: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

FEATURES

7 high performance ADCs
101 dB SNR
Wide input voltage range: $\pm \mathbf{1 V}, \mathbf{7 0 7} \mathbf{m V}$ rms FS at gain $=1$
Differential inputs
$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum channel drift (including ADC, internal VREF, PGA drift) enabling 10000:1 dynamic input range
Class 0.2 metrology with standard external components
Power quality measurements
Enables implementation of IEC 61000-4-30 Class S
VRMS $1 / 2$, IRMS $1 / 2$ rms voltage refreshed each half cycle
10 cycle rms/ 12 cycle rms
Dip and swell monitors
Line frequency-one per phase
Zero crossing, zero-crossing timeout
Phase angle measurements
Supports CTs and Rogowski coil (di/dt) sensors
Multiple range phase/gain compensation for CTs
Digital integrator for Rogowski coils
Flexible waveform buffer
Able to resample waveform to ensure 128 points per line cycle for ease of external harmonic analysis

GENERAL DESCRIPTION

The ADE9000 ${ }^{1}$ is a highly accurate, fully integrated, multiphase energy and power quality monitoring device. Superior analog performance and a digital signal processing (DSP) core enable accurate energy monitoring over a wide dynamic range. An integrated high end reference ensures low drift over temperature with a combined drift of less than $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum for the entire channel including a programmable gain amplifier (PGA) and an analog-to-digital converter (ADC).
The ADE9000 offers complete power monitoring capability by providing total as well as fundamental measurements on rms, active, reactive, and apparent powers and energies. Advanced features such as dip and swell monitoring, frequency, phase angle, voltage total harmonic distortion (VTHD), current total harmonic distortion (ITHD), and power factor measurements enable implementation of power quality measurements. The $1 / 2$ cycle rms and 10 cycle rms $/ 12$ cycle rms, calculated according to IEC 61000-4-30 Class S, provide instantaneous rms measurements for real-time monitoring.

The ADE9000 offers an integrated flexible waveform buffer that stores samples at a fixed data rate of 32 kSPS or 8 kSPS , or a

[^0]Events, such as dip and swell, can trigger waveform storage
Simplifies data collection for IEC 61000-4-7 harmonic analysis
Advanced metrology feature set
Total and fundamental active power, volt amperes reactive
(VAR), volt amperes (VA), watthour, VAR hour, and VA hour
Total and fundamental IRMS, VRMS
Total harmonic distortion
Power factor
Supports active energy standards: IEC 62053-21 and
IEC 62053-22; EN50470-3; OIML R46; and ANSI C12.20
Supports reactive energy standards: IEC 62053-23, IEC 62053-24
High speed communication port: $\mathbf{2 0 ~ M H z}$ serial port interface (SPI)
Integrated temperature sensor with 12-bit successive
approximation register (SAR) ADC
$\pm 3^{\circ} \mathrm{C}$ accuracy from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

APPLICATIONS

Energy and power monitoring
Power quality monitoring
Protective devices
Machine health
Smart power distribution units
Polyphase energy meters
sampling rate that varies based on line frequency to ensure 128 points per line cycle. Resampling simplifies fast Fourier transform (FFT) calculation of at least 50 harmonics in an external processor according to IEC 61000-4-7.

The ADE9000 simplifies the implementation of energy and power quality monitoring systems by providing tight integration of acquisition and calculation engines. The integrated ADCs and DSP engine calculate various parameters and provide data through user accessible registers or indicate events through interrupt pins. With seven dedicated ADC channels, the ADE9000 can be used on a 3-phase system or up to three single-phase systems. It supports current transformers (CTs) or Rogowski coils for current measurements. A digital integrator eliminates a discrete integrator required for Rogowski coils.

The ADE9000 absorbs most complexity in calculations for a power monitoring system. With a simple host microcontroller, the ADE9000 enables the design of standalone monitoring or protection systems, or low cost nodes uploading data into the cloud.
Note that throughout this data sheet, multifunction pins, such as CF4/EVENT/DREADY, are referred to either by the entire pin name or by a single function of the pin, for example, $\overline{\text { EVENT, }}$ when only that function is relevant.

[^1]
COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- ADE9000 Evaluation Board

DOCUMENTATION

Data Sheet

- ADE9000: High Performance, Multiphase Energy, and Power Quality Monitoring IC Data Sheet

Product Highlight

- ADE9000 Product Highlight

User Guides

- UG-1082: Evaluating the ADE9000 High Performance, Multiphase Energy, Power Quality Monitoring IC

SOFTWARE AND SYSTEMS REQUIREMENTS \square

- ADE9000 Software Driver

TOOLS AND SIMULATIONS

- ADE9000 Calibration Tool

REFERENCE MATERIALS

Press

- Highly Integrated AFE for Power Quality Monitoring Saves Significant Design Time and Cost Versus Custom Development

DESIGN RESOURCES

- ADE9000 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADE9000 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK \square

Submit feedback for this data sheet.

