-	83	-	-	84	-	dBc
		f _i = 170 MHz	-	81	-	-	81	-	-	80	-	-	82	-	dBc
THD	total harmonic distortion	$f_i = 3 \text{ MHz}$	-	83	-	-	83	-	-	82	-	-	84	-	dBc
		$f_i = 30 \text{ MHz}$	-	82	-	-	82	-	-	82	-	-	83	-	dBc
		f _i = 70 MHz	-	81	-	-	81	-	-	80	-	-	81	-	dBc
		$f_i = 170 \text{ MHz}$	-	78	-	-	78	-	-	77	-	-	79	-	dBc
ENOB	effective number of bits	$f_i = 3 \text{ MHz}$	-	11.7	-	-	11.7	-	-	11.6	-	-	11.6	-	bits
		$f_i = 30 \text{ MHz}$	-	11.6	-	-	11.5	-	-	11.5	-	-	11.5	-	bits
		f _i = 70 MHz	-	11.5	-	-	11.5	-	-	11.4	-	-	11.4	-	bits
		f _i = 170 MHz	-	11.4	-	-	11.4	-	-	11.3	-	-	11.3	-	bits
SNR	signal-to-noise ratio	$f_i = 3 \text{ MHz}$	-	72.1	-	-	72.0	-	-	71.8	-	-	71.4	-	dBFS
		$f_i = 30 \text{ MHz}$	-	71.3	-	-	71.2	-	-	71.2	-	-	71.1	-	dBFS
		$f_i = 70 \text{ MHz}$	-	70.7	-	-	70.7	-	-	70.6	-	-	70.5	-	dBFS
		$f_i = 170 \text{ MHz}$	-	70.2	-	-	70.1	-	-	70.0	-	-	69.9	-	dBFS
SFDR	spurious-free dynamic	$f_i = 3 \text{ MHz}$	-	86	-	-	86	-	-	85	-	-	87	-	dBc
	range	$f_i = 30 \text{ MHz}$	-	85	-	-	85	-	-	85	-	-	86	-	dBc
		$f_i = 70 \text{ MHz}$	-	84	-	-	84	-	-	83	-	-	84	-	dBc
		f _i = 170 MHz	-	81	-	-	81	-	-	80	-	-	82	-	dBc

 Table 6.
 Dynamic characteristics
 [1]
 ...continued

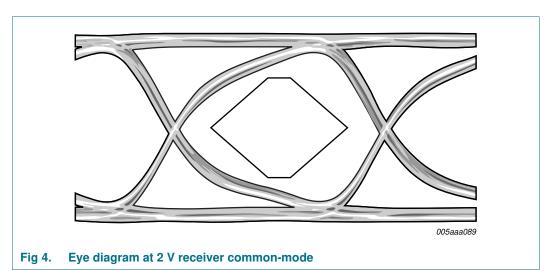
1413D	Symbol	Parameter	Conditions	ADO	ADC1413D065		ADC1413D080			ADO	C1413D	105	ADO	Unit		
SER				Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	IMD	intermodulation distortion	$f_i = 3 \text{ MHz}$	-	89	-	-	89	-	-	88	-	-	89	-	dBc
			$f_i = 30 \text{ MHz}$	-	88	-	-	88	-	-	88	-	-	88	-	dBc
			$f_i = 70 \text{ MHz}$	-	87	-	-	87	-	-	86	-	-	86	-	dBc
			$f_i = 170 \text{ MHz}$	-	84	-	-	85	-	-	83	-	-	84	-	dBc
	$\alpha_{ct(ch)}$	channel crosstalk	$f_i = 70 \text{ MHz}$	-	100	-	-	100	-	-	100	-	-	100	-	dBc

^[1] Typical values measured at $V_{DDA} = 3 \text{ V}$, $V_{DDD} = 1.8 \text{ V}$, $V_{amb} = 25 \text{ °C}$. Minimum and maximum values are across the full temperature range $T_{amb} = -40 \text{ °C}$ to +85 °C at $V_{DDA} = 3 \text{ V}$, $V_{DDD} = 1.8 \text{ V}$; V_{I} (INAP, INBP) $-V_{I}$ (INAM, INBM) = -1 dBFS; internal reference mode; 100Ω differential applied to serial outputs; unless otherwise specified.

