imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

High Performance Narrow-Band Transceiver IC

ADF7021-N

FEATURES

Low power, narrow-band transceiver Frequency bands using dual VCO 80 MHz to 650 MHz 842 MHz to 916 MHz Programmable IF filter bandwidths of 9 kHz, 13.5 kHz, and 18.5 kHz Modulation schemes: 2FSK, 3FSK, 4FSK, MSK Spectral shaping: Gaussian and raised cosine filtering Data rates supported: 0.05 kbps to 24 kbps 2.3 V to 3.6 V power supply Programmable output power -16 dBm to +13 dBm in 63 steps Automatic power amplifier (PA) ramp control **Receiver sensitivity** -130 dBm at 100 bps, 2FSK -122 dBm at 1 kbps, 2FSK

On-chip image rejection calibration

On-chip VCO and fractional-N PLL On-chip, 7-bit ADC and temperature sensor Fully automatic frequency control loop (AFC) Digital received signal strength indication (RSSI) Integrated Tx/Rx switch 0.1 µA leakage current in power-down mode APPLICATIONS

Narrow-band, short range device (SRD) standards ARIB STD-T67, ETSI EN 300 220, Korean SRD standard, FCC Part 15, FCC Part 90, FCC Part 95 Low cost, wireless data transfer **Remote control/security systems Wireless metering** Wireless medical telemetry service (WMTS) Home automation **Process and building control** Pagers

FUNCTIONAL BLOCK DIAGRAM

Rev. B

Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2008–2016 Analog Devices, Inc. All rights reserved. **Technical Support** www.analog.com

7246-001

ADF7021-N* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

ADF7021-N Evaluation Boards

DOCUMENTATION

Application Notes

- AN-0987: Designing a Wireless Transceiver System to Meet the Wireless M-Bus Standard
- AN-1182: Understanding and Optimizing the AFC Loop on the ADF7021 for Minimum Preamble
- AN-1258: Image Rejection Calibration on the ADF7021, ADF7021-N, and ADF7021-V
- AN-1285: ADF7021-N Radio Performance for Wireless Meter-Bus (WM-Bus), Mode N
- AN-1389: Recommended Rework Procedure for the Lead Frame Chip Scale Package (LFCSP)
- AN-771: ADSP-BF533 EZ-KIT Lite and ADF70xx Interface
- AN-772: A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP)
- AN-852: Using the Test DAC on the ADF702x to Implement Functions Such as Analog FM DEMOD, SNR Measurement, FEC Decoding, and PSK/4FSK Demodulation
- AN-859: RF Port Impedance Data, Matching, and External Component Selection for the ADF7020-1, ADF7021, and ADF7021-N
- AN-915: CDR Operation for ADF7020, ADF7020-1, ADF7021, and ADF7025

Data Sheet

 ADF7021-N: High Performance Narrow-Band Transceiver IC Data Sheet

SOFTWARE AND SYSTEMS REQUIREMENTS

- ADF70xx Evaluation Software
- ADIismLINK Development Platform

TOOLS AND SIMULATIONS \square

ADIsimSRD Design Studio

REFERENCE MATERIALS

Solutions Bulletins & Brochures

• Emerging Energy Applications Solutions Bulletin, Volume 10, Issue 4

Technical Articles

- · Low Power, Low Cost, Wireless ECG Holter Monitor
- RF Meets Power Lines: Designing Intelligent Smart Grid Systems that Promote Energy Efficiency
- Smart Metering Technology Promotes Energy Efficiency for a Greener World
- The Use of Short Range Wireless in a Multi-Metering System
- Understand Wireless Short-Range Devices for Global License-Free Systems
- Wireless Short Range Devices and Narrowband Communications
- Wireless Technologies for Smart Meters: Focus on Water Metering

DESIGN RESOURCES 🖵

- ADF7021-N Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADF7021-N EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖵

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS

Features
Applications1
Functional Block Diagram 1
Revision History
General Description
Specifications
RF and PLL Specifications5
Transmission Specifications
Receiver Specifications7
Digital Specifications10
General Specifications11
Timing Characteristics12
Timing Diagrams13
Absolute Maximum Ratings16
ESD Caution16
Pin Configuration and Function Descriptions17
Typical Performance Characteristics
Frequency Synthesizer
Reference Input
MUXOUT24
Voltage Controlled Oscillator (VCO)
Choosing Channels for Best System Performance
Transmitter
RF Output Stage27
Modulation Schemes
Spectral Shaping
Modulation and Filtering Options
Transmit Latency
Test Pattern Generator
Receiver Section
RF Front End
IF Filter
RSSI/AGC

Demodulation, Detection, and CDR	33
Receiver Setup	35
Demodulator Considerations	37
AFC Operation	37
Automatic Sync Word Detection (SWD)	38
Applications Information	39
IF Filter Bandwidth Calibration	39
LNA/PA Matching	40
Image Rejection Calibration	41
Packet Structure and Coding	43
Programming After Initial Power-Up	43
Applications Circuit	46
Serial Interface	47
Readback Format	47
Interfacing to a Microcontroller/DSP	49
Register 0—N Register	50
Register 1—VCO/Oscillator Register	51
Register 2—Transmit Modulation Register	52
Register 3—Transmit/Receive Clock Register	53
Register 4—Demodulator Setup Register	54
Register 5—IF Filter Setup Register	55
Register 6—IF Fine Cal Setup Register	56
Register 7—Readback Setup Register	57
Register 8—Power-Down Test Register	58
Register 9—AGC Register	59
Register 10—AFC Register	60
Register 11—Sync Word Detect Register	61
Register 12—SWD/Threshold Setup Register	61
Register 13—3FSK/4FSK Demod Register	62
Register 14—Test DAC Register	63
Register 15—Test Mode Register	64
Outline Dimensions	65
Ordering Guide	65

REVISION HISTORY

3/16—Rev. A to Rev. B	
Changed CP-48-3 to CP-48-5	Throughout
Changes to Features Section	1
Changes to General Description Section	4
Changes to Figure 10	17
Updated Outline Dimensions	65
Changes to Ordering Guide	65

10/14—Rev. 0 to Rev. A

Changes to Table 8	17
Changes to Figure 37	25
Change to Post Demodulator Filter Setup Section	35
Change to When to Use a Fine Calibration Section	40
0	

Change to Battery Voltage/ADCIN/Temperature Sensor

Readback Section
Change to Register 4—Demodulator Setup Register Section54
Change to Register 6—IF Fine Cal Setup Register Section56
Change to Register 7—Readback Setup Register Section57
Change to Register 10—AFC Register Section
Changes to Fine Filter Calibration Description
Changes to POST_DEMOD_BW Calculation Description 38, 59
Changes to Fine Filter Calibration Tone Timing
Change to AFC Range Description
Changes to Temperature Readback Formula

2/08—Revision 0: Initial Version

GENERAL DESCRIPTION

The ADF7021-N is a high performance, low power, narrowband transceiver based on the ADF7021. The ADF7021-N has IF filter bandwidths of 9 kHz, 13.5 kHz, and 18.5 kHz, making it ideally suited to worldwide narrowband standards and particularly those that stipulate 12.5 kHz channel separation.