ADE9000

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Revision History 2
Typical Applications Circuit 3
Specifications 4
Timing Characteristics 8
Absolute Maximum Ratings 9
Thermal Resistance 9
ESD Caution 9
Pin Configuration and Function Descriptions 10
Typical Performance Characteristics 12
Energy Linearity over Supply and Temperature 12
Energy Error over Frequency and Power Factor 15
Energy Linearity Repeatability 16
RMS Linearity over Temperature and RMS Error over Frequency 17
Energy and RMS Linearity with Integrator On 19
Energy and RMS Error over Frequency with Integrator On 21
Signal-to-Noise Ratio Performance 23
Test Circuit 24
Terminology 25
Theory of Operation 26
Measurements 26
Power Quality Measurements 31
Waveform Buffer 35
Interrupts/Events 36
Accessing On-Chip Data 37
SPI Protocol Overview 37
Additional Communication Verification Registers 37
CRC of Configuration Registers 37
Configuration Lock 37
Register Map 38
Register Details 51
Outline Dimensions 72
Ordering Guide 72

REVISION HISTORY

1/2017—Revision 0: Initial Version

TYPICAL APPLICATIONS CIRCUIT

Figure 1.

SPECIFICATIONS

$\mathrm{VDD}=2.97 \mathrm{~V}$ to $3.63 \mathrm{~V}, \mathrm{GND}=\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$, on-chip reference, $\mathrm{CLKIN}=24.576 \mathrm{MHz}$ crystal (XTAL), $\mathrm{T}_{\mathrm{min}}$ to $\mathrm{T}_{\mathrm{max}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (typical), unless otherwise noted.

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
ACCURACY (MEASUREMENT ERROR PER PHASE)					
Total Active Energy		0.1		\%	Over a dynamic range of 5000 to 1 , 10 sec accumulation
		0.2		\%	Over a dynamic range of 10,000 to 1 , 20 sec accumulation
		0.1		\%	Over a dynamic range of 1000 to 1 , 2 sec accumulation, $\mathrm{PGA}=4$, integrator on, high-pass filter (HPF) corner $=4.98 \mathrm{~Hz}$
		0.2		\%	Over a dynamic range of 5000 to 1 , 10 sec accumulation, $\mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
Total Reactive Energy		0.1		\%	Over a dynamic range of 5000 to 1 , 10 sec accumulation
		0.2		\%	Over a dynamic range of 10,000 to 1, 20 sec accumulation
		0.1		\%	Over a dynamic range of 1000 to 1 , 2 sec accumulation, $\mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
		0.2		\%	Over a dynamic range of 5000 to 1 , 10 sec accumulation, $\mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
Total Apparent Energy		0.1		\%	Over a dynamic range of 1000 to 1 , 2 sec accumulation
		0.5		\%	Over a dynamic range of 5000 to 1 , 10 sec accumulation
		0.1		\%	Over a dynamic range of 500 to 1 , 1 sec accumulation, $\mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
		0.5		\%	Over a dynamic range of 1000 to 1 , 2 sec accumulation, $\mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
Fundamental Active Energy		0.1		\%	Over a dynamic range of 5000 to 1 , 2 sec accumulation
		0.2		\%	Over a dynamic range of 10,000 to 1, 10 sec accumulation
		0.1		\%	Over a dynamic range of 1000 to 1 , 2 sec accumulation, $\mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
		0.2		\%	Over a dynamic range of 5000 to 1 , 10 sec accumulation, $\mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
Fundamental Reactive Energy		0.1		\%	Over a dynamic range of 5000 to 1 , 2 sec accumulation
		0.2		\%	Over a dynamic range of 10,000 to 1 , 10 sec accumulation
		0.1		\%	Over a dynamic range of 1000 to 1 , 2 sec accumulation, $\mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
		0.2		\%	Over a dynamic range of 5000 to 1 , 10 sec accumulation, $\mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$