10.2 Clock and digital output timing

Table 7. Clock and digital output characteristics[1]

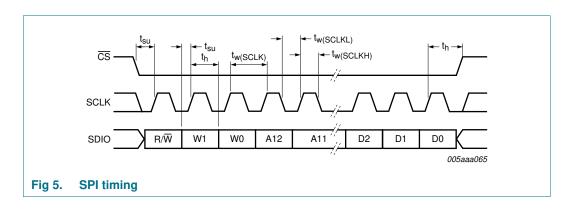

Symbol	Parameter	Conditions	AD	ADC1413D065		ADC1413D080			AD	C1413D	105	ADO	Unit		
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Clock timing	g input: pins CLKP and	d CLKM													
f _{clk}	clock frequency		45	-	65	60	-	80	75	-	105	100	-	125	Msps
t _{lat(data)}	data latency time	clock cycles	307	-	850	250	-	283	190	-	226	160	-	170	ns
δ_{clk}	clock duty cycle	DCS_EN = logic 1	30	50	70	30	50	70	30	50	70	30	50	70	%
t _{d(s)}	sampling delay time		-	8.0	-	-	8.0	-	-	8.0	-	-	0.8	-	ns
t _{wake}	wake-up time		-	76	-	-	76	-	-	76	-	-	76	-	μS


Typical values measured at V_{DDA} = 3 V, V_{DDD} = 1.8 V, T_{amb} = 25 °C. Minimum and maximum values are across the full temperature range T_{amb} = -40 °C to +85 °C at V_{DDA} = 3 V, V_{DDD} = 1.8 V; V_I (INAP, INBP) – V_I (INAM, INBM) = -1 dBFS; internal reference mode; 100 W differential applied to serial outputs; unless otherwise specified.

10.3 Serial output timing

The eye diagram of the serial output is shown in <u>Figure 3</u> and <u>Figure 4</u>. Test conditions are:

- 3.125 Gbps data rate
- T_{amb} = 25 °C
- DC coupling with two different receiver common-mode voltages



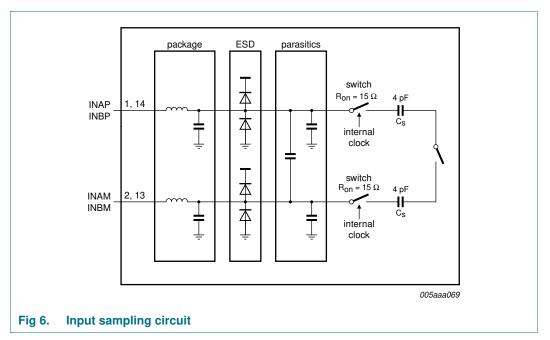
10.4 SPI timing

Table 8. SPI timing characteristics[1]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$t_{w(SCLK)}$	SCLK pulse width		-	40	-	ns
$t_{w(SCLKH)}$	SCLK HIGH pulse width		-	16	-	ns
$t_{w(SCLKL)}$	SCLK LOW pulse width		-	16	-	ns
t _{su}	set-up time	data to SCLKH	-	5	-	ns
		CS to SCLKH	-	5	-	ns
t _h	hold time	data to SCLKH	-	2	-	ns
		CS to SCLKH	-	2	-	ns
f _{clk(max)}	maximum clock frequency		-	25	-	MHz

^[1] Typical values measured at V_{DDA} = 3 V, V_{DDD} = 1.8 V, T_{amb} = 25 °C. Minimum and maximum values are across the full temperature range T_{amb} = -40 °C to +85 °C at V_{DDA} = 3 V, V_{DDD} = 1.8 V; V_{I} (INAP, INBP) – V_{I} (INAM,INBM) = -1 dBFS; internal reference mode; 100 Ω differential applied to serial outputs; unless otherwise specified.