It is designed to operate in the narrow-band, license-free ISM bands and in the licensed bands with frequency ranges of 80 MHz to 650 MHz and 842 MHz to 916 MHz. The part has both Gaussian and raised cosine transmit data filtering options to improve spectral efficiency for narrow-band applications. It is suitable for circuit applications targeted at the Japanese ARIB STD-T67, the European ETSI EN 300 220, the Korean short range device regulations, the Chinese short range device regulations, and the North American FCC Part 15, Part 90, and Part 95 regulatory standards. A complete transceiver can be built using a small number of external discrete components, making the ADF7021-N very suitable for price-sensitive and area-sensitive applications.

The range of on-chip FSK modulation and data filtering options allows users greater flexibility in their choice of modulation schemes while meeting the tight spectral efficiency requirements. The ADF7021-N also supports protocols that dynamically switch among 2FSK, 3FSK, and 4FSK to maximize communication range and data throughput.

The transmit section contains two voltage controlled oscillators (VCOs) and a low noise fractional-N PLL with an output resolution of <1 ppm. The ADF7021-N has a VCO using an internal LC tank (421 MHz to 458 MHz, 842 MHz to 916 MHz) and a VCO using an external inductor as part of its tank circuit (80 MHz to 650 MHz). The dual VCO design allows dual-band operation where the user can transmit and/or receive at any frequency supported by the internal inductor VCO and can also transmit and/or receive at a particular frequency band supported by the external inductor VCO.

The frequency-agile PLL allows the ADF7021-N to be used in frequency-hopping, spread spectrum (FHSS) systems. Both VCOs operate at twice the fundamental frequency to reduce spurious emissions and frequency pulling problems.

The transmitter output power is programmable in 63 steps from -16 dBm to +13 dBm and has an automatic power ramp control to prevent spectral splatter and help meet regulatory standards. The transceiver RF frequency, channel spacing, and modulation are programmable using a simple 3-wire interface. The device operates with a power supply range of 2.3 V to 3.6 V and can be powered down when not in use.

A low IF architecture is used in the receiver (100 kHz), which minimizes power consumption and the external component count yet avoids dc offset and flicker noise at low frequencies. The IF filter has programmable bandwidths of 9 kHz, 13.5 kHz, and 18.5 kHz. The ADF7021-N supports a wide variety of programmable features including Rx linearity, sensitivity, and IF bandwidth, allowing the user to trade off receiver sensitivity and selectivity against current consumption, depending on the application. The receiver also features an automatic frequency control (AFC) loop with programmable pull-in range that allows the PLL to track out the frequency error in the incoming signal.

The receiver achieves an image rejection performance of 56 dB using an IR calibration scheme that does not require the use of an external RF source.

An on-chip ADC provides readback of the integrated temperature sensor, external analog input, battery voltage, and RSSI signal, which provides savings on an ADC in some applications. The temperature sensor is accurate to $\pm 10^{\circ}$ C over the full operating temperature range of -40° C to $+85^{\circ}$ C. This accuracy can be improved by performing a 1-point calibration at room temperature and storing the result in memory

SPECIFICATIONS

 $V_{DD} = 2.3 \text{ V}$ to 3.6 V, GND = 0 V, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical specifications are at $V_{DD} = 3 \text{ V}$, $T_A = 25^{\circ}$ C. All measurements are performed with the EVAL-ADF7021-NDBxx using the PN9 data sequence, unless otherwise noted.

RF AND PLL SPECIFICATIONS

Table 1.

Parameter	Min	Тур	Мах	Unit	Test Conditions/Comments
RF CHARACTERISTICS					See Table 9 for required VCO_BIAS and
Frequency Banges (Direct Output)	160		650	MH7	External inductor VCO
requercy hanges (Direct Output)	842		916	MHz	Internal inductor VCO
Frequency Banges (BE Divide-by-2 Mode)	80		325	MHz	External inductor VCO BE divide-by-2 enabled
requercy hanges (in Divide by 2 mode)	421		458	MHz	Internal inductor VCO BE divide-by-2 enabled
Phase Frequency Detector (PFD) Frequency ¹	RF/256		24	MHz	
PHASE-LOCKED LOOP (PLL)					
VCO Gain ²					
868 MHz, Internal Inductor VCO		67		MHz/V	VCO_ADJUST = 0, VCO_BIAS = 8
426 MHz, Internal Inductor VCO		45		MHz/V	VCO_ADJUST = 0, VCO_BIAS = 8
426 MHz, External Inductor VCO		27		MHz/V	VCO_ADJUST = 0, VCO_BIAS = 3
160 MHz, External Inductor VCO		6		MHz/V	$VCO_ADJUST = 0, VCO_BIAS = 2$
Phase Noise (In-Band)					
868 MHz, Internal Inductor VCO		-97		dBc/Hz	10 kHz offset, PA = 10 dBm, V_{DD} = 3.0 V,
					PFD = 19.68 MHz, VCO_BIAS = 8
433 MHz, Internal Inductor VCO		-103		dBc/Hz	10 kHz offset, PA = 10 dBm, V _{DD} = 3.0 V, PFD = 19.68 MHz, VCO_BIAS = 8
426 MHz, External Inductor VCO		-95		dBc/Hz	10 kHz offset, PA = 10 dBm, V_{DD} = 3.0 V, PFD = 9.84 MHz, VCO_BIAS = 3
Phase Noise (Out-of-Band)		-124		dBc/Hz	1 MHz offset, f _{RF} = 433 MHz, PA = 10 dBm, V _{DD} = 3.0 V. PFD = 19.68 MHz, VCO BIAS = 8
Normalized In-Band Phase Noise Floor ³		-203		dBc/Hz	
PLL Settling		40		μs	Measured for a 10 MHz frequency step to within 5 ppm accuracy, PFD = 19.68 MHz, loop bandwidth (LBW) = 100 kHz
REFERENCE INPUT					
Crystal Reference ^₄	3.625		24	MHz	
External Oscillator ^{4, 5}	3.625		24	MHz	
Crystal Start-Up Time ⁶					
XTAL Bias = 20 μ A		0.930		ms	10 MHz XTAL, 33 pF load capacitors, $V_{DD} = 3.0 V$
XTAL Bias = 35 μA		0.438		ms	10 MHz XTAL, 33 pF load capacitors, $V_{DD} = 3.0 V$
Input Level for External Oscillator ⁷					
OSC1		0.8		V р-р	Clipped sine wave
OSC2		CMOS levels		V	
ADC PARAMETERS					
INL		±0.4		LSB	$V_{DD} = 2.3 \text{ V to } 3.6 \text{ V}, T_A = 25^{\circ}\text{C}$
DNL		±0.4		LSB	$V_{DD} = 2.3 \text{ V to } 3.6 \text{ V}, T_A = 25^{\circ}\text{C}$