ADE9000

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
Fundamental Apparent Energy		0.1		\%	Over a dynamic range of 5000 to 1 , 2 sec accumulation
		0.5		\%	Over a dynamic range of 10,000 to 1 , 10 sec accumulation
		0.1		\%	Over a dynamic range of 1000 to 1 , 2 sec accumulation, $\mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
		0.5		\%	Over a dynamic range of 5000 to 1 , 10 sec accumulation, $\mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
IRMS, VRMS		0.1		\%	Over a dynamic range of 1000 to 1
		0.5		\%	Over a dynamic range of 5000 to 1
		0.1		\%	Over a dynamic range of 500 to $1, \mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
		0.5		\%	Over a dynamic range of 1000 to $1, \mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
Fundamental IRMS, VRMS		0.1		\%	Over a dynamic range of 1000 to 1
		0.5		\%	Over a dynamic range of 5000 to 1
		0.1		\%	Over a dynamic range of 500 to $1, \mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
		0.5		\%	Over a dynamic range of 2000 to $1, \mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
Active Power, VAR, VA		0.2		\%	Over a dynamic range of 1000 to 1
		0.4		\%	Over a dynamic range of, 3000 to 1
		0.2		\%	Over a dynamic range of 500 to $1, \mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
		0.5		\%	Over a dynamic range of 1000 to $1, \mathrm{PGA}=4$, integrator on, HPF corner $=4.98 \mathrm{~Hz}$
Power Factor (PF) Error		± 0.001		\%	Over a dynamic range of 5000 to 1
128-Point per Line Cycle Resampled Data		0.1		\%	An FFT is performed to receive the magnitude response; this error is the worst case error in the magnitude caused by resampling algorithm distortion; input signal is 50 Hz fundamental and ninth harmonic both at half of full scale (FS)
		-72		dB	Amplitude of highest spur; input signal is 50 Hz fundamental and ninth harmonic both at half of FS
		1.25		\%	An FFT is performed to receive the magnitude response; this error is the worst case error in the magnitude caused by resampling algorithm distortion; input signal is 50 Hz fundamental and $33^{\text {st }}$ harmonic, both at half of FS
		-38		dB	Amplitude of highest spur; input signal is 50 Hz fundamental and $31^{\text {st }}$ harmonic, both at half of FS
VRMS $1 ⁄ 2$, IRMS $1 ⁄ 2$ RMS Voltage Refreshed Each Half-Cycle ${ }^{1}$		0.25		\%	Data sourced before HPF, no dc offset at inputs, over a dynamic range of 100 to 1
10 Cycle/12 Cycle IRMS, VRMS ${ }^{1}$		0.2		\%	Data sourced before HPF, no dc offset at inputs, over a dynamic range of 100 to 1
Line Period Measurement		0.001		Hz	Resolution at 50 Hz
Current to Current, Voltage to Voltage, and Voltage to Current Angle Measurement		0.018		Degrees	Resolution at 50 Hz