11. Application information

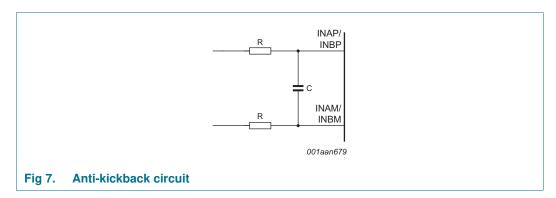

11.1 Analog inputs

11.1.1 Input stage description

The analog input of the ADC1413D supports a differential or a single-ended input drive. Optimal performance is achieved using differential inputs with the common-mode input voltage ($V_{I(cm)}$) on pins INxP and INxM set to 0.5 V_{DDA} .

The full-scale analog input voltage range is configurable between 1 V (p-p) and 2 V (p-p) via a programmable internal reference (see Section 11.2 and Table 21).

<u>Figure 6</u> shows the equivalent circuit of the sample-and-hold input stage, including ElectroStatic Discharge (ESD) protection and circuit and package parasitics.



The sample phase occurs when the internal clock (derived from the clock signal on pin CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the clock signal goes LOW, the stage enters the hold phase and the voltage information is transmitted to the ADC core.

11.1.2 Anti-kickback circuitry

Anti-kickback circuitry (RC filter in <u>Figure 7</u>) is needed to counteract the effects of a charge injection generated by the sampling capacitance.

The RC filter is also used to filter noise from the signal before it reaches the sampling stage. The value of the capacitor should be chosen to maximize noise attenuation without degrading the settling time excessively.

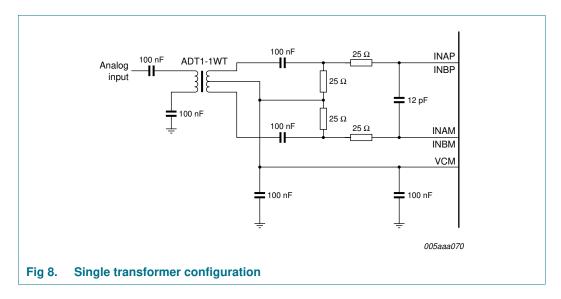
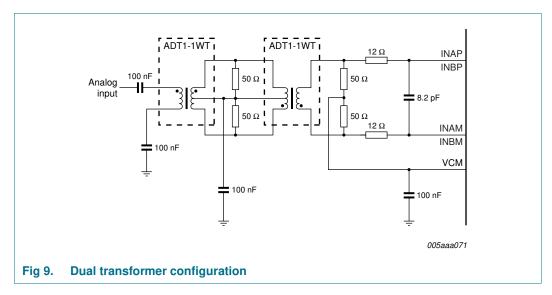

The component values are determined by the input frequency and should be selected so as not to affect the input bandwidth.

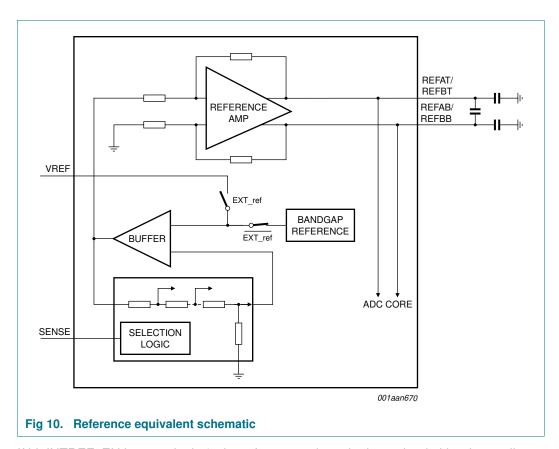
Table 9. RC coupling versus input frequency, typical values


Input frequency (MHz)	Resistance (Ω)	Capacitance (pF)
3	25	12
70	12	8
170	12	8

11.1.3 Transformer

The configuration of the transformer circuit is determined by the input frequency. The configuration shown in Figure 8 would be suitable for a baseband application.

