: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

FEATURES

95 ps propagation delay
 7.5 GHz toggle rate
 60 ps typical output rise/fall
 60 fs random jitter (RJ)
 On-chip terminations at both input pins
 Extended industrial temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 2.5 V to 3.3 V power supply ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$)

APPLICATIONS

Clock and data signal restoration and level shifting
Automated test equipment (ATE)
High speed instrumentation
High speed line receivers
Threshold detection
Converter clocking

GENERAL DESCRIPTION

The ADCLK905 (one input, one output), ADCLK907 (dual one input, one output), and ADCLK925 (one input, two outputs) are ultrafast clock/data buffers fabricated on the Analog Devices, Inc., proprietary XFCB3 silicon germanium (SiGe) bipolar process.

The ADCLK905/ADCLK907/ADCLK925 feature full-swing emitter coupled logic (ECL) output drivers. For PECL (positive ECL) operation, bias $V_{C C}$ to the positive supply and V_{EE} to ground. For NECL (negative ECL) operation, bias $V_{C C}$ to ground and V_{EE} to the negative supply.

The buffers offer 95 ps propagation delay, 7.5 GHz toggle rate, 10 Gbps data rate, and 60 fs random jitter (RJ).
The inputs have center tapped, 100Ω, on-chip termination resistors. A $V_{\text {ref }}$ pin is available for biasing ac-coupled inputs.

The ECL output stages are designed to directly drive 800 mV each side into 50Ω terminated to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ for a total differential output swing of 1.6 V .
The ADCLK905/ADCLK907/ADCLK925 are available in 16-lead LFCSP packages.

TYPICAL APPLICATION CIRCUITS

Figure 1. ADCLK905 ECL 1:1 Clock/Data Buffer

Figure 2. ADCLK907 ECL Dual 1:1 Clock/Data Buffer

Figure 3. ADCLK925 ECL 1:2 Clock/Data Fanout Buffer

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Typical Application Circuits 1
Revision History 2
Specifications 3
Electrical Characteristics 3
Absolute Maximum Ratings 5
Thermal Resistance 5
ESD Caution 5
Pin Configurations and Function Descriptions 6
REVISION HISTORY
2/2017—Rev. A to Rev. B
Changes to Figure 4 and Table 4 6
Changes to Figure 5 and Table 5 7
Changes to Figure 6 and Table 6 8
8/2016-Rev. 0 to Rev. A
Changed CP-16-3 to CP-16-27 Throughout
Changes to Figure 4 and Table 4 6
Changes to Figure 5 and Table 5 7
Changes to Figure 6 and Table 6 8
Updated Outline Dimensions 15
Changes to Ordering Guide 15
Typical Performance Characteristics 9
Applications Information 12
Power/Ground Layout and Bypassing 12
Output Stages 12
Optimizing High Speed Performance 12
Buffer Random Jitter 12
Typical Application Circuits 13
Evaluation Board Schematic 14
Outline Dimensions 15
Ordering Guide 15

8/2007—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

Typical (Typ) values are given for $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Minimum (Min) and maximum (Max) values are given over the full $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V} \pm 10 \%$ and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ variation, unless otherwise noted.

Table 1.

ADCLK905/ADCLK907/ADCLK925

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
POWER SUPPLY						
Supply Voltage Requirement	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$	2.375		3.63	V	2.5 V - 5\% to 3.3V + 10\%
Power Supply Current						Static
ADCLK905						
Negative Supply Current	$\mathrm{I}_{\text {vee }}$		24		mA	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.5 \mathrm{~V}$
			25	40	mA	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V} \pm 10 \%$
Positive Supply Current	Ivce		47		mA	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.5 \mathrm{~V}$
			48	63	mA	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V} \pm 10 \%$
ADCLK907						
Negative Supply Current	IVEE		48		mA	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.5 \mathrm{~V}$
			50	80	mA	$V_{\text {CC }}-V_{\text {EE }}=3.3 \mathrm{~V} \pm 10 \%$
Positive Supply Current	Ivce		94		mA	$\mathrm{V}_{\mathrm{Cc}}-\mathrm{V}_{\mathrm{EE}}=2.5 \mathrm{~V}$
			96	126	mA	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V} \pm 10 \%$
ADCLK925						
Negative Supply Current	$\mathrm{I}_{\text {VEE }}$		29		mA	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.5 \mathrm{~V}$
			31	51	mA	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V} \pm 10 \%$
Positive Supply Current	Ivce		76		$m A$	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.5 \mathrm{~V}$
			77	97	mA	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V} \pm 10 \%$
Power Supply Rejection ${ }^{1}$	PSRricc		3		ps/V	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}=3.0 \mathrm{~V} \pm 20 \%$
Output Swing Supply Rejection ${ }^{2}$	PSRycc		26		dB	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}=3.0 \mathrm{~V} \pm 20 \%$

