imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Single-Phase Multifunction Metering IC with di/dt Sensor Interface

ADE7753

FEATURES

- High accuracy; supports IEC 60687/61036/61268 and IEC 62053-21/62053-22/62053-23
- On-chip digital integrator enables direct interface to current sensors with di/dt output
- A PGA in the current channel allows direct interface to shunts and current transformers
- Active, reactive, and apparent energy; sampled waveform; current and voltage rms
- Less than 0.1% error in active energy measurement over a dynamic range of 1000 to 1 at 25°C
- Positive-only energy accumulation mode available
- On-chip user programmable threshold for line voltage surge and SAG and PSU supervisory
- Digital calibration for power, phase, and input offset
- On-chip temperature sensor (±3°C typical)
- SPI® compatible serial interface
- Pulse output with programmable frequency
- Interrupt request pin ($\overline{\text{IRQ}})$ and status register
- Reference 2.4 V with external overdrive capability

Single 5 V supply, low power (25 mW typical)

GENERAL DESCRIPTION

The ADE7753¹ features proprietary ADCs and DSP for high accuracy over large variations in environmental conditions and time. The ADE7753 incorporates two second-order 16-bit Σ - Δ ADCs, a digital integrator (on CH1), reference circuitry, temperature sensor, and all the signal processing required to perform active, reactive, and apparent energy measurements,

line-voltage period measurement, and rms calculation on the voltage and current. The selectable on-chip digital integrator provides direct interface to di/dt current sensors such as Rogowski coils, eliminating the need for an external analog integrator and resulting in excellent long-term stability and precise phase matching between the current and voltage channels.

The ADE7753 provides a serial interface to read data, and a pulse output frequency (CF), which is proportional to the active power. Various system calibration features, i.e., channel offset correction, phase calibration, and power calibration, ensure high accuracy. The part also detects short duration low or high voltage variations.

The positive-only accumulation mode gives the option to accumulate energy only when positive power is detected. An internal no-load threshold ensures that the part does not exhibit any creep when there is no load. The zero-crossing output (ZX) produces a pulse that is synchronized to the zero-crossing point of the line voltage. This signal is used internally in the line cycle active and apparent energy accumulation modes, which enables faster calibration.

The interrupt status register indicates the nature of the interrupt, and the interrupt enable register controls which event produces an output on the IRQ pin, an open-drain, active low logic output.

The ADE7753 is available in a 20-lead SSOP package.

FUNCTIONAL BLOCK DIAGRAM

Rev. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2003-2010 Analog Devices, Inc. All rights reserved.

¹U.S. Patents 5,745,323; 5,760,617; 5,862,069; 5,872,469.

ADE7753* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

ADE7753 Evaluation Board

DOCUMENTATION

Application Notes

- AN-564: A Power Meter Reference Design Based on the ADE7756
- AN-639: Frequently Asked Questions (FAQs) Analog Devices Energy (ADE) Products
- AN-758: Creating a Reactive Energy Pulse Output Based on the ADE7753

Data Sheet

 ADE7753: Single-Phase Multifunction Metering IC with di/ dt Sensor Interface Data Sheet

REFERENCE MATERIALS

Solutions Bulletins & Brochures

• Emerging Energy Applications Solutions Bulletin, Volume 10, Issue 4

Technical Articles

- Current Sensing for Energy Metering
- Digital Energy Meters by the Millions
- Energy measurement ICs Simplify Meter Design
- How Solid Is Your Solid-State Energy Meter? Not All Ics Are Created Equal.
- IC Technology and Failure Mechanisms Understanding Reliability Standards Can Raise Quality of Meters
- Measuring Harmonic Energy with a Solid State Energy Meter
- Measuring Reactive Power in Energy Meters
- Reactive Energy Measurement Made Simple
- RF Meets Power Lines: Designing Intelligent Smart Grid Systems that Promote Energy Efficiency
- Solid State Solutions For Electricity Metrology
- Tapping The Potential Of Electronic Energy Metering
- Trusting Integrated Circuits in Metering Applications

DESIGN RESOURCES

- ADE7753 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADE7753 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖵

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features 1
General Description1
Functional Block Diagram1
Revision History
Specifications
Timing Characteristics
Absolute Maximum Ratings7
ESD Caution7
Terminology
Pin Configuration and Function Descriptions9
Typical Performance Characteristics11
Theory of Operation16
Analog Inputs16
di/dt Current Sensor and Digital Integrator 17
Zero-Crossing Detection18
Period Measurement 19
Power Supply Monitor19
Line Voltage Sag Detection19
Peak Detection
ADE7753 Interrupts
Temperature Measurement
ADE7753 Analog-to-Digital Conversion
Channel 1 ADC
Channel 2 ADC
Phase Compensation
Active Power Calculation

Energy Calculation	29
Power Offset Calibration	31
Energy-to-Frequency Conversion	31
Line Cycle Energy Accumulation Mode	33
Positive-Only Accumulation Mode	33
No-Load Threshold	33
Reactive Power Calculation	33
Sign of Reactive Power Calculation	35
Apparent Power Calculation	35
Apparent Energy Calculation	36
Line Apparent Energy Accumulation	37
Energies Scaling	38
Calibrating an Energy Meter Based on the ADE7753	38
CLKIN Frequency	48
Suspending ADE7753 Functionality	48
Checksum Register	48
ADE7753 Serial Interface	49
ADE7753 Registers	52
ADE7753 Register Descriptions	55
Communications Register	55
Mode Register (0x09)	55
Interrupt Status Register (0x0B), Reset Interrupt Status Register (0x0C), Interrupt Enable Register (0x0A)	57
CH1OS Register (0x0D)	58
Outline Dimensions	59
Ordering Guide	59

REVISION HISTORY

1/10—Rev. B to Rev C

Changes to Figure 1	1
Changes to t ₆ Parameter (Table 2)	6
Added Endnote 1 to Table 4	9
Changes to Figure 32	16
Changes to Period Measurement Section	19
Changes to Temperature Measurement Section	22
Changes to Figure 51	24
Changes to Channel 1 RMS Calculation Section	25
Added Table 7	25
Changes to Channel 2 RMS Calculation Section	26
Added Table 8	26
Changes to Figure 64	29
Changes to Apparent Power Calculation Section	35
• ••	

1/09—Rev. A to Rev B

Changes to Features Section	1
Changes to Zero-Crossing Detection Section and Period	
Measurement Section	19
Changes to Channel 1 RMS Calculation Section, Channel 1	
RMS Offset Compensation Section, and Equation 4	25
Changes to Figure 56 and Channel 2 RMS Calculation	
Section	26
Changes to Figure 57	27
Changes to Energy Calculation Section	30
Changes to Energy-to-Frequency Conversion Section	31
Changes to Apparent Energy Calculation Section	36
Changes to Line Apparent Energy Accumulation Section	37
Changes to Table 10	52
Changes to Table 12	56
Changes to Table 13	57
Changes to Ordering Guide	59

6/04—Rev. 0 to Rev A

Changes IEC Standards	1
Changes to Phase Error Between Channels Definition	7
Changes to Figure 24	13
Changes to CH2OS Register	16
Change to the Period Measurement Section	18
Change to Temperature Measurement Section	21
Changes to Figure 69	31
Changes to Figure 71	33
Changes to the Apparent Energy Section	36
Changes to Energies Scaling Section	37
Changes to Calibration Section	37

8/03—Revision 0: Initial Version

SPECIFICATIONS

 $AV_{DD} = DV_{DD} = 5 V \pm 5\%$, AGND = DGND = 0 V, on-chip reference, CLKIN = 3.579545 MHz XTAL, T_{MIN} to $T_{MAX} = -40$ °C to +85°C. See the plots in the Typical Performance Characteristics section.