¹ The maximum usable PFD at a particular RF frequency is limited by the minimum N divide value.

² VCO gain measured at a VCO tuning voltage of 0.7 V. The VCO gain varies across the tuning range of the VCO. The software package ADIsimPLL[™] can be used to model this variation.

³ This value can be used to calculate the in-band phase noise for any operating frequency. Use the following equation to calculate the in-band phase noise performance as seen at the power amplifier (PA) output: $-203 + 10 \log(f_{PFD}) + 20 \log N$.

⁴ Guaranteed by design. Sample tested to ensure compliance.

⁵ A TCXO, VCXO, or OCXO can be used as an external oscillator.

⁶ Crystal start-up time is the time from chip enable (CE) being asserted to correct clock frequency on the CLKOUT pin.

⁷ Refer to the Reference Input section for details on using an external oscillator.

TRANSMISSION SPECIFICATIONS

Table 2.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DATA RATE					
2FSK, 3FSK	0.05		18.5 ¹	kbps	IF_FILTER_BW = 18.5 kHz
4FSK	0.05		24	kbps	IF_FILTER_BW = 18.5 kHz
MODULATION					
Frequency Deviation (f _{DEV}) ²	0.056		28.26	kHz	PFD = 3.625 MHz
	0.306		156	kHz	PFD = 20 MHz
Deviation Frequency Resolution	56			Hz	PFD = 3.625 MHz
Gaussian Filter BT		0.5			
Raised Cosine Filter Alpha		0.5/0.7			Programmable
TRANSMIT POWER					
Maximum Transmit Power ³		+13		dBm	$V_{DD} = 3.0 \text{ V}, T_A = 25^{\circ}\text{C}$
Transmit Power Variation vs.		±1		dB	-40°C to +85°C
Temperature					
Transmit Power Variation vs. VDD		±1		dB	2.3 V to 3.6 V at 915 MHz, T _A = 25°C
Transmit Power Flatness		±1		dB	902 MHz to 928 MHz, 3 V, T _A = 25°C
Programmable Step Size		0.3125		dB	–16 dBm to +13 dBm
ADJACENT CHANNEL POWER (ACP)					
426 MHz, External Inductor VCO					PFD = 9.84 MHz
12.5 kHz Channel Spacing		-50		dBc	Gaussian 2FSK modulation, measured in a \pm 4.25 kHz bandwidth
					at ± 12.5 kHz offset, 2.4 kbps PN9 data, 1.2 kHz frequency deviation,
		50		10	compliant with ARIB STD-167
25 KHZ Channel Spacing		-50		aBC	Gaussian 2FSK modulation, measured in a ± 8 KHz bandwidth at
					compliant with ARIB STD-T67
868 MHz. Internal Inductor VCO					PFD = 19.68 MHz
12.5 kHz Channel Spacing		-46		dBm	Gaussian 2FSK modulation, 10 dBm output power, measured in
					a \pm 6.25 kHz bandwidth at \pm 12.5 kHz offset, 2.4 kbps PN9 data,
					1.2 kHz frequency deviation, compliant with ETSI EN 300 220
25 kHz Channel Spacing		-43		dBm	Gaussian 2FSK modulation, 10 dBm output power, measured in
					a ±12.5 kHz bandwidth at ±25 kHz offset, 9.6 kbps PN9 data,
422 MHz Internal Inductor VCO					2.4 km2 frequency deviation, compliant with ersten 500 220
12.5 kHz Channel Spacing		_50		dBm	Gaussian 255K modulation 10 dBm output nower measured in
12.5 KHZ Channel Spacing		-30		ubiii	$a \pm 6.25$ kHz bandwidth at ± 12.5 kHz offset, 2.4 kbps PN9 data.
					1.2 kHz frequency deviation, compliant with ETSI EN 300 220
25 kHz Channel Spacing		-47		dBm	Gaussian 2FSK modulation, 10 dBm output power, measured in
					a \pm 12.5 kHz bandwidth at \pm 25 kHz offset, 9.6 kbps PN9 data,
					2.4 kHz frequency deviation, compliant with ETSI EN 300 220
OCCUPIED BANDWIDTH					99.0% of total mean power; 12.5 kHz channel spacing (2.4 kbps
					(9.6 kbps PN9 data 2.4 kHz frequency deviation)
2ESK Gaussian Data Filtering					
12.5 kHz Channel Spacing		3.9		kHz	
25 kHz Channel Spacing		9.9		kHz	
2FSK Baised Cosine Data Filtering		5.5		14.12	
12.5 kHz Channel Spacing		4.4		kHz	
25 kHz Channel Spacing		10.2		kHz	
3FSK Raised Cosine Filtering					
12.5 kHz Channel Spacing		3.9		kHz	
25 kHz Channel Spacing		9.5		kHz	
4FSK Raised Cosine Filtering					19.2 kbps PN9 data, 1.2 kHz frequency deviation
25 kHz Channel Spacing		13.2		kHz	