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$	6.0 V
Input Voltage	
$\mathrm{D}(\mathrm{D} 1, \mathrm{D} 2), \overline{\mathrm{D}}(\overline{\mathrm{D} 1}, \overline{\mathrm{D} 2})$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}-0.5 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { D1, D2, } \overline{\mathrm{D} 1}, \overline{\mathrm{D} 2} \text { to } \mathrm{V}_{\mathrm{T}} \text { Pin } \\ & \text { (CML or PECL Termination) } \end{aligned}$	$\pm 40 \mathrm{~mA}$
$\mathrm{D}(\mathrm{D} 1, \mathrm{D} 2)$ to $\overline{\mathrm{D}}(\overline{\mathrm{D} 1}, \overline{\mathrm{D} 2})$	$\pm 1.8 \mathrm{~V}$
Maximum Voltage on Output Pins	$\mathrm{V}_{\text {cc }}+0.5 \mathrm{~V}$
Maximum Output Current	35 mA
Input Termination, V_{T} to $\mathrm{D}(\mathrm{D} 1, \mathrm{D} 2), \overline{\mathrm{D}}(\overline{\mathrm{D} 1}, \overline{\mathrm{D} 2})$	$\pm 2 \mathrm{~V}$
Voltage Reference, $\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {EE }}$
Temperature	
Operating Temperature Range, Ambient	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature, Junction	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance

Package Type	θ_{JA}	Unit
16-Lead LFCSP	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES

1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT.

IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE
AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED
AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED
IS CONNECTED TO THIS EXPOSED PAD. ALLOW SUFFICIENT CLEARANCE TO VIAS AND OTHER COMPONENTS.
Figure 4. ADCLK905 Pin Configuration
Table 4. Pin Function Descriptions for 1:1 ADCLK905 Buffer

Pin No.	Mnemonic	Description
1	D	Noninverting Input.
2	\bar{D}	Inverting Input.
$\begin{aligned} & 3,4,5,6 \\ & 9,10 \end{aligned}$	NC	No Connect. No physical connection to the die.
7,14	$\mathrm{V}_{\text {EE }}$	Negative Supply Voltage.
8,13	$V_{\text {cc }}$	Positive Supply Voltage.
11	$\overline{\mathrm{Q}}$	Inverting Output.
12	Q	Noninverting Output.
15	$\mathrm{V}_{\text {ReF }}$	Reference Voltage. Reference voltage for biasing ac-coupled inputs.
16	V_{T}	Center Tap. Center tap of 100Ω input resistor.
	EPAD	Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components.

$$
\begin{aligned}
& \because \text { ロ } \ddagger
\end{aligned}
$$

notes

1. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT

IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE
AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED
THERMAL AND/OR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE
THERMAL AND/OR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE
Figure 5. ADCLK907 Pin Configuration
Table 5. Pin Function Descriptions for Dual 1:1 ADCLK907 Buffer

Pin No.	Mnemonic	Description
1	D1	Noninverting Input 1.
2	$\overline{\mathrm{D} 1}$	Inverting Input 1.
3	D2	Noninverting Input 2.
4	$\overline{\mathrm{D} 2}$	Inverting Input 2.
5	$\mathrm{V}_{\mathrm{T}} 2$	Center Tap 2. Center tap of 100Ω input resistor, Channel 2.
6	$V_{\text {ref }} 2$	Reference Voltage 2. Reference voltage for biasing ac-coupled inputs, Channel 2.
7,14	$V_{\text {EE }}$	Negative Supply Voltage.
8,13	V_{cc}	Positive Supply Voltage. Pin 8 and Pin 13 are not strapped internally.
9	$\overline{\text { Q2 }}$	Inverting Output 2.
10	Q2	Noninverting Output 2.
11	$\overline{\text { Q1 }}$	Inverting Output 1.
12	Q1	Noninverting Output 1.
15	$V_{\text {Ref }} 1$	Reference Voltage 1. Reference voltage for biasing ac-coupled inputs, Channel 1.
16	$\mathrm{V}_{\mathrm{T}} 1$	Center Tap 1. Center tap of 100Ω input resistor, Channel 1.
	EPAD	Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components.