Table 1.				
Parameter	Spec	Unit	Test Conditions/Comments	
ENERGY MEASUREMENT ACCURACY				
Active Power Measurement Error			CLKIN = 3.579545 MHz	
Channel 1 Range = 0.5 V Full Scale			Channel 2 = 300 mV rms/60 Hz, gain = 2	
Gain = 1	0.1	% typ	Over a dynamic range 1000 to 1	
Gain = 2	0.1	% typ	Over a dynamic range 1000 to 1	
Gain = 4	0.1	% typ	Over a dynamic range 1000 to 1	
Gain = 8	0.1	% typ	Over a dynamic range 1000 to 1	
Channel 1 Range = 0.25 V Full Scale				
Gain = 1	0.1	% typ	Over a dynamic range 1000 to 1	
Gain = 2	0.1	% typ	Over a dynamic range 1000 to 1	
Gain = 4	0.1	% typ	Over a dynamic range 1000 to 1	
Gain = 8	0.2	% typ	Over a dynamic range 1000 to 1	
Channel 1 Range = 0.125 V Full Scale				
Gain = 1	0.1	% typ	Over a dynamic range 1000 to 1	
Gain = 2	0.1	% typ	Over a dynamic range 1000 to 1	
Gain = 4	0.2	% typ	Over a dynamic range 1000 to 1	
Gain = 8	0.2	% typ	Over a dynamic range 1000 to 1	
Active Power Measurement Bandwidth	14	kHz	, ,	
Phase Error 1 between Channels ¹	±0.05	max	Line Frequency = 45 Hz to 65 Hz, HPF on	
AC Power Supply Rejection ¹			$AV_{DD} = DV_{DD} = 5 V + 175 mV rms/120 Hz$	
Output Frequency Variation (CF)	0.2	% typ	Channel 1 = 20 mV rms, gain = 16, range = 0.5 V	
			Channel 2 = $300 \text{ mV rms}/60 \text{ Hz}$, gain = 1	
DC Power Supply Rejection ¹			$AV_{DD} = DV_{DD} = 5 V \pm 250 \text{ mV dc}$	
Output Frequency Variation (CF)	±0.3	% typ	Channel 1 = 20 mV rms/60 Hz, gain = 16, range = 0.5 V	
			Channel 2 = 300 mV rms/60 Hz , gain = 1	
IRMS Measurement Error	0.5	% typ	Over a dynamic range 100 to 1	
IRMS Measurement Bandwidth	14	kHz	, ,	
VRMS Measurement Error	0.5	% typ	Over a dynamic range 20 to 1	
VRMS Measurement Bandwidth	140	Hz	, ,	
ANALOG INPUTS ²			See the Analog Inputs section	
Maximum Signal Levels	±0.5	V max	V1P, V1N, V2N, and V2P to AGND	
Input Impedance (dc)	390	k min		
Bandwidth	14	kHz	CLKIN/256, CLKIN = 3.579545 MHz	
Gain Error ^{1, 2}			External 2.5 V reference, gain = 1 on Channels 1 and 2	
Channel 1				
Range = 0.5 V Full Scale	±4	% typ	V1 = 0.5 V dc	
Range = 0.25 V Full Scale	±4	% typ	V1 = 0.25 V dc	
Range = 0.125 V Full Scale	±4	% typ	V1 = 0.125 V dc	
Channel 2	±4	% typ	V2 = 0.5 V dc	
Offset Error ¹	±32	mV max	Gain 1	
Channel 1	±13	mV max	Gain 16	
	±32	mV max	Gain 1	
Channel 2	±13	mV max	Gain 16	
WAVEFORM SAMPLING	1		Sampling CLKIN/128, 3.579545 MHz/128 = 27.9 kSPS	
Channel 1			See the Channel 1 Sampling section	
Signal-to-Noise Plus Distortion	62	dB typ	150 mV rms/60 Hz, range = 0.5 V, gain = 2	
Bandwidth(–3 dB)	14	kHz	CLKIN = 3.579545 MHz	

Parameter	Snec	Unit	Test Conditions/Comments
Channel 2	Spec	onic	See the Channel 2 Sampling section
Signal to Noise Plus Distortion	60	dR two	See the Chamber 2 sampling section $150 \text{ m}/(\text{rms}/60 \text{ Hz}, \text{gain} = 2$
Bandwidth (2 dP)	140	ивтур	130 mV ms/00 mz, gam = 2
	140	пг	CLNIN = 3.379343 MHZ
	26	M many	2.4M + 90
REFIN/OUT INPUT VOITAGE Range	2.0	V min	2.4V + 6%
	2.2	v min	2.4 V - 8%
input Capacitance	10	pr max	
ON-CHIP REFERENCE			Nominal 2.4 V at REF _{IN/OUT} pin
Reference Error	±200	mV max	
Current Source	10	µA max	
Output Impedance	3.4	, kΩ min	
Temperature Coefficient	30	ppm/°C typ	
CLKIN		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	All specifications CLKIN of 3.579545 MHz
Input Clock Frequency	4	MHz max	
	1	MHz min	
LOGIC INPUTS			
$\overline{\text{RESET}}$, DIN, SCLK, CLKIN, and $\overline{\text{CS}}$			
Input High Voltage, V _{INH}	2.4	V min	$DV_{DD} = 5 V \pm 10\%$
Input Low Voltage, V _{INL}	0.8	V max	$DV_{DD} = 5 V \pm 10\%$
Input Current, I _N	±3	μA max	Typically 10 nA, $V_{IN} = 0 V$ to DV_{DD}
Input Capacitance, C _{IN}	10	pF max	
LOGIC OUTPUTS			
SAG and IRQ			Open-drain outputs, 10 k Ω pull-up resistor
Output High Voltage, V _{он}	4	V min	I _{SOURCE} = 5 mA
Output Low Voltage, Vo∟	0.4	V max	I _{SINK} = 0.8 mA
ZX and DOUT			
Output High Voltage, V _{он}	4	V min	Isource = 5 mA
Output Low Voltage, Vol	0.4	V max	Isink = 0.8 mA
CF			
Output High Voltage, V _{он}	4	V min	Isource = 5 mA
Output Low Voltage, V _{OL}	1	V max	I _{SINK} = 7 mA
POWER SUPPLY			For specified performance
AVDD	4.75	V min	5 V – 5%
	5.25	V max	5 V + 5%
DVDD	4.75	V min	5 V – 5%
	5.25	V max	5 V + 5%
Aldd	3	mA max	Typically 2.0 mA
DI _{DD}	4	mA max	Typically 3.0 mA

¹ See the Terminology section for explanation of specifications. ² See the Analog Inputs section.