Data Sheet

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
		.76	max	•	
Reference Spurs		-65		dBc	100 kHz loop bandwidth
HARMONICS ⁴					13 dBm output power, unfiltered conductive/filtered conductive
Second Harmonic		-35/-52		dBc	
Third Harmonic		-43/-60		dBc	
All Other Harmonics		-36/-65		dBc	
OPTIMUM PA LOAD IMPEDANCE ⁵					
$f_{RF} = 915 \text{ MHz}$		39 + j61		Ω	
$f_{RF} = 868 \text{ MHz}$		48 + j54		Ω	
$f_{RF} = 450 \text{ MHz}$		98 + j65		Ω	
$f_{RF} = 426 \text{ MHz}$		100 + j65		Ω	
$f_{RF} = 315 \text{ MHz}$		129 + j63		Ω	
$f_{RF} = 175 \text{ MHz}$		173 + j49		Ω	

¹ Using Gaussian or raised cosine filtering. Choose the frequency deviation to ensure that the transmit-occupied signal bandwidth is within the receiver IF filter bandwidth. ² For the definition of frequency deviation, refer to the Register 2—Transmit Modulation Register section. ³ Measured as maximum unmodulated power.

⁴ Conductive filtered harmonic emissions measured on the EVAL-ADF7021-NDBxx, which includes a T-stage harmonic filter (two inductors and one capacitor).

⁵ For matching details, refer to the LNA/PA Matching section.

RECEIVER SPECIFICATIONS

Table 3.

Parameter	Min Typ	Max	Unit	Test Conditions/Comments
SENSITIVITY				Bit error rate (BER) = 10^{-3} , low noise amplifier (LNA) and power amplifier (PA) matched separately
2FSK				
Sensitivity at 0.1 kbps	-130		dBm	f _{DEV} = 1 kHz, high sensitivity mode, IF_FILTER_BW = 13.5 kHz
Sensitivity at 0.25 kbps	-127		dBm	f _{DEV} = 1 kHz, high sensitivity mode, IF_FILTER_BW = 13.5 kHz
Sensitivity at 1 kbps	-122		dBm	f _{DEV} = 1 kHz, high sensitivity mode, IF_FILTER_BW = 13.5 kHz
Sensitivity at 9.6 kbps	-115		dBm	f _{DEV} = 4 kHz, high sensitivity mode, IF_FILTER_BW = 18.5 kHz
Gaussian 2FSK				
Sensitivity at 0.1 kbps	-129		dBm	f _{DEV} = 1 kHz, high sensitivity mode, IF_FILTER_BW = 13.5 kHz
Sensitivity at 0.25 kbps	-127		dBm	f _{DEV} = 1 kHz, high sensitivity mode, IF_FILTER_BW = 13.5 kHz
Sensitivity at 1 kbps	-121		dBm	f _{DEV} = 1 kHz, high sensitivity mode, IF_FILTER_BW = 13.5 kHz
Sensitivity at 9.6 kbps	-114		dBm	f _{DEV} = 4 kHz, high sensitivity mode, IF_FILTER_BW = 18.5 kHz
GMSK				
Sensitivity at 9.6 kbps	-113		dBm	f _{DEV} = 2.4 kHz, high sensitivity mode, IF_FILTER_BW = 18.5 kHz
Raised Cosine 2FSK				
Sensitivity at 0.25 kbps	-127		dBm	f _{DEV} = 1 kHz, high sensitivity mode, IF_FILTER_BW = 13.5 kHz
Sensitivity at 1 kbps	-121		dBm	f _{DEV} = 1 kHz, high sensitivity mode, IF_FILTER_BW = 13.5 kHz
Sensitivity at 9.6 kbps	-114		dBm	f _{DEV} = 4 kHz, high sensitivity mode, IF_FILTER_BW = 18.5 kHz

Parameter	Min Typ I	Max Unit	Test Conditions/Comments
3FSK			
Sensitivity at 9.6 kbps	-110	dBm	f _{DEV} = 2.4 kHz, high sensitivity mode, IF_FILTER_BW = 18.5 kHz, Viterbi detection on
Raised Cosine 3FSK			
Sensitivity at 9.6 kbps	-110	dBm	f _{DEV} = 2.4 kHz, high sensitivity mode, IF_FILTER_BW = 13.5 kHz, alpha = 0.5, Viterbi detection on
4FSK			
Sensitivity at 9.6 kbps	-112	dBm	f _{DEV} (inner) = 1.2 kHz, high sensitivity mode, IF_FILTER_BW = 13.5 kHz
Raised Cosine 4FSK			
Sensitivity at 9.6 kbps	-109	dBm	f _{DEV} (inner) = 1.2 kHz, high sensitivity mode, IF_FILTER_BW = 13.5 kHz, alpha = 0.5
INPUT IP3			Two-tone test, f_{LO} = 860 MHz, F1 = f_{LO} + 100 kHz, F2 = f_{LO} – 800 kHz
Low Gain Enhanced Linearity Mode	-3	dBm	LNA_GAIN = 3, MIXER_LINEARITY = 1
Medium Gain Mode	-13.5	dBm	LNA_GAIN = 10, MIXER_LINEARITY = 0
High Sensitivity Mode	-24	dBm	LNA_GAIN = 30, MIXER_LINEARITY = 0
ADJACENT CHANNEL REJECTION			
868 MHz			Wanted signal is 3 dB above the sensitivity point (BER = 10^{-3}); unmodulated interferer is at the center of the adjacent channel; rejection measured as the difference between the interferer level and the wanted signal level in dB
12.5 kHz Channel Spacing	40	dB	9 kHz IF_FILTER_BW
25 kHz Channel Spacing	39	dB	18.5 kHz IF_FILTER_BW
426 MHz			Wanted signal is 3 dB above the reference sensitivity point (BER = 10^{-2}); modulated interferer (same modulation as wanted signal) at the center of the adjacent channel; rejection measured as the difference between the interferer level and reference sensitivity level in dB
12.5 kHz Channel Spacing	40	dB	9 kHz IF_FILTER_BW, compliant with ARIB STD-T67
25 kHz Channel Spacing	39	dB	18.5 kHz IF_FILTER_BW, compliant with ARIB STD-T67
CO-CHANNEL REJECTION			Wanted signal (2FSK, 9.6 kbps, ± 4 kHz deviation) is 3 dB above the sensitivity point (BER = 10^{-3}), modu- lated interferer
868 MHz	-5	dB	
IMAGE CHANNEL REJECTION	26/39	dB	Wanted signal (2FSK, 9.6 kbps, ±4 kHz deviation) is 10 dB above the sensitivity point (BER = 10^{-3}); modu- lated interferer (2FSK, 9.6 kbps, ±4 kHz deviation) is placed at the image frequency of f _{RF} – 200 kHz; the interferer level is increased until BER = 10^{-3} Uncalibrated/calibrated ¹ . Vpp = 3.0 V. T _A = 25° C
450 MHz. Internal Inductor	29/50	dB	Uncalibrated/calibrated ¹ , $V_{DD} = 3.0 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$
VCO			
BLOCKING			Wanted signal is 10 dB above the input sensitivity level; CW interferer level is increased until BER = 10^{-3}
±1 MHz	69	dB	
±2 MHz	75	dB	
±5 MHz	78	dB	
±10 MHz	78.5	dB	
SATURATION (MAXIMUM INPUT LEVEL)	12	dBm	$2FSK mode, BER = 10^{-3}$