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
INTERNAL VOLTAGE REFERENCE Voltage Reference Temperature Coefficient ${ }^{2}$		$\begin{aligned} & 1.250 \\ & \pm 5 \end{aligned}$	± 20	$\begin{aligned} & \mathrm{V} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Nominal }=1.25 \mathrm{~V} \pm 1 \mathrm{mV} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { REF pin } \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text {, tested during device } \\ & \text { characterization } \end{aligned}$
EXTERNAL VOLTAGE REFERENCE Input Voltage (REF) Input Impedance		$\begin{aligned} & 1.2 \text { or } \\ & 1.25 \\ & 7.5 \end{aligned}$		V $\mathrm{k} \Omega$	REFGND must be tied to GND, AGND, and DGND, a 1.25 V external reference is preferred; the FS values mentioned in this data sheet are for a voltage reference of 1.25 V
TEMPERATURE SENSOR Temperature Accuracy Temperature Readout Step Size		$\begin{aligned} & \pm 2 \\ & \pm 3 \end{aligned}$	0.3	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$
CRYSTAL OSCILLATOR Input Clock Frequency Internal Capacitance on CLKIN, CLKOUT Internal Feedback Resistance Between CLKIN and CLKOUT Transconductance (g_{m})	24.33 5	$\begin{aligned} & 24.576 \\ & 4 \\ & 2.45 \\ & 8 \\ & \hline \end{aligned}$	24.822	MHz pF $\mathrm{M} \Omega$ mA / V	All specifications use CLKIN $=24.576 \mathrm{MHz} \pm$ 30 ppm
EXTERNAL CLOCK INPUT Input Clock Frequency Duty Cycle ${ }^{2}$ CLKIN Logic Input Voltage High, VINH Low, $\mathrm{V}_{\text {INL }}$	$\begin{aligned} & 24.330 \\ & 45: 55 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 24.576 \\ & 50: 50 \end{aligned}$	$\begin{aligned} & 24.822 \\ & 55: 45 \\ & \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \% \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\pm 1 \%$ 3.3 V tolerant $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.97 \mathrm{~V} \text { to } 3.63 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.97 \mathrm{~V} \text { to } 3.63 \mathrm{~V} \end{aligned}$
```LOGIC INPUTS (PM0, PM1, \overline{RESET, MOSI,} SCLK, and \overline{SS} Input Voltage VINH VINL Input Current, IN Internal Capacitance, CIN```	2.4		$\begin{aligned} & 0.8 \\ & 15 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
LOGIC OUTPUTS $\qquad$   MISO, $\overline{\mathrm{IRQ0}}$, and $\overline{\mathrm{IRQ1}}$   Output Voltage   High, V   Low, Vol   Internal Capacitance, Cin   C1, CF2, CF3 , and CF4   Output Voltage   Voh   VoL   Cin	2.4 $2.4$		$\begin{aligned} & 0.8 \\ & 10 \\ & \\ & 0.8 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{pF} \\ & \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{aligned} & I_{\text {SOURCE }}=4 \mathrm{~mA} \\ & I_{\text {SINK }}=4 \mathrm{~mA} \end{aligned}$ $\begin{aligned} & \mathrm{I}_{\text {SOURCE }}=7 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=8 \mathrm{~mA} \end{aligned}$
LOW DROPOUT REGULATORS (LDOs)   AVDD   DVDD		$\begin{aligned} & 1.9 \\ & 1.7 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	


Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
POWER SUPPLY	2.97				
$V_{\text {DD }}$		3.3	3.63	V	Power-on reset level is 2.4 V to 2.6 V
Supply Current (VD)					
Power Save Mode 0 (PSM0)		15	17	mA	Normal mode
		14.5	16.5	mA	Normal mode, six ADCs enabled
Power Save Mode 3 (PSM3)		90	300	nA	Idle, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{DV} \mathrm{D}=0 \mathrm{~V}$

${ }^{1}$ Enables implementation of IEC 61000-4-30 Class S.
${ }^{2}$ Tested during device characterization.

## TIMING CHARACTERISTICS

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit
$\overline{\text { SS }}$ to SCLK Edge	tss	10			ns
SCLK Frequency	fsclk			20	MHz
SCLK Low Pulse Width	tst	20			ns
SCLK High Pulse Width	tst	20			ns
Data Output Valid After SCLK Edge	$t_{\text {dav }}$			20	ns
Data Input Setup Time Before SCLK Edge	tbsu	10			ns
Data Input Hold Time After SCLK Edge	$\mathrm{t}_{\text {DHD }}$	10			ns
Data Output Fall Time	$t_{\text {dF }}$			10	ns
Data Output Rise Time	$\mathrm{t}_{\mathrm{DR}}$			10	ns
SCLK Fall Time	$\mathrm{t}_{\text {S }}$			10	ns
SCLK Rise Time	tsR			10	ns
MISO Disable Time After $\overline{S S}$ Rising Edge	toIs			100	ns
$\overline{\text { SS }}$ High After SCLK Edge	tsfs	0			ns



Figure 2. SPI Interface Timing Digram

## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
VDD to GND	-0.3 V to +3.96 V
Analog Input Voltage to GND, IAP, IAN, IBP,	-2 V to +2 V
IBN, ICP, ICN, VAP, VAN, VBP, VBN, VCP, VCN	
Reference Input Voltage to REFGND	-0.3 V to +2 V
Digital Input Voltage to GND	-0.3 V to VDD +0.3 V