NOTES

1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT

IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE
AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED
THERMAL ANDIOR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE
IS CONNECTED TO THIS EXPOSED PAD. ALLOW SUFFICIENT CLEARANCE TO VIAS AND OTHER COMPONENTS.
Figure 6. ADCLK925 Pin Configuration
Table 6. Pin Function Descriptions for 1:2 ADCLK925 Buffer

Pin No.	Mnemonic	Description
1	D	Noninverting Input.
2	$\overline{\mathrm{D}}$	Inverting Input.
3, 4, 5, 6	NC	No Connect. No physical connection to the die.
7,14	V_{EE}	Negative Supply Voltage.
8,13	$\mathrm{V}_{\text {cc }}$	Positive Supply Voltage.
9	$\overline{\text { Q2 }}$	Inverting Output 2.
10	Q2	Noninverting Output 2.
11	$\overline{\text { Q1 }}$	Inverting Output 1.
12	Q1	Noninverting Output 1.
15	$\mathrm{V}_{\text {REF }}$	Reference Voltage. Reference voltage for biasing ac-coupled inputs.
16	V_{T}	Center Tap. Center tap of 100Ω input resistor.
	EPAD	Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, outputs terminated 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, unless otherwise noted.

Figure 7. Output Waveform, $V_{c c}=3.3 \mathrm{~V}$

Figure 8. Phase Noise at 122.88 MHz

Figure 9. Phase Noise at 245.76 MHz

Figure 10. Output Waveform, $V_{c c}=3.3 \mathrm{~V}$

Figure 11. Phase Noise at 622.08 MHz

Figure 12. RMS Jitter vs. Input Slew Rate

Figure 13. Vod vs. Power Supply Voltage

Figure 14. Power Supply Current vs. Power Supply Voltage, ADCLK905

Figure 15. Propagation Delay vs. Vıсм; Input Swing $=200 \mathrm{mV}$

Figure 16. Power Supply Current vs. Supply Voltage, ADCLK925

Figure 17. Propagation Delay vs. VID

Figure 18. Toggle Rate, Differential Output Swing vs. Frequency

Figure 19. 2.488 Gbps PRBS $2^{23}-1$ with OC-48/STM-16 Mask, Measured p-p Jitter 8.1 ps, Source p-p Jitter 3.5 ps

Figure 20. 9.95 Gbps PRBS $2^{23}-1$ with OC-193/STM-64 Mask, Measured p-p Jitter 10.5 ps, Source p-p Jitter 6.0 ps

Figure 21.4.25 Gbps PRBS 2^{23} - 1 with FC4250 (Optical) Mask, Measured p-p Jitter 8.2 ps, Source p-p Jitter 3.4 ps

Figure 22. 8.50 Gbps PRBS $2^{23}-1$ with FC8500E ABS Beta Rx Mask, Measured p-p Jitter 10.9 ps, Source p-p Jitter 4.4 ps

Figure 23. 2.5 Gbps PRBS $2^{23}-1$ with PCI Express 2.5 Rx Mask, Measured p-p Jitter 8.1 ps, Source p-p Jitter 3.5 ps

Figure 24. 5.0 Gbps PRBS $2^{23}-1$ with PCI Express 5.0 Rx Mask, Measured p-p Jitter 8.7 ps, Source p-p Jitter 3.5 ps

APPLICATIONS INFORMATION

POWER/GROUND LAYOUT AND BYPASSING

The ADCLK905/ADCLK907/ADCLK925 buffers are designed for very high speed applications. Consequently, high speed design techniques must be used to achieve the specified performance. It is critically important to use low impedance supply planes for both the negative supply $\left(\mathrm{V}_{\mathrm{EE}}\right)$ and the positive supply $\left(\mathrm{V}_{\mathrm{CC}}\right)$ planes as part of a multilayer board. Providing the lowest inductance return path for switching currents ensures the best possible performance in the target application.
It is also important to adequately bypass the input and output supplies. A $1 \mu \mathrm{~F}$ electrolytic bypass capacitor should be placed within several inches of each power supply pin to ground. In addition, multiple high quality $0.001 \mu \mathrm{~F}$ bypass capacitors should be placed as close as possible to each of the V_{EE} and V_{CC} supply pins and should be connected to the GND plane with redundant vias. High frequency bypass capacitors should be carefully selected for minimum inductance and ESR. Parasitic layout inductance should be strictly avoided to maximize the effectiveness of the bypass at high frequencies.