ADC1413D_SER

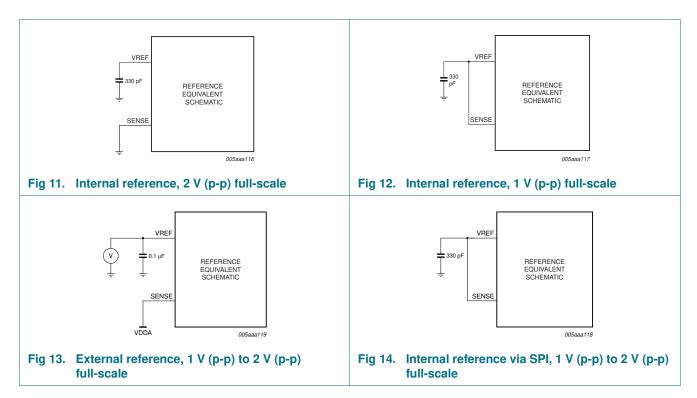


The configuration shown in <u>Figure 9</u> is recommended for high frequency applications. In both cases, the choice of transformer is a compromise between cost and performance.

11.2 System reference and power management

11.2.1 Internal/external reference

The ADC1413D has a stable and accurate built-in internal reference voltage to adjust the ADC full-scale. This reference voltage can be set internally via SPI or with pins VREF and SENSE (see <u>Figure 11</u> to <u>Figure 14</u>), in 1 dB steps between 0 dB and –6 dB, via SPI control bits INTREF[2:0] (when bit INTREF_EN = logic 1; see <u>Table 21</u>). The equivalent reference circuit is shown in <u>Figure 10</u>. An external reference is also possible by providing a voltage on pin VREF as described in <u>Figure 13</u>.



If bit INTREF_EN is set to logic 0, the reference voltage is determined either internally or externally as detailed in $\underline{\text{Table 10}}$.

Table 10. Reference modes

Mode	SPI bit, "Internal reference"	SENSE pin	VREF pin	Full-scale (V (p-p))
Internal (Figure 11)	0	GND	330 pF capacitor to GND	2
Internal (Figure 12)	0	VREF pin = SE 330 pF capacite		1
External (Figure 13)	0	V_{DDA}	external voltage from 0.5 V to 1 V	1 to 2
Internal, SPI mode (Figure 14)	1	VREF pin = SENSE pin and 330 pF capacitor to GND		1 to 2

<u>Figure 11</u> to <u>Figure 14</u> illustrate how to connect the SENSE and VREF pins to select the required reference voltage source.

11.2.2 Programmable full-scale

The full-scale is programmable between 1 V (p-p) to 2 V (p-p) (see Table 11).

Table 11. Programmable full-scale

INTREF[2:0]	Level (dB)	Full-scale (V (p-p))
000	0	2
001	-1	1.78
010	-2	1.59
011	-3	1.42
100	-4	1.26
101	- 5	1.12
110	-6	1
111	not used	X

11.2.3 Common-mode output voltage (V_{O(cm)})

An 0.1 μ F filter capacitor should be connected between pins VCMA and VCMB and ground to ensure a low-noise common-mode output voltage. When AC-coupled, these pins can be used to set the common-mode reference for the analog inputs, for instance via a transformer middle point.