Digital Output Voltage to GND	-0.3 V to VDD +0.3 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\quad$ Industrial Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\quad$ Storage Temperature Range	$260^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec$)^{1}$	
ESD	4 kV
Human Body Model ${ }^{2}$	300 V
Machine Model ${ }^{3}$	1.25 kV
Field Induced Charged Device Model	
$\quad$ (FICDM) ${ }^{4}$	

${ }^{1}$ Analog Devices recommends that reflow profiles used in soldering RoHS compliant devices conform to J-STD-020D. 1 from JEDEC. Refer to JEDEC for the latest revision of this standard.
${ }^{2}$ Applicable standard: ANSI/ESDA/JEDEC JS-001-2014.
${ }^{3}$ Applicable standard: JESD22-A115-A (ESD machine model standard of JEDEC).
${ }^{4}$ Applicable standard: JESD22-C101F (ESD FICDM standard of JEDEC).
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
$\theta_{\mathrm{JA}}$ and $\theta_{\mathrm{JC}}$ are specified for the worst case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathrm{JC}}$	Unit
$\mathrm{CP}-40-7^{1}$	27.14	3.13	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ The junction to air measurement uses a 2S2P JEDEC test board with $4 \times 4$ standard JEDEC vias. The junction to case measurement uses a 1SOP JEDEC test board with $4 \times 4$ standard JEDEC vias. See JEDEC standard JESD51-2.

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 3. Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	PULL_HIGH	Pull High. Tie this pin to VDD.
2	DGND	Digital Ground. This pin provides the ground reference for the digital circuitry in the ADE9000. Because the digital return currents in the ADE9000 are small, it is acceptable to connect this pin to the analog ground plane of the whole system. Connect all grounds (GND, AGND, DGND, and REFGND) together at one point.
3	DVDDOUT	1.8 V Output of the Digital Low Dropout Regulator (LDO). Decouple this pin with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $4.7 \mu \mathrm{~F}$ ceramic capacitor.
4	PMO	Power Mode Pin 0. PM0, combined with PM1, defines the power mode. For normal operation, ground PM0 and PM1.
5	PM1	Power Mode Pin 1. PM1 combined with PM0, defines the power mode. For normal operation, ground PM0 and PM1.
6	$\overline{\text { RESET }}$	Reset Input, Active Low. This pin must stay low for at least $1 \mu$ s to trigger a hardware reset.
7,8	IAP, IAN	Analog Inputs, Channel IA. The IAP (positive) and IAN (negative) inputs are fully differential voltage inputs with a maximum differential level of $\pm 1 \mathrm{~V}$. This channel also has an internal PGA of 1,2, or 4 .
9, 10	IBP, IBN	Analog Inputs, Channel IB. The IBP (positive) and IBN (negative) inputs are fully differential voltage inputs with a maximum differential level of $\pm 1 \mathrm{~V}$. This channel also has an internal PGA of 1,2 , or 4 .
11,12	ICP, ICN	Analog Inputs, Channel IC. The ICP (positive) and ICN (negative) inputs are fully differential voltage inputs with a maximum differential level of $\pm 1 \mathrm{~V}$. This channel also has an internal PGA of 1,2, or 4 .
13, 14	INP, INN	Analog Inputs, Channel IN. The INP (positive) and INN (negative) inputs are fully differential voltage inputs with a maximum differential level of $\pm 1 \mathrm{~V}$. This channel also has an internal PGA of 1,2 , or 4 .
15	REFGND	Ground Reference, Internal Voltage Reference. Connect all grounds (GND, AGND, DGND, and REFGND) together at one point.
16	REF	Voltage Reference. The REF pin provides access to the on-chip voltage reference. The on-chip reference has a nominal value of 1.25 V . An external reference source of 1.2 V to 1.25 V can also be connected at this pin. In either case, decouple REF to REFGND with $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $4.7 \mu \mathrm{~F}$ ceramic capacitor. After reset, the on-chip reference is enabled. To use the internal voltage reference with external circuits, a buffer is required.
17	NC1	No Connection. It is recommended to tie this pin to ground.
18	NC2	No Connection. It is recommended to tie this pin to ground.


Pin No.	Mnemonic	Description
19, 20	VAN, VAP	Analog Inputs, Channel VA. The VAP (positive) and VAN (negative) inputs are fully differential voltage inputs with a maximum differential level of $\pm 1 \mathrm{~V}$. This channel also has an internal PGA of 1,2 , or 4 .
21, 22	VBN, VBP	Analog Inputs, Channel VB. The VBP (positive) and VBN (negative) inputs are fully differential voltage inputs with a maximum differential level of $\pm 1 \mathrm{~V}$. This channel also has an internal PGA of 1,2 , or 4 .
