

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







## **ADET-5000**

## **RF Power Detector**



# **Data Sheet**





### **Description**

ADET-5000 is a wide bandwidth, wide dynamic range temperature-compensated diode power detector for operation from 700 MHz to 2.6 GHz. Its high sensitivity and wide bandwidth support fast inner-loop calibration and true envelope sampling of modulated signals for accurate power leveling of modulated waveforms for use in cellular handsets and data cards.

ADET-5000 features circuit technology that is aligned optimally to work with transceivers requiring external detection for inner-loop power control. Superb temperature and voltage compensation maintains inner-loop accuracy over extreme operating conditions. In power-down mode, ADET-5000 presents high output impedance to the transceiver, minimizing loading of any other detectors connected to the transceiver detector input line. This characteristic allows the customer to utilize ADET-5000 to daisy-chain numerous power amplifier couplers together with a single detector.

ADET-5000's nominal input impedance is 100 ohms, allowing the sensitivity and detection range to be trimmed externally with a shunt input resistor. This allows user-adjustability of effective coupling ratios to maximize dynamic range and to compensate variable output power targets and daisy-chain configurations. ADET-5000 is manufactured on an advanced InGaP HBT (heterojunction Bipolar Transistor) MMIC (microwave monolithic integrated circuit) technology offering state-of-the-art reliability, temperature stability and ruggedness

#### **Features**

- Fully Temperature and Voltage Compensated Diode RF Detector
- -20 dBm to 11 dBm Power Detection Range
- Small, Thin Package (1.2 x 1.5 x 0.5 mm)
- Complete coverage of 3GPP bands from 700-2600 MHz
- Fast Response Time and Wide Bandwidth
- High Sensitivity and User-Adjustable Input Range
- High Output Impedance in Power Down Mode
- Low Harmonic Generation
- 6-pin surface mounting package
- Lead-free, RoHS compliant, Green (Halogen Free)

### **Applications**

CDMA/UMTS/LTE Handsets & Data Cards

## **Absolute Maximum Ratings**

No damage assuming only one parameter is set at limit at a time with all other parameters set at or below nominal value Operation of any single parameter outside these conditions with the remaining parameters set at or below nominal values may result in permanent damage

| Description                       | Max.        | Unit |
|-----------------------------------|-------------|------|
| RF Input Power (Pin)              | 13          | dBm  |
| DC Supply / Control Voltage (Ven) | 3           | V    |
| Storage Temperature (Tstg)        | -30 to +125 | С    |

## **Recommended Operating Conditions**

| Description                        |      | Min. | Тур. | Max. | Unit |
|------------------------------------|------|------|------|------|------|
| Enable Voltage (Ven                | Low  | 0    | 0.2  | 0.5  | V    |
|                                    | High | 2.0  | 2.2  | 2.7  |      |
| Enable Current (len @ Ven = 2.7 V) |      |      | 800  | 1000 | μΑ   |
| Case Temperature                   |      | -30  | 25   | 85   | С    |

### **Electrical Characteristics**

– Conditions: Ven = 2.2 V, T =  $25^{\circ}$  C, Zload = 100 kohm in parallel with 12 pF

| Characteristics           | Condition                  | Min. | Typ. | Тур. Мах. |       |
|---------------------------|----------------------------|------|------|-----------|-------|
| Operating Frequency Range |                            | 700  | -    | 2600      | MHz   |
| Power Detect Range (Pin)  |                            | -20  | -    | +11       | dBm   |
| Average Output Voltage    | Pin = +9 dBm               | 0.93 | 1.10 | 1.30      | V     |
|                           | Pin = -11.5 dBm            | 0.45 | 0.48 | 0.50      |       |
|                           | Pin = -12.5 dBm            | 0.45 | 0.47 | 0.49      |       |
| Power Detect Slope        | Pin = -12.5 dBm            | 4.3  | 5.3  | 9.3       | mV/dB |
| Len (RF input = off)      |                            | 150  | 350  | 1000      | μΑ    |
| DC Offset                 | Output Voltage with RF Off |      | 450  |           | mV    |
| RF Input Resistance       | Rext open (not connected)  |      | 100  |           | ohms  |
|                           |                            |      |      |           |       |