OUTPUT STAGES

The specified performance can be achieved only by using proper transmission line terminations. The outputs of the ADCLK905/ ADCLK907/ADCLK925 buffers are designed to directly drive 800 mV into 50Ω cable or microstrip/stripline transmission lines terminated with 50Ω referenced to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. The PECL output stage is shown in Figure 25. The outputs are designed for best transmission line matching. If high speed signals must be routed more than a centimeter, either the microstrip or the stripline technique is required to ensure proper transition times and to prevent excessive output ringing and pulse widthdependent propagation delay dispersion.

Figure 25. Simplified Schematic Diagram of the ADCLK905/ADCLK907/ADCLK925 PECL Output Stage

OPTIMIZING HIGH SPEED PERFORMANCE

As with any high speed circuit, proper design and layout techniques are essential to obtaining the specified performance. Stray capacitance, inductance, inductive power and ground impedances, or other layout issues can severely limit performance and cause oscillation. Discontinuities along input and output transmission lines can also severely limit the specified jitter performance by reducing the effective input slew rate.
In a 50Ω environment, input and output matching have a significant impact on performance. The buffer provides internal 50Ω termination resistors for both D and $\overline{\mathrm{D}}$ inputs. The return side should normally be connected to the reference pin provided. The termination potential should be carefully bypassed, using ceramic capacitors to prevent undesired aberrations on the input signal due to parasitic inductance in the termination return path. If the inputs are directly coupled to a source, care must be taken to ensure the pins are within the rated input differential and common-mode ranges.

If the return is floated, the device exhibits 100Ω cross termination, but the source must then control the common-mode voltage and supply the input bias currents.
There are ESD/clamp diodes between the input pins to prevent the application of excessive offsets to the input transistors. ESD diodes are not optimized for best ac performance. When a clamp is desired, it is recommended that appropriate external diodes be used.

BUFFER RANDOM JITTER

The ADCLK905/ADCLK907/ADCLK925 are specifically designed to minimize added random jitter over a wide input slew rate range. Provided sufficient voltage swing is present, random jitter is affected most by the slew rate of the input signal. Whenever possible, excessively large input signals should be clamped with fast Schottky diodes because attenuators reduce the slew rate. Input signal runs of more than a few centimeters should be over low loss dielectrics or cables with good high frequency characteristics.

TYPICAL APPLICATION CIRCUITS

Figure 26. Interfacing to CML Inputs

Figure 27. Interfacing to PECL

CONNECT V_{T} TO $\mathrm{V}_{\text {REF }}$.
NOTES

1. PLACING A BYPASS CAPACITOR

Figure 28. AC Coupling Differential Signals

CONNECT $\mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\text {REF }}$, AND $\overline{\mathrm{D}}$. PLACE A BYPASS CAPACITOR FROM V_{T} TO GROUND.
alternatively, V_{T}, $\mathrm{V}_{\text {REF }}$, AND D CAN be CONNECTED, GIVING A CLEANER LAYOUT AND $\stackrel{\circ}{\stackrel{\circ}{\circ}}$ A 180° PHASE SHIFT.
Figure 29. Interfacing to AC-Coupled Single-Ended Inputs

ADCLK905/ADCLK907/ADCLK925

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.

Figure 31. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-16-27)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADCLK905BCPZ-WP $^{\prime 2}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y03
ADCLK905BCPZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y03
ADCLK905BCPZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y03
ADCLK907BCPZ-WP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y06
ADCLK907BCPZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y06
ADCLK907BCPZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y06
ADCLK925BCPZ-WP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y08
ADCLK925BCPZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y08
ADCLK925BCPZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y08
ADCLK905/PCBZ		Evaluation Board		
ADCLK907/PCBZ		Evaluation Board		
ADCLK925/PCBZ		Evaluation Board		

[^1]
NOTES

[^0]: ${ }^{1}$ Change in $\mathrm{T}_{\text {PD }}$ per change in V_{CC}.
 ${ }^{2}$ Change in output swing per change in V_{cc}.

[^1]: ${ }^{1} Z=$ RoHS Compliant Part.