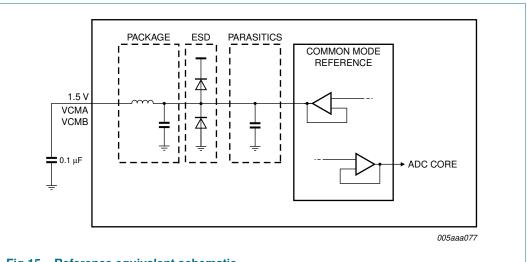
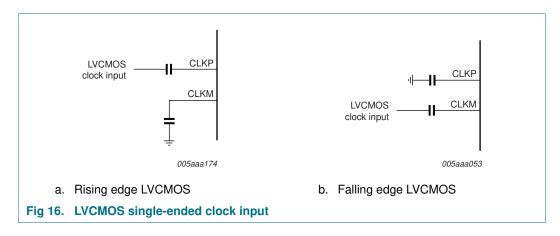
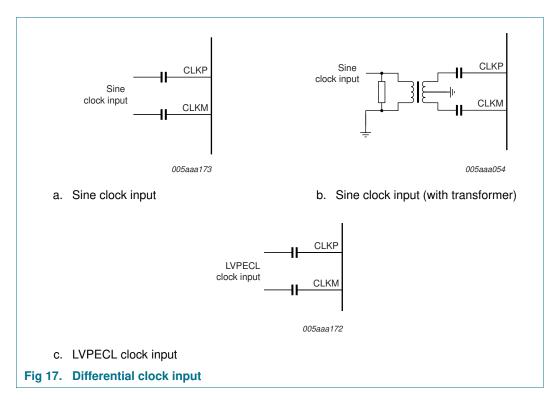


Fig 15. Reference equivalent schematic

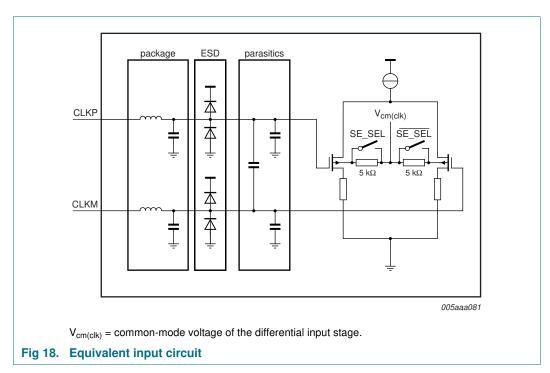

11.2.4 Biasing

The common-mode input voltage, V_{I(cm)}, at the inputs to the sample-and-hold stage (pins INAM, INBM, INAP, and INBP) must be between 0.9 V and 2 V for optimal performance.


11.3 Clock input

11.3.1 **Drive modes**

The ADC1413D can be driven differentially (LVPECL). It can also be driven by a single-ended Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS) signal connected to pin CLKP (pin CLKM should be connected to ground via a capacitor) or pin CLKM (pin CLKP should be connected to ground via a capacitor).



ADC1413D SER

11.3.2 Equivalent input circuit

The equivalent circuit of the input clock buffer is shown in Figure 18. The common-mode voltage of the differential input stage is set via 5 k Ω internal resistors.

Single-ended or differential clock inputs can be selected via the SPI (see <u>Table 20</u>). If single-ended is selected, the input pin (CLKM or CLKP) is selected via control bit SE SEL.

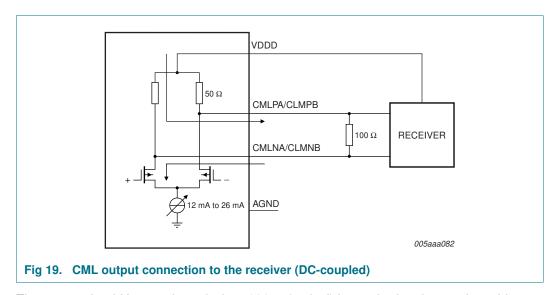
If single-ended is implemented without setting bit SE_SEL accordingly, the unused pin should be connected to ground via a capacitor.

11.3.3 Duty cycle stabilizer

The duty cycle stabilizer can improve the overall performance of the ADC by compensating the input clock signal duty cycle. When the duty cycle stabilizer is active (bit DCS_EN = logic 1; see <u>Table 20</u>), the circuit can handle signals with duty cycles of between 30 % and 70 % (typical). When the duty cycle stabilizer is disabled (DCS_EN = logic 0), the input clock signal should have a duty cycle of between 45 % and 55 %.