Data Sheet

ADF7021-N

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
RSSI					
Range at Input ²		-120 to -47		dBm	
Linearity		±2		dB	Input power range = $-100 \text{ dBm to } -47 \text{ dBm}$
Absolute Accuracy		±3		dB	Input power range = $-100 \text{ dBm to } -47 \text{ dBm}$
Response Time		390		μs	See the RSSI/AGC section
AFC					
Pull-In Range	0.5		1.5 × IF_ FILTER_BW	kHz	The range is programmable in Register 10 (R10_DB[24:31])
Response Time		64		Bits	
Accuracy		0.5		kHz	Input power range = $-100 \text{ dBm to} + 12 \text{ dBm}$
Rx SPURIOUS EMISSIONS ³					
Internal Inductor VCO		-91/-91		dBm	<1 GHz at antenna input, unfiltered conductive/filtered conductive
		-52/-70		dBm	>1 GHz at antenna input, unfiltered conductive/filtered conductive
External Inductor VCO		-62/-72		dBm	<1 GHz at antenna input, unfiltered conductive/filtered conductive
		-64/-85		dBm	>1 GHz at antenna input, unfiltered conductive/filtered conductive
LNA INPUT IMPEDANCE					RFIN to RFGND
$f_{\text{RF}} = 915 \text{ MHz}$		24 – j60		Ω	
$f_{RF} = 868 \text{ MHz}$		26 – j63		Ω	
$f_{RF} = 450 \text{ MHz}$		63 – j129		Ω	
$f_{RF} = 426 \text{ MHz}$		68 – j134		Ω	
$f_{RF} = 315 \text{ MHz}$		96 – j160		Ω	
$f_{\text{RF}} = 175 \text{ MHz}$		178 – j190		Ω	

¹ Calibration of the image rejection used an external RF source. ² For received signal levels < -100 dBm, it is recommended to average the RSSI readback value over a number of samples to improve the RSSI accuracy at low input powers. ³ Filtered conductive receive spurious emissions are measured on the EVAL-ADF7021-NDBxx, which includes a T-stage harmonic filter (two inductors and one capacitor).

DIGITAL SPECIFICATIONS

Table 4.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
TIMING INFORMATION					
Chip Enabled to Regulator Ready		10		μs	CREG (1:4) = 100 nF
Chip Enabled to Tx Mode					32-bit register write time = 50 μ s
TCXO Reference		1		ms	
XTAL		2		ms	
Chip Enabled to Rx Mode					32-bit register write time = 50 μs, IF filter coarse calibration only
TCXO Reference		1.2		ms	
XTAL		2.2		ms	
Tx-to-Rx Turnaround Time		390 μ s + (5 \times t _{BIT})			Time to synchronized data out, includes AGC settling (three AGC levels) and CDR synchronization; see the AGC Information and Timing section for more details; t_{BIT} = data bit period
LOGIC INPUTS					
Input High Voltage, V _{INH}	$0.7 \times V_{\text{DD}}$			V	
Input Low Voltage, V _{INL}			$0.2 \times V_{\text{DD}}$	۷	
Input Current, IINH/IINL			±1	μA	
Input Capacitance, C _{IN}			10	рF	
Control Clock Input			50	MHz	
LOGIC OUTPUTS					
Output High Voltage, V _{он}	$DV_{DD} - 0.4$			V	I _{OH} = 500 μA
Output Low Voltage, Vol			0.4	V	$I_{OL} = 500 \ \mu A$
CLKOUT Rise/Fall			5	ns	
CLKOUT Load			10	рF	

GENERAL SPECIFICATIONS

Table 5.						
Parameter	Min	Тур	Max	Unit	Test Conditions/Comments	
TEMPERATURE RANGE (T _A)	-40		+85	°C		
POWER SUPPLIES						
Voltage Supply, V _{DD}	2.3		3.6	V	All VDD pins must be tied together	
TRANSMIT CURRENT CONSUMPTION ¹					V_{DD} = 3.0 V, PA is matched into 50 Ω	
868 MHz					$VCO_BIAS = 8$	
0 dBm		20.2		mA		
5 dBm		24.7		mA		
10 dBm		32.3		mA		
450 MHz, Internal Inductor VCO					VCO_BIAS = 8	
0 dBm		19.9		mA		
5 dBm		23.2		mA		
10 dBm		29.2		mA		
426 MHz, External Inductor VCO					$VCO_BIAS = 2$	
0 dBm		13.5		mA		
5 dBm		17		mA		
10 dBm		23.3		mA		
RECEIVE CURRENT CONSUMPTION					$V_{DD} = 3.0 V$	
868 MHz					VCO_BIAS = 8	
Low Current Mode		22.7		mA		
High Sensitivity Mode		24.6		mA		
433MHz, Internal Inductor VCO					VCO_BIAS = 8	
Low Current Mode		24.5		mA		
High Sensitivity Mode		26.4		mA		
426 MHz, External Inductor VCO					$VCO_BIAS = 2$	
Low Current Mode		17.5		mA		
High Sensitivity Mode		19.5		mA		
POWER-DOWN CURRENT CONSUMPTION						
Low Power Sleep Mode		0.1	1	μΑ	CE low	

¹ The transmit current consumption tests used the same combined PA and LNA matching network as that used on the EVAL-ADF7021-NDBxx evaluation boards. Improved PA efficiency is achieved by using a separate PA matching network.