Figure 2. Load Circuit for Timing Specifications

. . . .

TIMING CHARACTERISTICS

 $AV_{DD} = DV_{DD} = 5 V \pm 5\%$, AGND = DGND = 0 V, on-chip reference, CLKIN = 3.579545 MHz XTAL, T_{MIN} to T_{MAX} = -40°C to +85°C. Sample tested during initial release and after any redesign or process change that could affect this parameter. All input signals are specified with tr = tf = 5 ns (10% to 90%) and timed from a voltage level of 1.6 V. See Figure 3, Figure 4, and the ADE7753 Serial Interface section.

Parameter	Spec	Unit	Test Conditions/Comments
Write Timing			
t1	50	ns (min)	CS falling edge to first SCLK falling edge.
t ₂	50	ns (min)	SCLK logic high pulse width.
t3	50	ns (min)	SCLK logic low pulse width.
t4	10	ns (min)	Valid data setup time before falling edge of SCLK.
t5	5	ns (min)	Data hold time after SCLK falling edge.
t ₆	4	μs (min)	Minimum time between the end of data byte transfers.
t7	50	ns (min)	Minimum time between byte transfers during a serial write.
t ₈	100	ns (min)	CS hold time after SCLK falling edge.
Read Timing			
t9 ¹	4	μs (min)	Minimum time between read command (i.e., a write to communication register) and data read.
t 10	50	ns (min)	Minimum time between data byte transfers during a multibyte read.
t 11	30	ns (min)	Data access time after SCLK rising edge following a write to the communications register.
t ₁₂ ²	100	ns (max)	Bus relinquish time after falling edge of SCLK.
	10	ns (min)	
t ₁₃ ³	100	ns (max)	Bus relinguish time after rising edge of \overline{CS} .
	10	ns (min)	

¹ Minimum time between read command and data read for all registers except waveform register, which is $t_9 = 500$ ns min.

² Measured with the load circuit in Figure 2 and defined as the time required for the output to cross 0.8 V or 2.4 V.

³ Derived from the measured time taken by the data outputs to change 0.5 V when loaded with the circuit in Figure 2. The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the time quoted in the timing characteristics is the true bus relinquish time of the part and is independent of the bus loading.

Figure 4. Serial Read Timing

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
AVDD to AGND	–0.3 V to +7 V
DVDD to DGND	–0.3 V to +7 V
DVDD to AVDD	–0.3 V to +0.3 V
Analog Input Voltage to AGND, V1P, V1N, V2P, and V2N	–6 V to +6 V
Reference Input Voltage to AGND	–0.3 V to AVDD + 0.3 V
Digital Input Voltage to DGND	–0.3 V to DVDD + 0.3 V
Digital Output Voltage to DGND	–0.3 V to DVDD + 0.3 V
Operating Temperature Range	
Industrial	–40°C to +85°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
20-Lead SSOP, Power Dissipation	450 mW
θ _{JA} Thermal Impedance	112°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY

Measurement Error

The error associated with the energy measurement made by the ADE7753 is defined by the following formula:

$$Percentage \ Error = \left(\frac{Energy \ Register \ ADE7753 - True \ Energy}{True \ Energy}\right) \times 100\%$$

Phase Error between Channels

The digital integrator and the high-pass filter (HPF) in Channel 1 have a non-ideal phase response. To offset this phase response and equalize the phase response between channels, two phasecorrection networks are placed in Channel 1: one for the digital integrator and the other for the HPF. The phase correction networks correct the phase response of the corresponding component and ensure a phase match between Channel 1 (current) and Channel 2 (voltage) to within $\pm 0.1^{\circ}$ over a range of 45 Hz to 65 Hz with the digital integrator off. With the digital integrator on, the phase is corrected to within $\pm 0.4^{\circ}$ over a range of 45 Hz to 65 Hz.

Power Supply Rejection

This quantifies the ADE7753 measurement error as a percentage of reading when the power supplies are varied. For the ac PSR measurement, a reading at nominal supplies (5 V) is taken. A second reading is obtained with the same input signal levels when an ac (175 mV rms/120 Hz) signal is introduced onto the supplies. Any error introduced by this ac signal is expressed as a percentage of reading—see the Measurement Error definition.

For the dc PSR measurement, a reading at nominal supplies (5 V) is taken. A second reading is obtained with the same input signal levels when the supplies are varied $\pm 5\%$. Any error introduced is again expressed as a percentage of the reading.

ADC Offset Error

The dc offset associated with the analog inputs to the ADCs. It means that with the analog inputs connected to AGND, the ADCs still see a dc analog input signal. The magnitude of the offset depends on the gain and input range selection—see the Typical Performance Characteristics section. However, when HPF1 is switched on, the offset is removed from Channel 1 (current) and the power calculation is not affected by this offset. The offsets can be removed by performing an offset calibration—see the Analog Inputs section.

Gain Error

The difference between the measured ADC output code (minus the offset) and the ideal output code—see the Channel 1 ADC and Channel 2 ADC sections. It is measured for each of the input ranges on Channel 1 (0.5 V, 0.25 V, and 0.125 V). The difference is expressed as a percentage of the ideal code.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

. .