23, 24	VCN, VCP	Analog Inputs, Channel VC. The VCP (positive) and VCN (negative) inputs are fully differential voltage inputs with a maximum differential level of $\pm 1 \mathrm{~V}$. This channel also has an internal PGA of 1,2 , or 4 .
25	AVDDOUT	1.9 V Output of the Analog Low Dropout Regulator (LDO). Decouple AVDDOUT with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $4.7 \mu \mathrm{~F}$ ceramic capacitor. Do not connect external active circuitry to this pin.
26	AGND	Analog Ground Reference. Connect all grounds (GND, AGND, DGND, and REFGND) together at one point.
27	VDD	Supply Voltage. The VDD pin provides the supply voltage. Decouple VDD to GND with a ceramic $0.1 \mu \mathrm{~F}$ capacitor in parallel with a $10 \mu \mathrm{~F}$ ceramic capacitor.
28	GND	Supply Ground Reference. Connect all grounds (GND, AGND, DGND, and REFGND) together at one point.
29	CLKIN	Crystal/Clock Input. Connect a crystal across CLKIN and CLKOUT to provide a clock source. Alternatively, an external clock can be provided at this logic input.
30	CLKOUT	Crystal Output. Connect a crystal across CLKIN and CLKOUT to provide a clock source. When using CLKOUT to drive external circuits, connect an external buffer.
31	$\overline{\mathrm{IRQO}}$	Interrupt Request Output. This pin is an active low logic output. See the Interrupts/Events section for information about events that trigger interrupts.
32	$\overline{\mathrm{IRQ1}}$	Interrupt Request Output. This pin is an active low logic output. See the Interrupts/Events section for information about events that trigger interrupts.
33	CF1	Calibration Frequency (CF) Logic Output 1. The CF1, CF2, CF3, and CF4 outputs provide power information based on the CFxSEL bits in the CFMODE register. Use these outputs for operational and calibration purposes. Scale the full-scale output frequency by writing to the CFxDEN registers (see the Digital to Frequency Conversion-CFx Output section).
34	CF2	CF Logic Output 2. This pin indicates CF2.
35	CF3/ZX	CF Logic Output 3/Zero Crossing. This pin indicates CF3 or zero crossing.
36	CF4/EVENT/DREADY	CF Logic Output 4/Event Pin/Data Ready. This pin indicates CF4, events, or when new data is ready.
37	SCLK	Serial Clock Input for the SPI Port. All serial data transfers synchronize to this clock (see the Accessing OnChip Data section). The SCLK pin has a Schmitt trigger input for use with a clock source that has a slow edge transition time, for example, optoisolator outputs.
38	MISO	Data Output for the SPI Port.
39	MOSI	Data Input for the SPI Port.
40	$\overline{S S}$	Slave Select for the SPI Port.
	EPAD	Exposed Pad. Create a similar pad on the printed circuit board (PCB) under the exposed pad. Solder the exposed pad to the pad on the PCB to confer mechanical strength to the package and connect all grounds (GND, AGND, DGND, and REFGND) together at this point.

## TYPICAL PERFORMANCE CHARACTERISTICS

## ENERGY LINEARITY OVER SUPPLY AND TEMPERATURE

Total energies obtained from a sinusoidal voltage with an amplitude of $50 \%$ of full scale and a frequency of 50 Hz , a sinusoidal current with variable amplitudes from $100 \%$ of full scale down to $0.01 \%$ or $0.02 \%$ of full scale, a frequency of 50 Hz , and the integrator off. Fundamental energies obtained with a fundamental voltage component, with an amplitude of $50 \%$ of full scale in phase with a fifth harmonic, a current with a 50 Hz component that has variable amplitudes from $100 \%$ of full scale down to $0.01 \%$ of full scale, a fifth harmonic with a constant amplitude of $40 \%$ of fundamental, and the integrator off, unless otherwise noted.


Figure 4. Total Active Energy Error as a Percentage of Full-Scale Current over Temperature, Power Factor = 1


Figure 5. Total Reactive Energy Error as a Percentage of Full-Scale Current over Temperature, Power Factor $=0$


Figure 6. Total Apparent Energy Error as a Percentage of Full-Scale Current over Temperature, Power Factor $=1$


Figure 7. Total Active Energy Error as a Percentage of Full-Scale Current over Supply Voltage, Power Factor $=1, T_{A}=25^{\circ} \mathrm{C}$


Figure 8. Total Reactive Energy Error as a Percentage of Full-Scale Current over Supply Voltage, Power Factor $=0, T_{A}=25^{\circ} \mathrm{C}$


Figure 9. Total Apparent Energy Error as a Percentage of Full-Scale Current over Supply Voltage, Power Factor $=1, T_{A}=25^{\circ} \mathrm{C}$


Figure 10. Fundamental Active Energy Error as a Percentage of Full-Scale Current over Temperature, Power Factor $=1$


Figure 11. Fundamental Reactive Energy Error as a Percentage of FullScale Current over Temperature, Power Factor = 0