### **ADET-5000 Characterization Data**

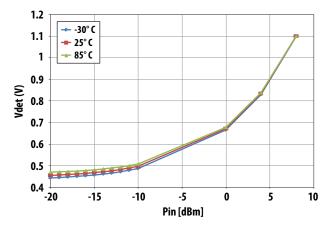



Figure 1. Detector Voltage vs. Input Power over temperature at 1900 MHz, Ven = 2.2 V

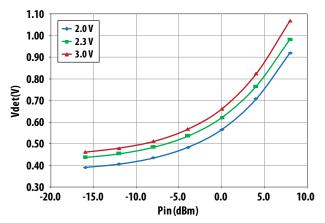



Figure 3. Detector Voltage vs. Input Power at 1900 MHz for Ven = 2.0 V - 3.0 V

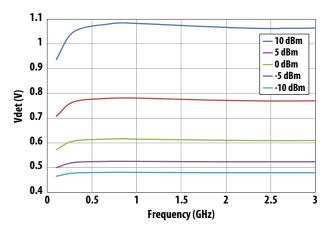



Figure 5. Detector Voltage vs. Frequency from 100-2600 MHz over Input Powers, Ven = 2.2 V

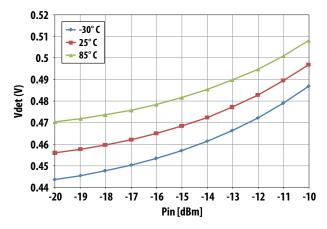



Figure 2. Detector Voltage vs. Input Power over temperature at 1900 MHz,  $Ven = 2.2\,V$ 

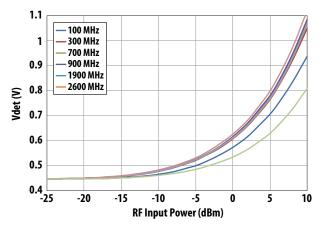
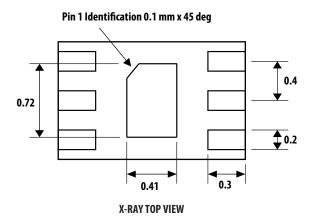


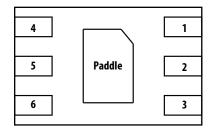

Figure 4. Detector Voltage vs. Frequency (with 100 0hm input resistor) from -20 to -10 dBm input power.

Table 1. Typical RMS Error @ 25C for various modulation schemes.


The reference modulation for the measurement was WCDMA Rel 99

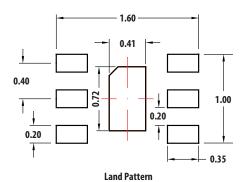
|                 | Measured                          | Typical RMS Error @ 25C (dB) vs. WCDMA Rel 99 Modulation |                                            |  |
|-----------------|-----------------------------------|----------------------------------------------------------|--------------------------------------------|--|
| Waveform        | CCDF (PAR)<br>@ 0.1%<br>Composite | Vrms for loop<br>control voltage<br>@ 0dBm               | Vrms for loop<br>control voltage<br>@ 8dBm |  |
| WCDMA Rel 99    | 3.06                              | 0                                                        | 0                                          |  |
| HSDPA1          | 3.41                              | 0.14                                                     | 0.12                                       |  |
| HSDPA2          | 3.76                              | 0.19                                                     | 0.07                                       |  |
| HSDPA3          | 3.86                              | 0.2                                                      | -0.01                                      |  |
| HSDPA3          | 3.96                              | 0.11                                                     | -0.21                                      |  |
| HSUPA Subtest 1 | 4.46                              | 0                                                        | 0.03                                       |  |
| HSUPA Subtest 2 | 5.8                               | 0.24                                                     | 0.3                                        |  |
| HSUPA Subtest 3 | 5.17                              | 0.1                                                      | 0.04                                       |  |
| HSUPA Subtest 4 | 5.5                               | 0.19                                                     | 0.05                                       |  |
| HSUPA Subtest 5 | 4.25                              | -0.02                                                    | 0.3                                        |  |
| HSUPA high PAR  | 6.4                               | 0.4                                                      | 0.36                                       |  |