Figure 5. Pin Configuration (SSOP Package)

Table 4. Pin Function Descriptions					
Pin No.	Mnemonic	Description			
1	RESET ¹	Reset Pin for the ADE7753. A logic low on this pin holds the ADCs and digital circuitry (including the serial interface) in a reset condition.			
2	DVDD	Digital Power Supply. This pin provides the supply voltage for the digital circuitry in the ADE7753. The supply voltage should be maintained at 5 V \pm 5% for specified operation. This pin should be decoupled to DGND with a 10 μ F capacitor in parallel with a ceramic 100 nF capacitor.			
3	AVDD	Analog Power Supply. This pin provides the supply voltage for the analog circuitry in the ADE7753. The supply should be maintained at 5 V \pm 5% for specified operation. Every effort should be made to minimize power supply ripple and noise at this pin by the use of proper decoupling. The typical performance graphs show the power supply rejection performance. This pin should be decoupled to AGND with a 10 μ F capacitor in parallel with a ceramic 100 nF capacitor.			
4, 5	V1P, V1N	Analog Inputs for Channel 1. This channel is intended for use with a di/dt current transducer such as a Rogowski coil or another current sensor such as a shunt or current transformer (CT). These inputs are fully differential voltage inputs with maximum differential input signal levels of ± 0.5 V, ± 0.25 V, and ± 0.125 V, depending on the full-scale selection—see the Analog Inputs section. Channel 1 also has a PGA with gain selections of 1, 2, 4, 8, or 16. The maximum signal level at these pins with respect to AGND is ± 0.5 V. Both inputs have internal ESD protection circuitry, and, in addition, an overvoltage of ± 6 V can be sustained on these inputs without risk of permanent damage.			
6, 7	V2N, V2P	Analog Inputs for Channel 2. This channel is intended for use with the voltage transducer. These inputs are fully differential voltage inputs with a maximum differential signal level of ± 0.5 V. Channel 2 also has a PGA with gain selections of 1, 2, 4, 8, or 16. The maximum signal level at these pins with respect to AGND is ± 0.5 V. Both inputs have internal ESD protection circuitry, and an overvoltage of ± 6 V can be sustained on these inputs without risk of permanent damage.			
8	AGND	Analog Ground Reference. This pin provides the ground reference for the analog circuitry in the ADE7753, i.e., ADCs and reference. This pin should be tied to the analog ground plane or the quietest ground reference in the system. This quiet ground reference should be used for all analog circuitry, for example, anti-aliasing filters, current and voltage transducers, etc. To keep ground noise around the ADE7753 to a minimum, the quiet ground plane should connected to the digital ground plane at only one point. It is acceptable to place the entire device on the analog ground plane.			
9	REF _{IN/OUT}	Access to the On-Chip Voltage Reference. The on-chip reference has a nominal value of 2.4 V \pm 8% and a typical temperature coefficient of 30 ppm/°C. An external reference source can also be connected at this pin. In either case, this pin should be decoupled to AGND with a 1 μ F ceramic capacitor.			
10	DGND	Digital Ground Reference. This pin provides the ground reference for the digital circuitry in the ADE7753, i.e., multiplier, filters, and digital-to-frequency converter. Because the digital return currents in the ADE7753 are small, it is acceptable to connect this pin to the analog ground plane of the system. However, high bus capacitance on the DOUT pin could result in noisy digital current, which could affect performance.			
11	CF	Calibration Frequency Logic Output. The CF logic output gives active power information. This output is intended to be used for operational and calibration purposes. The full-scale output frequency can be adjusted by writing to the CFDEN and CFNUM registers—see the Energy-to-Frequency Conversion section.			

	1	
Pin No.	Mnemonic	Description
12	ZX	Voltage Waveform (Channel 2) Zero-Crossing Output. This output toggles logic high and logic low at the zero crossing of the differential signal on Channel 2—see the Zero-Crossing Detection section.
13	SAG	This open-drain logic output goes active low when either no zero crossings are detected or a low voltage threshold (Channel 2) is crossed for a specified duration—see the Line Voltage Sag Detection section.
14	ĪRQ	Interrupt Request Output. This is an active low open-drain logic output. Maskable interrupts include active energy register rollover, active energy register at half level, and arrivals of new waveform samples—see the ADE7753 Interrupts section.
15	CLKIN	Master Clock for ADCs and Digital Signal Processing. An external clock can be provided at this logic input. Alternatively, a parallel resonant AT crystal can be connected across CLKIN and CLKOUT to provide a clock source for the ADE7753. The clock frequency for specified operation is 3.579545 MHz. Ceramic load capacitors of between 22 pF and 33 pF should be used with the gate oscillator circuit. Refer to the crystal manufacturer's data sheet for load capacitance requirements.
16	CLKOUT	A crystal can be connected across this pin and CLKIN as described for Pin 15 to provide a clock source for the ADE7753. The CLKOUT pin can drive one CMOS load when either an external clock is supplied at CLKIN or a crystal is being used.
17	<u>cs</u>	Chip Select. Part of the 4-wire SPI serial interface. This active low logic input allows the ADE7753 to share the serial bus with several other devices—see the ADE7753 Serial Interface section.
18	SCLK	Serial Clock Input for the Synchronous Serial Interface. All serial data transfers are synchronized to this clock—see the ADE7753 Serial Interface section. The SCLK has a Schmitt-trigger input for use with a clock source that has a slow edge transition time, for example, opto-isolator output.
19	DOUT	Data Output for the Serial Interface. Data is shifted out at this pin on the rising edge of SCLK. This logic output is normally in a high impedance state unless it is driving data onto the serial data bus—see the ADE7753 Serial Interface section.
20	DIN	Data Input for the Serial Interface. Data is shifted in at this pin on the falling edge of SCLK—see the ADE7753 Serial Interface section.

¹ It is recommended to drive the RESET, SCLK, and CS pins with either a push-pull without an external series resistor or with an open-collector with a 10 kΩ pull-up resistor. Pull-down resistors are not recommended because under some conditions, they may interact with internal circuitry.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Active Energy Error as a Percentage of Reading (Gain = 1) over Power Factor with Internal Reference and Integrator Off

Figure 7. Active Energy as a Percentage of Reading (Gain = 8) over Temperature with Internal Reference and Integrator Off

Figure 8. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with Internal Reference and Integrator Off

Figure 9. Active Energy Error as a Percentage of Reading (Gain = 8) over Temperature with External Reference and Integrator Off

Figure 10. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with External Reference and Integrator Off

Figure 11. Reactive Energy Error as a Percentage of Reading (Gain = 1) over Power Factor with Internal Reference and Integrator Off

Figure 12. Reactive Energy Error as a Percentage of Reading (Gain = 1) over Power Factor with External Reference and Integrator Off

Figure 13. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Temperature with Internal Reference and Integrator Off

Figure 14. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with Internal Reference and Integrator Off

Figure 15. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Temperature with External Reference and Integrator Off

Figure 16. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with External Reference and Integrator Off

Figure 17. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Supply with Internal Reference and Integrator Off

Figure 18. Active Energy Error as a Percentage of Reading (Gain = 8) over Frequency with External Reference and Integrator Off

Figure 19. IRMS Error as a Percentage of Reading (Gain = 8) with Internal Reference and Integrator Off

Figure 20. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with Internal Reference and Integrator On

Figure 21. Active Energy Error as a Percentage of Reading (Gain = 8) over Temperature with Internal Reference and Integrator On

Figure 22. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with Internal Reference and Integrator On

Figure 23. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Temperature with Internal Reference and Integrator On

Figure 24. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with Internal Reference and Integrator On

Figure 25. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Supply with Internal Reference and Integrator On

Figure 26. IRMS Error as a Percentage of Reading (Gain = 8) with Internal Reference and Integrator On

Figure 27. VRMS Error as a Percentage of Reading (Gain = 1) with External Reference

Figure 28. Channel 1 Offset (Gain = 1)

Figure 29. Test Circuit for Performance Curves with Integrator On

Figure 30. Test Circuit for Performance Curves with Integrator Off

THEORY OF OPERATION ANALOG INPUTS

The ADE7753 has two fully differential voltage input channels. The maximum differential input voltage for input pairs V1P/V1N and V2P/V2N is ± 0.5 V. In addition, the maximum signal level on analog inputs for V1P/V1N and V2P/ V2N is ± 0.5 V with respect to AGND.