Figure 12. Fundamental Apparent Energy Error as a Percentage of FullScale Current over Temperature, Power Factor = 1


Figure 13. Fundamental Active Energy Error as a Percentage of Full-Scale Current over Supply Voltage, Power Factor $=1, T_{A}=25^{\circ} \mathrm{C}$


Figure 14. Fundamental Reactive Energy Error as a Percentage of FullScale Current over Supply Voltage, Power Factor $=0, T_{A}=25^{\circ} \mathrm{C}$


Figure 15. Fundamental Apparent Energy Error as a Percentage of FullScale Current over Supply Voltage, Power Factor $=1, T_{A}=25^{\circ} \mathrm{C}$

## ENERGY ERROR OVER FREQUENCY AND POWER FACTOR

Total energies obtained from a sinusoidal voltage with an amplitude of $50 \%$ of full scale, a sinusoidal current with a constant amplitude of $10 \%$ of full scale, a variable frequency between 45 Hz and 65 Hz , and the integrator off. Fundamental energies obtained with a fundamental voltage component, with an amplitude of $50 \%$ of full scale in phase with the fifth harmonic, a current with a 50 Hz component that has constant amplitude of $10 \%$ of full scale, a fifth harmonic with a constant amplitude of $40 \%$ of fundamental, and the integrator off, unless otherwise noted.


Figure 16. Total Active Energy Error vs. Line Frequency,
Power Factor $=-0.5$, Power Factor $=+0.5$, and Power Factor $=+1$


Figure 17. Total Reactive Energy Error vs. Line Frequency, Power Factor $=-0.866$, Power Factor $=0$, and Power Factor $=+0.866$


Figure 18. Total Apparent Energy Error vs. Line Frequency


Figure 19. Fundamental Active Energy Error vs. Line Frequency, Power Factor $=-0.5$, Power Factor $=+0.5$, and Power Factor $=+1$


Figure 20. Fundamental Reactive Energy Error vs. Line Frequency, Power Factor $=-0.866$, Power Factor $=0$, and Power Factor $=+0.866$


Figure 21. Fundamental Apparent Energy Error vs. Line Frequency

## ENERGY LINEARITY REPEATABILITY

Total energies obtained from a sinusoidal voltage with an amplitude of $50 \%$ of full scale and a frequency of 50 Hz , a sinusoidal current with variable amplitudes from $100 \%$ of full scale down to $0.01 \%$ of full scale, a frequency of 50 Hz , and the integrator off. Fundamental energies obtained with a fundamental voltage component, with an amplitude of $50 \%$ of full scale in phase with the fifth harmonic, a current with a 50 Hz component that has variable amplitudes from $100 \%$ of full scale down to $0.01 \%$ of full scale, and a fifth harmonic with a constant amplitude of $40 \%$ of fundamental, and the integrator off. Measurements at $25^{\circ} \mathrm{C}$ repeated 30 times, unless otherwise noted.


Figure 22. Total Active Energy Error as a Percentage of Full-Scale Current, Power Factor $=1$ (Standard Deviation $\sigma=0.02 \%$ at 0.01\% of Full-Scale Current)


Figure 23. Total Reactive Energy Error as a Percentage of Full-Scale Current, Power Factor $=0$ (Standard Deviation $\sigma=0.03 \%$ at 0.01\% of Full-Scale Current)


Figure 24. Fundamental Active Energy Error as a Percentage of Full-Scale Current, Power Factor $=1$ (Standard Deviation $\sigma=0.03 \%$ at 0.01\% of Full-Scale Current)


Figure 25. Fundamental Reactive Energy Error as a Percentage of Full-Scale Current, Power Factor $=0$ (Standard Deviation $\sigma=0.04 \%$ at $0.01 \%$ of Full-Scale Current)

## RMS LINEARITY OVER TEMPERATURE AND RMS ERROR OVER FREQUENCY

RMS linearity obtained with a sinusoidal current and voltage with variable amplitudes from $100 \%$ of full scale down to $0.01 \%$ of full scale using a frequency of 50 Hz , total rms error over frequency obtained with a sinusoidal current amplitude of $10 \%$ of full scale and voltage amplitude of $50 \%$ of full scale, and the integrator off. Fundamental rms error over frequency obtained with a sinusoidal current amplitude of $10 \%$ of full scale, a voltage amplitude of $50 \%$ of full scale, a fifth harmonic with a constant amplitude of $40 \%$ of fundamental, and the integrator off, unless otherwise noted.


Figure 26. Current RMS Error as a Percentage of Full-Scale Current over Temperature


Figure 27. ½ Cycle Current RMS Error as a Percentage of Full-Scale Current over Temperature, Data Sourced Before High-Pass Filter and Calibrated for Offset, Register CONFIGO, Bit RMS_SRC_SEL = 1


Figure 28. 10 Cycle Current RMS/12 Cycle Current Error as a Percentage of Full-Scale Current over Temperature, Data Sourced Before High-Pass Filter and Calibrated for Offset, Register CONFIGO, Bit RMS_SRC_SEL = 1


Figure 29. Fundamental Current RMS Error as a Percentage of Full-Scale Current over Temperature