TIMING CHARACTERISTICS

 V_{DD} = 3 V ± 10%, DGND = AGND = 0 V, T_A = 25°C, unless otherwise noted. Guaranteed by design but not production tested.

Table 6.			
Parameter	Limit at T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments
t ₁	>10	ns	SDATA to SCLK setup time
t ₂	>10	ns	SDATA to SCLK hold time
t ₃	>25	ns	SCLK high duration
t4	>25	ns	SCLK low duration
t ₅	>10	ns	SCLK to SLE setup time
t ₆	>20	ns	SLE pulse width
t ₈	<25	ns	SCLK to SREAD data valid, readback
t9	<25	ns	SREAD hold time after SCLK, readback
t ₁₀	>10	ns	SCLK to SLE disable time, readback
t11	$5 < t_{11} < (\frac{1}{4} \times t_{BIT})$	ns	TxRxCLK negative edge to SLE
t ₁₂	>5	ns	TxRxDATA to TxRxCLK setup time (Tx mode)
t ₁₃	>5	ns	TxRxCLK to TxRxDATA hold time (Tx mode)
t ₁₄	$> \frac{1}{4} \times t_{BIT}$	μs	TxRxCLK negative edge to SLE
t ₁₅	$>$ ¹ / ₄ \times t _{BIT}	μs	SLE positive edge to positive edge of TxRxCLK

Serial Interface

Figure 5. TxRxDATA/TxRxCLK Timing Diagram in Transmit Mode

4FSK Timing

In 4FSK receive mode, MSB/LSB synchronization is guaranteed by SWD in the receive bit stream.

Figure 6. Receive-to-Transmit Timing Diagram in 4FSK Mode

UART/SPI Mode

UART mode is enabled by setting R0_DB28 to 1. SPI mode is enabled by setting R0_DB28 to 1 and setting R15_DB[17:19] to 0x7. The transmit/receive data clock is available on the CLKOUT pin.

Figure 9. Receive Timing Diagram in UART/SPI Mode

Data Sheet

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 7.

Parameter	Rating	
V _{DD} to GND ¹	–0.3 V to +5 V	
Analog I/O Voltage to GND	-0.3 V to AV _{DD} + 0.3 V	
Digital I/O Voltage to GND	-0.3 V to DV _{DD} + 0.3 V	
Operating Temperature Range		
Industrial (B Version)	-40°C to +85°C	
Storage Temperature Range	–65°C to +125°C	
Maximum Junction Temperature	150°C	
MLF θ_{JA} Thermal Impedance	26°C/W	
Reflow Soldering		
Peak Temperature	260°C	
Time at Peak Temperature	40 sec	

 1 GND = CPGND = RFGND = DGND = AGND = 0.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

This device is a high performance RF integrated circuit with an ESD rating of <2 kV and it is ESD sensitive. Take proper precautions for handling and assembly.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 10. Pin Configuration

Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VCOIN	The tuning voltage on this pin determines the output frequency of the voltage controlled oscillator (VCO). The higher the tuning voltage, the higher the output frequency.
2	CREG1	Regulator Voltage for PA Block. Place a series 3.9 Ω resistor and a 100 nF capacitor between this pin and ground for regulator stability and noise rejection.
3	VDD1	Voltage Supply for PA Block and VCO cores. Place decoupling capacitors of 0.1 μF and 100 pF as close as possible to this pin. Tie all VDD pins together.
4	RFOUT	The modulated signal is available at this pin. Output power levels are from -16 dBm to $+13$ dBm. Impedance match the output to the desired load using suitable components (see the Transmitter section).
5	RFGND	Ground for Output Stage of Transmitter. Tie all GND pins together.
6	RFIN	LNA Input for Receiver Section. Input matching is required between the antenna and the differential LNA input to ensure maximum power transfer (see the LNA/PA Matching section).
7	RFINB	Complementary LNA Input. (See the LNA/PA Matching section.)
8	Rlna	External Bias Resistor for LNA. Optimum resistor is 1.1 k Ω with 5% tolerance.
9	VDD4	Voltage Supply for LNA/MIXER Block. Decouple this pin to ground with a 10 nF capacitor.
10	RSET	External Resistor. Sets charge pump current and some internal bias currents. Use a 3.6 k Ω resistor with 5% tolerance.
11	CREG4	Regulator Voltage for LNA/MIXER Block. Place a 100 nF capacitor between this pin and GND for regulator stability and noise rejection.
12, 19, 22	GND4	Ground for LNA/MIXER Block.
13 to 18	MIX_I, <u>MIX_I,</u> MIX_Q, <u>MIX_Q,</u> FILT_I, FILT_I	Signal Chain Test Pins. These pins are high impedance under normal conditions; leave the pins unconnected.
20, 21, 23	FILT_Q, <u>FILT_Q</u> , TEST_A	Signal Chain Test Pins. These pins are high impedance under normal conditions; leave the pins unconnected.
24	CE	Chip Enable. Bringing CE low puts the ADF7021-N into complete power-down. Register values are lost when CE is low, and the part must be reprogrammed after CE is brought high.
25	SLE	Load Enable, CMOS Input. When SLE goes high, the data stored in the shift registers is loaded into one of the four latches. A latch is selected using the control bits.
26	SDATA	Serial Data Input. The serial data is loaded MSB first with the four LSBs as the control bits. This pin is a high impedance CMOS input.
27	SREAD	Serial Data Output. This pin is used to feed readback data from the ADF7021-N to the microcontroller. The SCLK input is used to clock each readback bit (for example, AFC or ADC) from the SREAD pin.
28	SCLK	Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into the 32-bit shift register on the CLK rising edge. This pin is a digital CMOS input.
29	GND2	Ground for Digital Section.