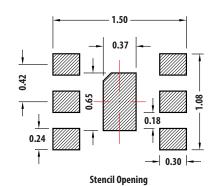
# Package Outline


# 

# **Footprint**



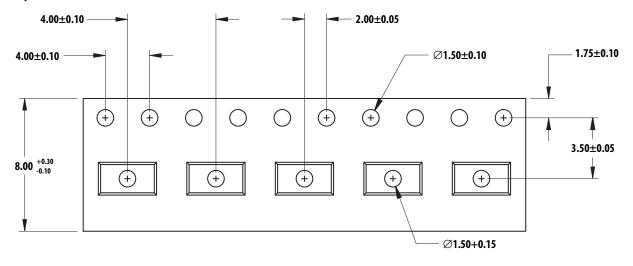

(All dimensions are in millimeters)

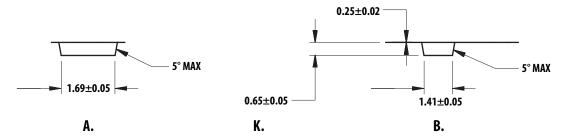

## **PIN Description**



| Pin    | Name | Description             |  |
|--------|------|-------------------------|--|
| 1      | Ven  | Detector Enable         |  |
| 2      | Pin  | RF Input                |  |
| 3      | NC   | Not connected           |  |
| 4      | NC   | Not connected           |  |
| 5      | Vdet | Detected Output Voltage |  |
| 6      | NC   | Not connected           |  |
| Paddle | GND  | Center Ground Paddle    |  |

# **Recommended PCB Layout**

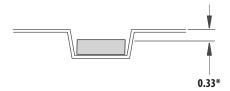



0.40 0.20

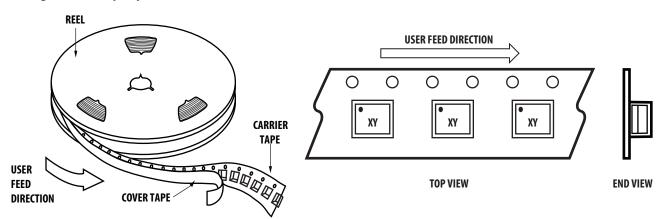
Combination of Land Pattern and Stencil Opening

# **Tape Dimensions**

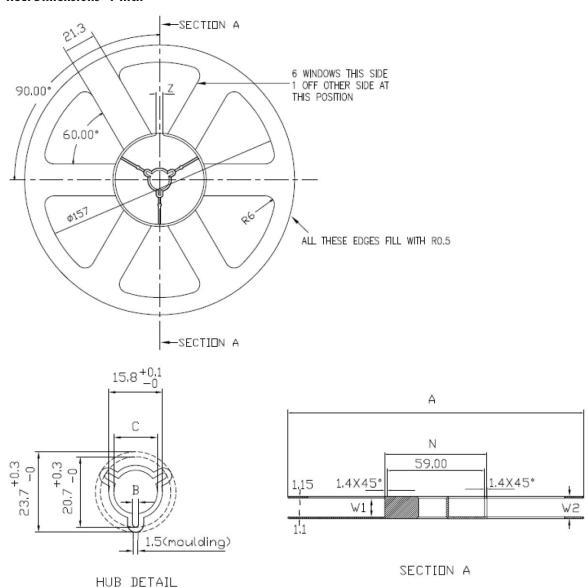





#### Notes:


- 1. Leader and Trailer 200 empty pockets
- 2. Carrier tape dimension (unit in mm)

## **Carrier Height Information**




<sup>\*</sup> with assumption 0.4mm unit height and 0.73 carrier height

# Package, Reel & Tape Specifications



### **Reel Dimensions - 7 inch**



### **Ordering Information**

| Part Number   | Number of Devices | Container            |
|---------------|-------------------|----------------------|
| ADET-5000-TR1 | 3,000             | 178mm (7") Tape/Reel |
| ADET-5000-BLK | 100               | Antistatic Bag       |

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com** 