Figure 30. ½ Cycle Current RMS Error as a Percentage of Full-Scale Current over Temperature, Data Sourced After High-Pass Filter, Register CONFIGO, Bit RMS SRC SEL=0


Figure 31. 10 Cycle Current RMS/12 Cycle Current Error as a Percentage of Full-Scale Current over Temperature, Data Sourced After High-Pass Filter, Register CONFIGO, Bit RMS_SRC_SEL = 0


Figure 32. Current RMS Error vs. Line Frequency


Figure 33. Fundamental Current RMS Error vs. Line Frequency


Figure 34. ½ Cycle Current RMS Error vs. Line Frequency, Data Sourced After High-Pass Filter, Register CONFIGO, Bit RMS_SRC_SEL = 0


Figure 35. 10 Cycle Current RMS/12 Cycle Current Error vs. Line Frequency, Data Sourced After High-Pass Filter, Register CONFIGO, Bit RMS_SRC_SEL = 0

## ENERGY AND RMS LINEARITY WITH INTEGRATOR ON

The sinusoidal voltage has an amplitude of $50 \%$ of full scale and a frequency of 50 Hz, PGA_GAIN is a gain set to 4 , the sinusoidal current has variable amplitudes from $100 \%$ of full scale down to $0.01 \%$ or $0.1 \%$ of full scale and a frequency of 50 Hz , full scale at gain of $4=$ (full scale at gain of 1)/4, a high-pass corner frequency of 4.97 Hz , and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.


Figure 36. Total Active Energy Error, Gain = 4, Integrator On


Figure 37. Total Reactive Energy Error, Gain = 4, Integrator On


Figure 38. Total Apparent Energy Error, Gain = 4, Integrator On


Figure 39. Total Current RMS Error, Gain = 4, Integrator On


Figure 40. ½ Cycle Current RMS Error, Gain = 4, Integrator On, Data Sourced After High-Pass Filter, Register CONFIGO, Bit RMS_SRC_SEL = 0


Figure 41. ½ Cycle Current RMS Error, Gain = 4, Integrator On, Data Sourced Before High-Pass Filter and Calibrated for Offset, Register CONFIGO,

Bit RMS_SRC_SEL = 1


Figure 42. 10 Cycle Current RMS/12 Cycle Current Error, Gain = 4, Integrator On, Data Sourced After High-Pass Filter, Register CONFIGO, Bit RMS_SRC_SEL = 0


Figure 43. 10 Cycle Current RMS/12 Cycle Current RMS Error, Gain = 4, Integrator On, Data Sourced Before High-Pass Filter and Calibrated for Offset, RegisterCONFIGO, Bit RMS_SRC_SEL = 1

## ENERGY AND RMS ERROR OVER FREQUENCY WITH INTEGRATOR ON

The sinusoidal voltage has a constant amplitude of $50 \%$ of full scale, PGA_GAIN is a gain set to 4 , the sinusoidal current has a constant amplitude of $10 \%$ of full scale, and a variable frequency between 45 Hz and 65 Hz . Fundamental quantities obtained with a fundamental voltage component in phase with a fifth harmonic, a current with a fundamental component of $10 \%$ of full scale, a fifth harmonic with an amplitude of $40 \%$ of the fundamental, a full scale at gain of $4=($ full scale at gain of 1$) / 4$, a high-pass corner frequency of 4.97 Hz , and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.


Figure 44. Total Active Energy Error vs. Line Frequency, Gain = 4, Integrator On, Power Factor $=-0.5$, Power Factor $=+0.5$, and

Power Factor $=+1$


Figure 45. Fundamental Active Energy Error vs. Line Frequency, Gain = 4, Integrator On, PowerFactor $=-0.5$, Power Factor $=+0.5$, and

Power Factor $=+1$


Figure 46. Total Reactive Energy Error vs. Line Frequency, Gain = 4, Integrator On, Power Factor $=-0.866$, Power Factor $=+0.8665$, and Power Factor $=0$


Figure 47. Fundamental Reactive Energy Error vs. Line Frequency, Gain = 4, Integrator On, Power Factor $=-0.866$, Power Factor $=+0.8665$, and

Power Factor $=0$


Figure 48. Total Apparent Energy Error vs. Line Frequency, Gain = 4, Integrator On


Figure 49. Fundamental Apparent Energy Error vs. Line Frequency, Gain = 4, Integrator On


Figure 50. Current RMS Error vs. Line Frequency, Gain =4, Integrator On


Figure 51. Fundamental Current RMS Error vs. Line Frequency, Gain = 4, Integrator On


Figure 52. 1/2 Cycle Current RMS Error, Gain = 4, Integrator On, Data Sourced After High-Pass Filter, Register CONFIGO, Bit RMS_SRC_SEL = 0


Figure 53. 10 Cycle Current RMS/12 Cycle Current Error, Gain = 4, Integrator On, Data Sourced After High-Pass Filter, Register CONFIGO, Bit RMS_SRC_SEL = 0

## Data Sheet

SIGNAL-TO-NOISE RATIO PERFORMANCE


Figure 54. SNR Histogram of ADC SNR for 1000 Devices Tested at $T_{A}=25^{\circ} \mathrm{C}$ with PGA_GAIN $=1$ and 8 kSPS Data Rate

## TEST CIRCUIT



Figure 55. Test Circuit


[^0]:    ${ }^{1}$ Protected by U.S. Patents 8,350,558; 8,010,304. Other patents are pending.
    Rev. 0 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]:    One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 O2017 Analog Devices, Inc. All rights reserved. Technical Support