Each analog input channel has a programmable gain amplifier (PGA) with possible gain selections of 1, 2, 4, 8, and 16. The gain selections are made by writing to the gain register—see Figure 32. Bits 0 to 2 select the gain for the PGA in Channel 1, and the gain selection for the PGA in Channel 2 is made via Bits 5 to 7. Figure 31 shows how a gain selection for Channel 1 is made using the gain register.

Figure 31. PGA in Channel 1

In addition to the PGA, Channel 1 also has a full-scale input range selection for the ADC. The ADC analog input range selection is also made using the gain register—see Figure 32. As mentioned previously, the maximum differential input voltage is 0.5 V. However, by using Bits 3 and 4 in the gain register, the maximum ADC input voltage can be set to 0.5 V, 0.25 V, or 0.125 V. This is achieved by adjusting the ADC reference—see the ADE7753 Reference Circuit section. Table 5 summarizes the maximum differential input signal level on Channel 1 for the various ADC range and gain selections.

ADC Input Range Selection Max Signal 0.5 V 0.25 V Channel 1 0.125 V 0.5 V Gain = 10.25 V Gain = 2Gain = 10.125 V Gain = 4Gain = 2Gain = 1Gain = 4Gain = 8Gain = 20.0625 V 0 0313 V Gain = 16Gain = 8Gain = 40.0156 V Gain = 16Gain = 8 0.00781 V Gain = 16

It is also possible to adjust offset errors on Channel 1 and Channel 2 by writing to the offset correction registers, CH1OS and CH2OS, respectively. These registers allow channel offsets in the range ± 20 mV to ± 50 mV (depending on the gain setting) to be removed. Channel 1 and 2 offset registers are sign magnitude coded. A negative number is applied to the Channel 1 offset register, CH1OS, for a negative offset adjustment. Note that the Channel 2 offset register is inverted. A negative number is applied to CH2OS for a positive offset adjustment. It is not necessary to perform an offset correction in an energy measurement application if HPF in Channel 1 is switched on. Figure 33 shows the effect of offsets on the real power calculation. As seen from Figure 33, an offset on Channel 1 and Channel 2 contributes a dc component after multiplication. Because this dc component is extracted by LPF2 to generate the active (real) power information, the offsets contribute an error to the active power calculation. This problem is easily avoided by enabling HPF in Channel 1. By removing the offset from at least one channel, no error component is generated at dc by the multiplication. Error terms at $cos(\omega t)$ are removed by LPF2 and by integration of the active power signal in the active energy register (AENERGY[23:0]) - see the Energy Calculation section.

Table 5. Maximum Input Signal Levels for Channel 1

Figure 33. Effect of Channel Offsets on the Real Power Calculation

The contents of the offset correction registers are 6-bit, sign and magnitude coded. The weight of the LSB depends on the gain setting, i.e., 1, 2, 4, 8, or 16. Table 6 shows the correctable offset span for each of the gain settings and the LSB weight (mV) for the offset correction registers. The maximum value that can be written to the offset correction registers is ±31d—see Figure 34. Figure 34 shows the relationship between the offset correction register contents and the offset (mV) on the analog inputs for a gain setting of 1. In order to perform an offset adjustment, the analog inputs should be first connected to AGND, and there should be no signal on either Channel 1 or Channel 2. A read from Channel 1 or Channel 2 using the waveform register indicates the offset in the channel. This offset can be canceled by writing an equal and opposite offset value to the Channel 1 offset register, or an equal value to the Channel 2 offset register. The offset correction can be confirmed by performing another read. Note when adjusting the offset of Channel 1, one should disable the digital integrator and the HPF.

Gain	Correctable Span	LSB Size
1	±50 mV	1.61 mV/LSB
2	±37 mV	1.19 mV/LSB
4	±30 mV	0.97 mV/LSB
8	±26 mV	0.84 mV/LSB
16	±24 mV	0.77 mV/LSB

Figure 34. Channel 1 Offset Correction Range (Gain = 1)

The current and voltage rms offsets can be adjusted with the IRMSOS and VRMSOS registers—see Channel 1 RMS Offset Compensation and Channel 2 RMS Offset Compensation sections.

di/dt CURRENT SENSOR AND DIGITAL INTEGRATOR

A di/dt sensor detects changes in magnetic field caused by ac current. Figure 35 shows the principle of a di/dt current sensor.

Figure 35. Principle of a di/dt Current Sensor

The flux density of a magnetic field induced by a current is directly proportional to the magnitude of the current. The changes in the magnetic flux density passing through a conductor loop generate an electromotive force (EMF) between the two ends of the loop. The EMF is a voltage signal, which is proportional to the di/dt of the current. The voltage output from the di/dt current sensor is determined by the mutual inductance between the current-carrying conductor and the di/dt sensor. The current signal needs to be recovered from the di/dt signal before it can be used. An integrator is therefore necessary to restore the signal to its original form. The ADE7753 has a built-in digital integrator to recover the current signal from the di/dt sensor. The digital integrator on Channel 1 is switched off by default when the ADE7753 is powered up. Setting the MSB of CH1OS register turns on the integrator. Figure 36 to Figure 39 show the magnitude and phase response of the digital integrator.

Figure 36. Combined Gain Response of the Digital Integrator and Phase Compensator

Note that the integrator has a –20 dB/dec attenuation and an approximately –90° phase shift. When combined with a di/dt sensor, the resulting magnitude and phase response should be a flat gain over the frequency band of interest. The di/dt sensor has a 20 dB/dec gain associated with it. It also generates signifi-

cant high frequency noise, therefore a more effective antialiasing filter is needed to avoid noise due to aliasing—see the Antialias Filter section.

When the digital integrator is switched off, the ADE7753 can be used directly with a conventional current sensor such as a current transformer (CT) or with a low resistance current shunt.

ZERO-CROSSING DETECTION

The ADE7753 has a zero-crossing detection circuit on Channel 2. This zero crossing is used to produce an external zero-crossing signal (ZX), and it is also used in the calibration mode—see the Calibrating an Energy Meter Based on the ADE7753 section. The zero-crossing signal is also used to initiate a temperature measurement on the ADE7753—see the Temperature Measurement section.