Pin No.	Mnemonic	Description
30		Analog-to-Digital Converter Input. The internal 7-bit ADC can be accessed through this pin. Full scale is 0.V to
50	ADCIN	1.9 V. Readback is made using the SREAD pin.
31	CREG2	Regulator Voltage for Digital Block. Place a 100 nF capacitor between this pin and ground for regulator stability and noise rejection.
32	VDD2	Voltage Supply for Digital Block. Place a decoupling capacitor of 10 nF as close as possible to this pin.
33	SWD	Sync Word Detect. The ADF7021-N asserts this pin when it has found a match for the sync word sequence (see the Register 11—Sync Word Detect Register section). This provides an interrupt for an external microcontroller indicating that valid data is being received.
34	TxRxDATA	Transmit Data Input/Received Data Output. This is a digital pin, and normal CMOS levels apply. In UART/SPI mode, this pin provides an output for the received data in receive mode. In transmit UART/SPI mode, this pin is high impedance (see the Interfacing to a Microcontroller/DSP section).
35	TxRxCLK	Outputs the data clock in both receive and transmit modes. This is a digital pin, and normal CMOS levels apply. The positive clock edge is matched to the center of the received data. In transmit mode, this pin outputs an accurate clock to latch the data from the microcontroller into the transmit section at the exact required data rate. In UART/SPI mode, this pin is used to input the transmit data in transmit mode. In receive UART/SPI mode, this pin is high impedance (see the Interfacing to a Microcontroller/DSP section).
36	CLKOUT	A divided-down version of the crystal reference with output driver. The digital clock output can be used to drive several other CMOS inputs such as a microcontroller clock. The output has a 50:50 mark-space ratio and is inverted with respect to the reference. Place a series 1 k Ω resistor as close as possible to the pin in applications where the CLKOUT feature is being used.
37	MUXOUT	Provides the DIGITAL_LOCK_DETECT signal. This signal is used to determine if the PLL is locked to the correct frequency. It also provides other signals such as REGULATOR_READY, which is an indicator of the status of the serial interface regulator (see the MUXOUT section for more information).
38	OSC2	Connect the reference crystal between this pin and OSC1. A TCXO reference can be used by driving this pin with CMOS levels and disabling the internal crystal oscillator.
39	OSC1	Connect the reference crystal between this pin and OSC2. A TCXO reference can be used by driving this pin with ac-coupled 0.8 V p-p levels and by enabling the internal crystal oscillator.
40	VDD3	Voltage Supply for the Charge Pump and PLL Dividers. Decouple this pin to ground with a 10 nF capacitor.
41	CREG3	Regulator Voltage for Charge Pump and PLL Dividers. Place a 100 nF capacitor between this pin and ground for regulator stability and noise rejection.
42	CPOUT	Charge Pump Output. This output generates current pulses that are integrated in the loop filter. The integrated current changes the control voltage on the input to the VCO.
43	VDD	Voltage Supply for XTAL and bandgap core. Decouple this pin to ground with a 10 nF capacitor.
44, 46	L2, L1	External VCO Inductor Pins. If using an external VCO inductor, connect a chip inductor across these pins to set the VCO operating frequency. If using the internal VCO inductor, these pins can be left floating. See the Voltage Controlled Oscillator (VCO) section for more information.
45, 47	GND, GND1	Grounds for VCO Block.
48	CVCO	Place a 22 nF capacitor between this pin and CREG1 to reduce VCO noise.
49	EPAD	Exposed Pad. The exposed pad must be connected to GND.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 11. Phase Noise Response at 900 MHz, V_{DD} = 2.3 V

Figure 13. PA Output Harmonic Response with T-Stage LC Filter

Figure 14. Output Spectrum in 2FSK and GFSK Modes

4FSK

WARANY M

Figure 15. Output Spectrum in 2FSK and Raised Cosine 2FSK Modes

Figure 16. Output Spectrum in 4FSK and Raised Cosine 4FSK Modes

Figure 17. Output Spectrum in 3FSK and Raised Cosine 3FSK Modes

Figure 19. 2FSK Sensitivity vs. V_{DD} and Temperature, $f_{RF} = 868$ MHz

Figure 20. 2FSK Sensitivity vs. V_{DD} and Temperature, $f_{RF} = 135$ MHz

Figure 22. 4FSK Sensitivity vs. V_{DD} and Temperature, $f_{RF} = 420$ MHz

Data Sheet

90 80 П 70 60 BLOCKING (dB) 50 RF FREQ = 868MHz 40 WANTED SIGNAL (10dB ABOVE SENSITIVITY 30 POINT) = 2FSK, f_{DEV} = 4kHz, DATA RATE = 9.8kbps 20 BLOCKER = 2FSK, 10 f_{DEV} = 4kHz, DATA RATE = 9.8kbps 0 V_{DD} = 3.0V TEMPERATURE = 25°C -10 -202 10 059 -22 -18 -6 6 14 18 22 -14 -10 07246 FREQUENCY OFFSET (MHz)

Figure 25. Image Rejection, Uncalibrated vs. Calibrated

Figure 26. Variation of IF Filter Response with Temperature (IF_FILTER_BW = 9 kHz, Temperature Range is -40° C to $+90^{\circ}$ C in 10° Steps)

Figure 27. 2FSK Sensitivity vs. Modulation Index vs. Correlator Discriminator Bandwidth

Figure 29. 4FSK Receiver Eye Diagram Measured Using the Test DAC Output

Figure 30. 3FSK Receiver Eye Diagram Measured Using the Test DAC Output

Figure 31. Receive Sensitivity vs. LNA/IF Filter Gain and Mixer Linearity Settings (The input IP3 at each setting is also shown)

FREQUENCY SYNTHESIZER REFERENCE INPUT

The on-board crystal oscillator circuitry (see Figure 32) can use a quartz crystal as the PLL reference. Using a quartz crystal with a frequency tolerance of ≤ 10 ppm for narrow-band applications is recommended. It is possible to use a quartz crystal with >10 ppm tolerance, but to comply with the absolute frequency error specifications of narrow-band regulations (for example, ARIB STD-T67 and ETSI EN 300 220), compensation for the

frequency error of the crystal is necessary.

The oscillator circuit is enabled by setting R1_DB12 high. It is enabled by default on power-up and is disabled by bringing CE low. Errors in the crystal can be corrected by using the automatic frequency control feature or by adjusting the fractional-N value (see the N Counter section).

Two parallel resonant capacitors are required for oscillation at the correct frequency. Their values are dependent on the crystal specification. Choose them to ensure that the series value of capacitance added to the PCB track capacitance adds up to the specified load capacitance of the crystal, usually 12 pF to 20 pF. Track capacitance values vary from 2 pF to 5 pF, depending on board layout. When possible, choose capacitors that have a very low temperature coefficient to ensure stable frequency operation over all conditions.