Table 12. Duty cycle stabilizer

Bit DCS_EN	Description
0	duty cycle stabilizer disable
1	duty cycle stabilizer enable

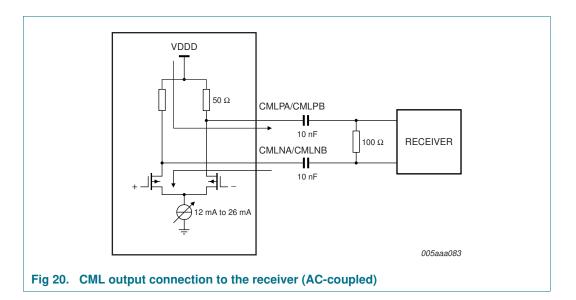

11.3.4 Clock input divider

The ADC1413D contains an input clock divider that divides the incoming clock by a factor of 2 (when bit CLKDIV2_SEL = logic 1; see <u>Table 20</u>). This feature allows the user to deliver a higher clock frequency with better jitter performance, leading to a better SNR result once acquisition has been performed.

11.4 Digital outputs

11.4.1 Serial output equivalent circuit

The JESD204A standard specifies that if the receiver and the transmitter are DC-coupled, both must be fed from the same supply.

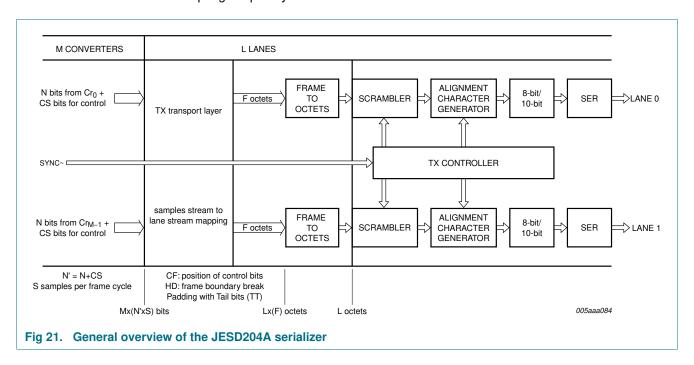


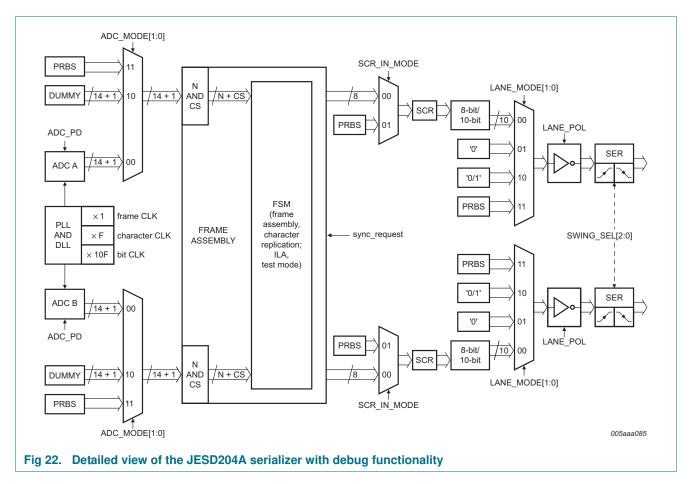
The output should be terminated when 100 Ω (typical) is reached at the receiver side.

ADC1413D_SER

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.


11.5 JESD204A serializer


For more information about the JESD204A standard refer to the JEDEC web site.

11.5.1 Digital JESD204A formatter

The block placed after the ADC cores is used to implement all functionalities of the JESD204A standard. This ensures signal integrity and guarantees the clock and the data recovery at the receiver side.

The block is highly parameterized and can be configured in various ways depending on the sampling frequency and the number of lanes used.

11.5.2 ADC core output codes versus input voltage

Table 13 shows the data output codes for a given analog input voltage.