Figure 40 shows how the zero-crossing signal is generated from the output of LPF1.

The ZX signal goes logic high on a positive-going zero crossing and logic low on a negative-going zero crossing on Channel 2. The zero-crossing signal ZX is generated from the output of LPF1. LPF1 has a single pole at 140 Hz (at CLKIN = 3.579545 MHz). As a result, there is a phase lag between the analog input signal V2 and the output of LPF1. The phase response of this filter is shown in the Channel 2 Sampling section. The phase lag response of LPF1 results in a time delay of approximately 1.14 ms (@ 60 Hz) between the zero crossing on the analog inputs of Channel 2 and the rising or falling edge of ZX.

The zero-crossing detection also drives the ZX flag in the interrupt status register. The ZX flag is set to Logic 0 on the rising and falling edge of the voltage waveform. It stays low until the status register is read with reset. An active low in the \overline{IRQ} output also appears if the corresponding bit in the interrupt enable register is set to Logic 1.

The flag in the interrupt status register as well as the \overline{IRQ} output are reset to their default values when the interrupt status register with reset (RSTSTATUS) is read.

Zero-Crossing Timeout

The zero-crossing detection also has an associated timeout register, ZXTOUT. This unsigned, 12-bit register is decremented (1 LSB) every 128/CLKIN seconds. The register is reset to its user programmed full-scale value every time a zero crossing is detected on Channel 2. The default power on value in this register is 0xFFF. If the internal register decrements to 0 before a zero crossing is detected and the DISSAG bit in the mode register is Logic 0, the \overline{SAG} pin goes active low. The absence of a zero crossing is also indicated on the \overline{IRQ} pin if the ZXTO enable bit in the interrupt enable register is set to Logic 1. Irrespective of the enable bit setting, the ZXTO flag in the interrupt status register is always set when the internal ZXTOUT register is decremented to 0—see the ADE7753 Interrupts section.

The ZXOUT register can be written/read by the user and has an address of 1Dh—see the ADE7753 Serial Interface section. The resolution of the register is 128/CLKIN seconds per LSB. Thus the maximum delay for an interrupt is 0.15 second (128/CLKIN $\times 2^{12}$).

Figure 41 shows the mechanism of the zero-crossing timeout detection when the line voltage stays at a fixed dc level for more than CLKIN/128 \times ZXTOUT seconds.

Figure 41. Zero-Crossing Timeout Detection

PERIOD MEASUREMENT

The ADE7753 also provides the period measurement of the line. The period register is an unsigned 16-bit register and is updated every period. The MSB of this register is always zero.

The resolution of this register is 2.2 μ s/LSB when CLKIN = 3.579545 MHz, which represents 0.013% when the line frequency is 60 Hz. When the line frequency is 60 Hz, the value of the period register is approximately CLKIN/4/32/60 Hz × 16 = 7457d. The length of the register enables the measurement of line frequencies as low as 13.9 Hz.

The period register is stable at ± 1 LSB when the line is established and the measurement does not change. A settling time of 1.8 seconds is associated with this filter before the measurement is stable.

POWER SUPPLY MONITOR

The ADE7753 also contains an on-chip power supply monitor. The analog supply (AV_{DD}) is continuously monitored by the ADE7753. If the supply is less than 4 V \pm 5%, then the ADE7753 goes into an inactive state, that is, no energy is accumulated when the supply voltage is below 4 V. This is useful to ensure correct device operation at power-up and during power-down. The power supply monitor has built-in hysteresis and filtering, which give a high degree of immunity to false triggering due to noisy supplies.

Figure 42. On-Chip Power Supply Monitor

As seen in Figure 42, the trigger level is nominally set at 4 V. The tolerance on this trigger level is about $\pm 5\%$. The \overline{SAG} pin can also be used as a power supply monitor input to the MCU. The \overline{SAG} pin goes logic low when the ADE7753 is in its inactive state. The power supply and decoupling for the part should be such that the ripple at AVDD does not exceed 5 V $\pm 5\%$, as specified for normal operation.

LINE VOLTAGE SAG DETECTION

In addition to the detection of the loss of the line voltage signal (zero crossing), the ADE7753 can also be programmed to detect when the absolute value of the line voltage drops below a certain peak value for a number of line cycles. This condition is illustrated in Figure 43.

Figure 43. ADE7753 Sag Detection

Figure 43 shows the line voltage falling below a threshold that is set in the sag level register (SAGLVL[7:0]) for three line cycles. The quantities 0 and 1 are not valid for the SAGCYC register, and the contents represent one more than the desired number of full line cycles. For example, when the sag cycle (SAGCYC[7:0]) contains 0x04, the SAG pin goes active low at the end of the third line cycle for which the line voltage (Channel 2 signal) falls below the threshold, if the DISSAG bit in the mode register is Logic 0. As is the case when zero crossings are no longer detected, the sag event is also recorded by setting the SAG flag in the interrupt status register. If the SAG enable bit is set to Logic 1, the IRQ logic output goes active low—see the ADE7753 Interrupts section. The SAG pin goes logic high again when the absolute value of the signal on Channel 2 exceeds the sag level set in the sag level register. This is shown in Figure 43 when the SAG pin goes high again during the fifth line cycle from the time when the signal on Channel 2 first dropped below the threshold level.

Sag Level Set

The contents of the sag level register (1 byte) are compared to the absolute value of the most significant byte output from LPF1 after it is shifted left by one bit, thus, for example, the nominal maximum code from LPF1 with a full-scale signal on Channel 2 is 0x2518—see the Channel 2 Sampling section. Shifting one bit left gives 0x4A30. Therefore writing 0x4A to the SAG level register puts the sag detection level at full scale. Writing 0x00 or 0x01 puts the sag detection level at 0. The SAG level register is compared to the most significant byte of a waveform sample after the shift left and detection is made when the contents of the sag level register are greater.

PEAK DETECTION

The ADE7753 can also be programmed to detect when the absolute value of the voltage or current channel exceeds a specified peak value. Figure 44 illustrates the behavior of the peak detection for the voltage channel. Both Channel 1 and Channel 2 are monitored at the same time.

Figure 44. ADE7753 Peak Level Detection

Figure 44 shows a line voltage exceeding a threshold that is set in the voltage peak register (VPKLVL[7:0]). The voltage peak event is recorded by setting the PKV flag in the interrupt status register. If the PKV enable bit is set to Logic 1 in the interrupt mask register, the IRQ logic output goes active low. Similarly, the current peak event is recorded by setting the PKI flag in the interrupt status register—see the ADE7753 Interrupts section.