Using a TCXO Reference

A single-ended reference (TCXO, VCXO, or OCXO) can also be used with the ADF7021-N. This is recommended for applications having absolute frequency accuracy requirements of <10 ppm, such as applications requiring compliance with ARIB STD-T67 or ETSI EN 300 220. The following are two options for interfacing the ADF7021-N to an external reference oscillator.

- An oscillator with CMOS output levels can be applied to OSC2. Disable the internal oscillator circuit by setting R1_DB12 low.
- An oscillator with 0.8 V p-p levels can be ac-coupled through a 22 pF capacitor into OSC1. Enable the internal oscillator circuit by setting R1_DB12 high.

Programmable Crystal Bias Current

Bias current in the oscillator circuit can be configured between 20 μ A and 35 μ A by writing to the XTAL_BIAS bits (R1_DB [13:14]). Increasing the bias current allows the crystal oscillator to power up faster.

CLKOUT Divider and Buffer

The CLKOUT circuit takes the reference clock signal from the oscillator section, shown in Figure 32, and supplies a divideddown, 50:50 mark-space signal to the CLKOUT pin. The CLKOUT signal is inverted with respect to the reference clock. An even divide from 2 to 30 is available. This divide number is set in R1_DB[7:10]. On power-up, the CLKOUT defaults to divide-by-8.

To disable CLKOUT, set the divide number to 0. The output buffer can drive up to a 20 pF load with a 10% rise time at 4.8 MHz. Faster edges can result in some spurious feedthrough to the output. A series resistor (1 k Ω) can be used to slow the clock edges to reduce these spurs at the CLKOUT frequency.

R Counter

The 3-bit R counter divides the reference input frequency by an integer between 1 and 7. The divided-down signal is presented as the reference clock to the phase frequency detector (PFD). The divide ratio is set in R1_DB[4:6]. Maximizing the PFD frequency reduces the N value. This reduces the noise multiplied at a rate of 20 log(N) to the output and reduces occurrences of spurious components.

Register 1 defaults to R = 1 on power-up.

PFD [Hz] = XTAL/R

Loop Filter

The loop filter integrates the current pulses from the charge pump to form a voltage that tunes the output of the VCO to the desired frequency. It also attenuates spurious levels generated by the PLL. A typical loop filter design is shown in Figure 34.

Figure 34. Typical Loop Filter Configuration

Design the loop so that the loop bandwidth (LBW) is approximately 100 kHz. This provides a good compromise between in-band phase noise and out-of-band spurious rejection. Widening the LBW excessively reduces the time spent jumping between frequencies, but it can cause insufficient spurious attenuation. Narrow-loop bandwidths can result in the loop taking long periods to attain lock and can also result in a higher level of power falling into the adjacent channel. Use the loop filter design on the EVAL-ADF7021-NDBxx for optimum performance.

The free design tool ADI SRD Design Studio[™] can also be used to design loop filters for the ADF7021-N (see the ADI SRD Design Studio web site for details).

N Counter

The feedback divider in the ADF7021-N PLL consists of an 8-bit integer counter (R0_DB[19:26]) and a 15-bit, sigma-delta $(\Sigma - \Delta)$ fractional_N divider (R0_DB[4:18]). The integer counter is the standard pulse-swallow type that is common in PLLs. This sets the minimum integer divide value to 23. The fractional divide value provides very fine resolution at the output, where the output frequency of the PLL is calculated as

$$f_{OUT} = \frac{XTAL}{R} \times \left(Integer _ N + \frac{Fractional _ N}{2^{15}} \right)$$

When RF_DIVIDE_BY_2 (see the Voltage Controlled Oscillator (VCO) section) is selected, this formula becomes

$$f_{OUT} = \frac{XTAL}{R} \times 0.5 \times \left(Integer_N + \frac{Fractional_N}{2^{15}} \right)$$

The combination of Integer_N (maximum = 255) and Fractional_N (maximum = 32,768/32,768) gives a maximum N divider of 255 + 1. Therefore, the minimum usable PFD is

$$PFD_{MIN}[Hz] = \frac{Maximum Required Output Frequency}{(255+1)}$$

For example, when operating in the European 868 MHz to 870 MHz band, $PFD_{MIN} = 3.4$ MHz.

Voltage Regulators

The ADF7021-N contains four regulators to supply stable voltages to the part. The nominal regulator voltage is 2.3 V. Regulator 1 requires a 3.9 Ω resistor and a 100 nF capacitor in series between CREG1 and GND, whereas the other regulators require a 100 nF capacitor connected between CREGx and GND. When CE is high, the regulators and other associated circuitry are powered on, drawing a total supply current of 2 mA. Bringing the CE pin low disables the regulators, reduces the supply current to less than 1 μ A, and erases all values held in the registers.

The serial interface operates from a regulator supply. Therefore, to write to the part, the user must have CE high and the regulator

voltage must be stabilized. Regulator status (CREG4) can be monitored using the REGULATOR_READY signal from the MUXOUT pin.

MUXOUT

The MUXOUT pin allows access to various digital points in the ADF7021-N. The state of MUXOUT is controlled in Register 0 (R0_DB[29:31]).

REGULATOR_READY

REGULATOR_READY is the default setting on MUXOUT after the transceiver is powered up. The power-up time of the regulator is typically 50 µs. Because the serial interface is powered from the regulator, the regulator must be at its nominal voltage before the ADF7021-N can be programmed. The status of the regulator can be monitored at MUXOUT. When the regulator ready signal on MUXOUT is high, programming of the ADF7021-N can begin.

FILTER CAL COMPLETE

MUXOUT can be set to FILTER_CAL_COMPLETE. This signal goes low for the duration of both a coarse IF filter calibration and a fine IF filter calibration. It can be used as an interrupt to a microcontroller to signal the end of the IF filter calibration.

DIGITAL_LOCK_DETECT

DIGITAL_LOCK_DETECT indicates when the PLL has locked. The lock detect circuit is located at the PFD. When the phase error on five consecutive cycles is less than 15 ns, lock detect is set high. Lock detect remains high until a 25 ns phase error is detected at the PFD.

RSSI_READY

MUXOUT can be set to RSSI_READY. This indicates that the internal analog RSSI has settled and a digital RSSI readback can be performed.

Tx_Rx

Tx_Rx signifies whether the ADF7021-N is in transmit or receive mode. When in transmit mode, this signal is low. When in receive mode, this signal is high. It can be used to control an external Tx/Rx switch.