Table 13. Output codes versus input voltage

INP – INM (V)	Offset binary	Two's complement	OTR
< -1	00 0000 0000 0000	10 0000 0000 0000	1
-1	00 0000 0000 0000	10 0000 0000 0000	0
-0.9998779	00 0000 0000 0001	10 0000 0000 0001	0
-0.9997559	00 0000 0000 0010	10 0000 0000 0010	0
-0.9996338	00 0000 0000 0011	10 0000 0000 0011	0
-0.9995117	00 0000 0000 0100	10 0000 0000 0100	0
			0
-0.0002441	01 1111 1111 1110	11 1111 1111 1110	0
-0.0001221	01 1111 1111 1111	11 1111 1111 1111	0
0	10 0000 0000 0000	00 0000 0000 0000	0
+0.0001221	10 0000 0000 0001	00 0000 0000 0001	0
+0.0002441	10 0000 0000 0010	00 0000 0000 0010	0
			0
+0.9995117	11 1111 1111 1011	01 1111 1111 1011	0

Table 13. Output codes versus input voltage ...continued

INP – INM (V)	Offset binary	Two's complement	OTR
+0.9996338	11 1111 1111 1100	01 1111 1111 1100	0
+0.9997559	11 1111 1111 1101	01 1111 1111 1101	0
+0.9998779	11 1111 1111 1110	01 1111 1111 1110	0
+1	11 1111 1111 1111	01 1111 1111 1111	0
> +1	11 1111 1111 1111	01 1111 1111 1111	1

11.6 Serial Peripheral Interface (SPI)

11.6.1 Register description

The ADC1413D serial interface is a synchronous serial communications port allowing easy interfacing with many industry microprocessors. It provides access to the registers that control the operation of the chip in both read and write modes.

This interface is configured as a 3-wire type (SDIO as bidirectional pin).

SCLK acts as the serial clock, and pin $\overline{\text{CS}}$ acts as the serial chip select.

Each read/write operation is sequenced by the \overline{CS} signal and enabled by a LOW level to to drive the chip with 2 bytes to 5 bytes, depending on the content of the instruction byte (see Table 14).

Table 14. SPI instruction bytes

	MSB							LSB
Bit	7	6	5	4	3	2	1	0
Description	R/W[1]	W1	W0	A12	A11	A10	A9	A8
	A7	A6	A 5	A4	A3	A2	A1	A0

 $[\]begin{tabular}{ll} [1] & R/W indicates whether a read (logic 1) or write (logic 0) transfer occurs after the instruction byte. \end{tabular}$

Table 15. Read or Write mode access description

R/W[1]	Description
0	Write mode operation
1	Read mode operation

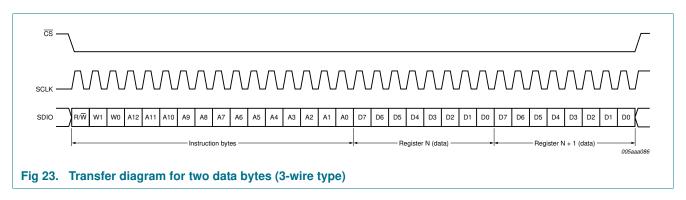
^[1] Bits W1 and W0 indicate the number of bytes transferred after the instruction byte.

Table 16. Number of bytes to be transferred

W1	W0	Number of bytes transferred
0	0	1 byte
0	1	2 bytes
1	0	3 bytes
1	1	4 or more bytes

Bits A12 to A0 indicate the address of the register being accessed. In the case of a multiple byte transfer, this address is the first register to be accessed. An address counter is incremented to access subsequent addresses.

ADC1413D_SER


24 of 43

ADC1413D series

Dual 14-bit ADC; serial JESD204A interface

The steps for a data transfer:

- 1. The falling edge on pin $\overline{\text{CS}}$ in combination with a rising edge on pin SCLK determine the start of communications.
- 2. The first phase is the transfer of the 2-byte instruction.
- 3. The second phase is the transfer of the data which can vary in length but is always a multiple of 8 bits. The Most Significant Bit (MSB) is always sent first (for instruction and data bytes).
- 4. A rising edge on pin $\overline{\text{CS}}$ indicates the end of data transmission.

11.6.2 Channel control

The two ADC channels can be configured at the same time or separately. By using the register "Channel index", the user can choose which ADC channel receives the next SPI-instruction. By default the channel A and B receives the same instructions in write mode. In read mode only A is active.