Peak Level Set

The contents of the VPKLVL and IPKLVL registers are respectively compared to the absolute value of Channel 1 and Channel 2 after they are multiplied by 2. Thus, for example, the nominal maximum code from the Channel 1 ADC with a fullscale signal is 0x2851EC—see the Channel 1 Sampling section. Multiplying by 2 gives 0x50A3D8. Therefore, writing 0x50 to the IPKLVL register, for example, puts the Channel 1 peak detection level at full scale and sets the current peak detection to its least sensitive value. Writing 0x00 puts the Channel 1 detection level at 0. The detection is done by comparing the contents of the IPKLVL register to the incoming Channel 1 sample. The IRQ pin indicates that the peak level is exceeded if the PKI or PKV bits are set in the interrupt enable register (IRQEN[15:0]) at Address 0x0A.

Peak Level Record

The ADE7753 records the maximum absolute value reached by Channel 1 and Channel 2 in two different registers—IPEAK and VPEAK, respectively. VPEAK and IPEAK are 24-bit unsigned registers. These registers are updated each time the absolute value of the waveform sample from the corresponding channel is above the value stored in the VPEAK or IPEAK register. The contents of the VPEAK register correspond to 2× the maximum absolute value observed on the Channel 2 input. The contents of IPEAK represent the maximum absolute value observed on the Channel 1 input. Reading the RSTVPEAK and RSTIPEAK registers clears their respective contents after the read operation.

ADE7753 INTERRUPTS

ADE7753 interrupts are managed through the interrupt status register (STATUS[15:0]) and the interrupt enable register (IRQEN[15:0]). When an interrupt event occurs in the ADE7753, the corresponding flag in the status register is set to Logic 1 see the Interrupt Status Register section. If the enable bit for this interrupt in the interrupt enable register is Logic 1, then the IRQ logic output goes active low. The flag bits in the status register are set irrespective of the state of the enable bits.

To determine the source of the interrupt, the system master (MCU) should perform a read from the status register with reset (RSTSTATUS[15:0]). This is achieved by carrying out a read from Address 0x0C. The IRQ output goes logic high on completion of the interrupt status register read command—see the Interrupt Timing section. When carrying out a read with reset, the ADE7753 is designed to ensure that no interrupt events are missed. If an interrupt event occurs just as the status register is being read, the event is not lost and the IRQ logic output is guaranteed to go high for the duration of the interrupt status register data transfer before going logic low again to indicate the pending interrupt. See the next section for a more detailed description.

Using the ADE7753 Interrupts with an MCU

Figure 46 shows a timing diagram with a suggested implementation of ADE7753 interrupt management using an MCU. At time t₁, the IRQ line goes active low indicating that one or more interrupt events have occurred in the ADE7753. The IRQ logic output should be tied to a negative edge-triggered external interrupt on the MCU. On detection of the negative edge, the MCU should be configured to start executing its interrupt service routine (ISR). On entering the ISR, all interrupts should be disabled by using the global interrupt enable bit. At this point, the MCU external interrupt flag can be cleared to capture interrupt events that occur during the current ISR. When the MCU interrupt flag is cleared, a read from the status register with reset is carried out. This causes the IRQ line to be reset logic high (t₂)—see the Interrupt Timing section. The status register contents are used to determine the source of the interrupt(s) and therefore the appropriate action to be taken. If a subsequent interrupt event occurs during the ISR, that event is recorded by the MCU external interrupt flag being set again (t₃). On returning from the ISR, the global interrupt mask is cleared (same instruction cycle), and the external interrupt flag causes the MCU to jump to its ISR once a gain. This ensures that the MCU does not miss any external interrupts.

Figure 46. ADE7753 Interrupt Timing

Interrupt Timing

The ADE7753 Serial Interface section should be reviewed first before reviewing the interrupt timing. As previously described, when the IRQ output goes low, the MCU ISR must read the interrupt status register to determine the source of the interrupt. When reading the status register contents, the IRQ output is set high on the last falling edge of SCLK of the first byte transfer (read interrupt status register command). The IRQ output is held high until the last bit of the next 15-bit transfer is shifted out (interrupt status register contents)—see Figure 45. If an interrupt is pending at this time, the IRQ output goes low again. If no interrupt is pending, the IRQ output stays high.

TEMPERATURE MEASUREMENT

The ADE7753 also includes an on-chip temperature sensor. A temperature measurement can be made by setting Bit 5 in the mode register. When Bit 5 is set logic high in the mode register, the ADE7753 initiates a temperature measurement on the next zero crossing. When the zero crossing on Channel 2 is detected, the voltage output from the temperature sensing circuit is connected to ADC1 (Channel 1) for digitizing. The resulting code is processed and placed in the temperature register (TEMP[7:0]) approximately 26 µs later (96/CLKIN seconds). If enabled in the interrupt enable register (Bit 5), the IRQ output goes active low when the temperature conversion is finished.

The contents of the temperature register are signed (twos complement) with a resolution of approximately 1.5 LSB/°C. The temperature register produces a code of 0x00 when the ambient temperature is approximately -25° C. The temperature measurement is uncalibrated in the ADE7753 and has an offset tolerance as high as $\pm 25^{\circ}$ C.

ADE7753 ANALOG-TO-DIGITAL CONVERSION

The analog-to-digital conversion in the ADE7753 is carried out using two second-order Σ - Δ ADCs. For simplicity, the block diagram in Figure 47 shows a first-order Σ - Δ ADC. The converter is made up of the Σ - Δ modulator and the digital low-pass filter.

A Σ - Δ modulator converts the input signal into a continuous serial stream of 1s and 0s at a rate determined by the sampling clock. In the ADE7753, the sampling clock is equal to CLKIN/4. The 1-bit DAC in the feedback loop is driven by the serial data stream. The DAC output is subtracted from the input signal. If the loop gain is high enough, the average value of the DAC output (and therefore the bit stream) can approach that of the input signal level. For any given input value in a single sampling interval, the data from the 1-bit ADC is virtually meaningless. Only when a large number of samples are averaged is a meaningful result obtained. This averaging is carried out in the second part of the ADC, the digital low-pass filter. By averaging a large number of bits from the modulator, the low-pass filter can produce 24-bit data-words that are proportional to the input signal level.

The Σ - Δ converter uses two techniques to achieve high resolution from what is essentially a 1-bit conversion technique. The first is oversampling. Oversampling means that the signal is sampled at a rate (frequency), which is many times higher than the bandwidth of interest. For example, the sampling rate in the ADE7753 is CLKIN/4 (894 kHz) and the band of interest is 40 Hz to 2 kHz. Oversampling has the effect of spreading the quantization noise (noise due to sampling) over a wider bandwidth. With the noise spread more thinly over a wider bandwidth, the quantization noise in the band of interest is lowered—see Figure 48. However, oversampling alone is not efficient enough to improve the signal-to-noise ratio (SNR) in the band of interest. For example, an oversampling ratio of 4 is required just to increase the SNR by only 6 dB (1 bit). To keep the oversampling ratio at a reasonable level, it is possible to shape the quantization noise so that the majority of the noise lies at the higher frequencies. In the Σ - Δ modulator, the noise is shaped by the integrator, which has a high-pass-type response for the quantization noise. The result is that most of the noise is at the higher frequencies where it can be removed by the digital low-pass filter. This noise shaping is shown in Figure 48.

Figure 48. Noise Reduction Due to Oversampling and Noise Shaping in the Analog Modulator

Antialias Filter

Figure 47 also shows an analog low-pass filter (RC) on the input to the modulator. This filter is present to prevent aliasing. Aliasing is an artifact of all sampled systems. Aliasing means that frequency components in the input signal to the ADC, which are higher than half the sampling rate of the ADC, appear in the sampled signal at a frequency below half the sampling rate. Figure 49 illustrates the effect. Frequency components (arrows shown in black) above half the sampling frequency (also know as the Nyquist frequency, i.e., 447 kHz) are imaged or folded back down below 447 kHz. This happens with all ADCs regardless of the architecture. In the example shown, only frequencies near the sampling frequency, i.e., 894 kHz, move into the band of interest for metering, i.e., 40 Hz to 2 kHz. This allows the use of a very simple LPF (low-pass filter) to attenuate high frequency (near 900 kHz) noise, and prevents distortion in the band of interest. For conventional current sensors, a simple RC filter (single-pole LPF) with a corner frequency of 10 kHz produces an attenuation of approximately 40 dB at 894 kHz-see Figure 49. The 20 dB per decade attenuation is usually sufficient to eliminate the effects of aliasing for conventional current sensors. However, for a di/dt sensor such as a Rogowski coil, the sensor has a 20 dB per decade gain. This neutralizes the -20 dB per decade attenuation produced by one simple LPF. Therefore, when using a di/dt sensor, care should be taken to offset the 20 dB per decade gain. One simple approach is to cascade two RC filters to produce the -40 dB per decade attenuation needed.

Figure 49. ADC and Signal Processing in Channel 1 Outline Dimensions

ADC Transfer Function

The following expression relates the output of the LPF in the Σ - Δ ADC to the analog input signal level. Both ADCs in the ADE7753 are designed to produce the same output code for the same input signal level.

$$Code (ADC) = 3.0492 \times \frac{V_{IN}}{V_{OUT}} \times 262,144$$
(1)

Therefore with a full-scale signal on the input of 0.5 V and an internal reference of 2.42 V, the ADC output code is nominally 165,151 or 2851Fh. The maximum code from the ADC is \pm 262,144; this is equivalent to an input signal level of \pm 0.794 V. However, for specified performance, it is recommended that the full-scale input signal level of 0.5 V not be exceeded.

ADE7753 Reference Circuit

Figure 50 shows a simplified version of the reference output circuitry. The nominal reference voltage at the REF_{IN/OUT} pin is 2.42 V. This is the reference voltage used for the ADCs in the ADE7753. However, Channel 1 has three input range selections that are selected by dividing down the reference value used for the ADC in Channel 1. The reference value used for Channel 1 is divided down to $\frac{1}{2}$ and $\frac{1}{4}$ of the nominal value by using an internal resistor divider, as shown in Figure 50.

Figure 50. ADE7753 Reference Circuit Output

The REF_{IN/OUT} pin can be overdriven by an external source, for example, an external 2.5 V reference. Note that the nominal reference value supplied to the ADCs is now 2.5 V, not 2.42 V, which has the effect of increasing the nominal analog input signal range by $2.5/2.42 \times 100\% = 3\%$ or from 0.5 V to 0.5165 V.

The voltage of the ADE7753 reference drifts slightly with temperature—see the ADE7753 Specifications for the temperature coefficient specification (in ppm/°C). The value of the temperature drift varies from part to part. Since the reference is used for the ADCs in both Channels 1 and 2, any x% drift in the reference results in $2\times$ % deviation of the meter accuracy. The reference drift resulting from temperature changes is usually very small and it is typically much smaller than the drift of other components on a meter. However, if guaranteed temperature performance is needed, one needs to use an external voltage reference. Alternatively, the meter can be calibrated at multiple temperatures. Real-time compensation can be achieved easily by using the on-chip temperature sensor.

CHANNEL 1 ADC

Figure 51 shows the ADC and signal processing chain for Channel 1. In waveform sampling mode, the ADC outputs a signed twos complement 24-bit data-word at a maximum of 27.9 kSPS (CLKIN/128). With the specified full-scale analog input signal of 0.5 V (or 0.25 V or 0.125 V—see the Analog Inputs section) the ADC produces an output code that is approximately between 0x2851EC (+2,642,412d) and 0xD7AE14 (-2,642,412d)—see Figure 51.

Channel 1 Sampling

The waveform samples can also be routed to the waveform register (MODE[14:13] = 1,0) to be read by the system master (MCU). In waveform sampling mode, the WSMP bit (Bit 3) in the interrupt enable register must also be set to Logic 1. The active, apparent power, and energy calculation remain uninterrupted during waveform sampling.

When in waveform sampling mode, one of four output sample rates can be chosen by using Bits 11 and 12 of the mode register (WAVSEL1,0). The output sample rate can be 27.9 kSPS, 14 kSPS, 7 kSPS, or 3.5 kSPS—see the Mode Register (0x09) section. The interrupt request output, \overline{IRQ} , signals a new sample availability by going active low. The timing is shown in Figure 52. The 24-bit waveform samples are transferred from the ADE7753 one byte (eight bits) at a time, with the most significant byte shifted out first. The 24-bit data-word is right justified—see the ADE7753 Serial Interface section. The interrupt request output \overline{IRQ} stays low until the interrupt routine reads the reset status register—see the ADE7753 Interrupts section.

Figure 52. Waveform Sampling Channel 1

Channel 1 RMS Calculation

Root mean square (rms) value of a continuous signal V(t) is defined as

$$VRMS = V_{rms} = \sqrt{\frac{1}{T} \times \int_{0}^{T} V^{2}(t) dt}$$
(2)

For time sampling signals, rms calculation involves squaring the signal, taking the average and obtaining the square root:

$$VRMS = V_{rms} = \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} V^2(i)}$$
(3)

The ADE7753 simultaneously calculates the rms values for Channel 1 and Channel 2 in different registers. Figure 53 shows the detail of the signal processing chain for the rms calculation on Channel 1. The Channel 1 rms value is processed from the samples used in the Channel 1 waveform sampling mode. The Channel 1 rms value is stored in an unsigned 24-bit register (IRMS). One LSB of the Channel 1 rms register is equivalent to one LSB of a Channel 1 waveform sample. The update rate of the Channel 1 rms measurement is CLKIN/4.