: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1Ω On Resistance, $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}$ iCMOS SPST Switches

FEATURES

1Ω on resistance

0.2Ω on resistance flatness
Up to 430 mA continuous current
Fully specified at $+12 \mathrm{~V}, \pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$
No V_{L} supply required 3 V logic-compatible inputs
Rail-to-rail operation
8-lead MSOP and 8-lead, $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ LFCSP packages

APPLICATIONS

Automatic test equipment
 Data acquisition systems
 Battery-powered systems
 Sample-and-hold systems
 Audio signal routing
 Video signal routing
 Communication systems
 Relay replacements

GENERAL DESCRIPTION

The ADG1401/ADG1402 contain a single-pole/single-throw (SPST) switch. Figure 1 shows that with a logic input of 1 , the switch of the ADG1401 is closed and that of the ADG1402 is open. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The i CMOS $^{\circledR}$ (industrial CMOS) modular manufacturing process combines high voltage, complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage parts has achieved. Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and a reduced package size.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT
Figure 1. ADG1401 Functional Block Diagram

SWITCHES SHOWN FOR A LOGIC 1 INPUT
Figure 2. ADG1402 Functional Block Diagram

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. The i CMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

PRODUCT HIGHLIGHTS

1. $\quad 1.3 \Omega$ maximum on resistance at $25^{\circ} \mathrm{C}$.
2. Minimum distortion.
3. 3 V logic-compatible digital inputs: $\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
4. No V_{L} logic power supply required.
5. 8 -lead MSOP and 8 -lead, $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ LFCSP packages.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG1401/ADG1402

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
+12 V Single Supply 4
± 5 V Dual Supply 5
Continuous Current Per Channel, S or D 6
Absolute Maximum Ratings 7
Thermal Resistance 7
ESD Caution7
Pin Configuration and Function Descriptions 8
Typical Performance Characteristics 9
Test Circuits 12
Terminology 14
Outline Dimensions 15
Ordering Guide 15

REVISION HISTORY

10/09—Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Flatness, Rflat (oN)	$\begin{aligned} & 1 \\ & 1.3 \\ & 0.2 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 0.26 \end{aligned}$	$V_{D D} \text { to } V_{S S}$ 1.8 0.3	V Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see Figure } 20 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 10 \mathrm{~V} ; \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.4 \\ & \pm 0.05 \\ & \pm 0.4 \\ & \pm 0.2 \\ & \pm 1 \\ & \hline \end{aligned}$	± 3 ± 3 ± 3	$\begin{aligned} & \pm 150 \\ & \pm 150 \\ & \pm 150 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 22 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current, I_{NL} or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{CIN}_{\mathrm{IN}}$	$\begin{aligned} & 0.002 \\ & 4 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
```DYNAMIC CHARACTERISTICS ton tofF Charge Injection Off Isolation Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss Cs}\mathrm{ (Off) CD (Off) CD, Cs (On)```	$\begin{aligned} & 120 \\ & 150 \\ & 120 \\ & 150 \\ & -12 \\ & -58 \\ & 0.008 \\ & 120 \\ & 0.08 \\ & 36 \\ & 41 \\ & 187 \\ & \hline \end{aligned}$	185 175	215 200	ns typ ns max ns typ ns max pC typ dB typ \% typ   MHz typ   dB typ   pF typ   pF typ   pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { see Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, 5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \\ & \text { see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {; see Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 26 \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$
POWER REQUIREMENTS IDD IDD Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 0.002 \\ & 60 \\ & 0.002 \end{aligned}$		$1.0$   95   1.0   $\pm 4.5 / \pm 16.5$	$\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   V min/max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V}, 5 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Ground }=0 \mathrm{~V} \end{aligned}$

[^0]
## ADG1401/ADG1402

## +12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH   Analog Signal Range On Resistance, Ron On Resistance Flatness, Rflat (on)	$\begin{aligned} & 2 \\ & 2.4 \\ & 0.6 \\ & 0.68 \end{aligned}$	2.9 0.8	0 V to $\mathrm{V}_{\mathrm{DD}}$ $3.2$ $0.85$	V   $\Omega$ typ   $\Omega$ max   $\Omega$ typ   $\Omega$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see Figure } 20 \\ & \mathrm{~V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS   Source Off Leakage, Is (Off)   Drain Off Leakage, $I_{D}$ (Off)   Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.4 \\ & \pm 0.05 \\ & \pm 0.4 \\ & \pm 0.2 \\ & \pm 1 \\ & \hline \end{aligned}$	$\pm 3$   $\pm 3$   $\pm 3$	$\begin{aligned} & \pm 150 \\ & \pm 150 \\ & \pm 150 \end{aligned}$	nA typ   nA max   nA typ   nA max   nA typ   nA max	$\begin{aligned} & V_{D D}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; see Figure } 22 \end{aligned}$
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, IINL or $\mathrm{l}_{\mathrm{INH}}$   Digital Input Capacitance, $\mathrm{Cl}_{\mathrm{I}}$	$\begin{aligned} & 0.002 \\ & 4 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	$V$ min   $V$ max   $\mu A$ typ   $\mu \mathrm{A}$ max   pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$   ton   toff   Charge Injection   Off Isolation -3 dB Bandwidth Insertion Loss $\mathrm{C}_{s}$ (Off)   $\mathrm{C}_{\mathrm{D}}$ (Off)   $\mathrm{C}_{\mathrm{D},} \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 180 \\ & 235 \\ & 140 \\ & 185 \\ & 57 \\ & -58 \\ & 82 \\ & 0.15 \\ & 61 \\ & 68 \\ & 181 \end{aligned}$	$\begin{aligned} & 295 \\ & 215 \end{aligned}$	335 260	ns typ ns max ns typ ns max pC typ dB typ   MHz typ   dB typ   pF typ   pF typ   pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { see Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, C_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {; see Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 26 \\ & \mathrm{f}=1 \mathrm{MHz}, V_{S}=6 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz}, V_{S}=6 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz}, V_{S}=6 \mathrm{~V} \\ & \hline \end{aligned}$
POWER REQUIREMENTS IDD IDD $V_{D D}$	$\begin{aligned} & 0.001 \\ & 60 \end{aligned}$		$1.0$   95 $5 / 16.5$	$\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $\checkmark$ min/max	$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$   Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$   Digital inputs $=5 \mathrm{~V}$   Ground $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$

[^1]
## ※5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH   Analog Signal Range On Resistance, Ron On Resistance Flatness, Rflat (oN)	$\begin{aligned} & 2.3 \\ & 2.7 \\ & 0.65 \\ & 0.72 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 0.85 \end{aligned}$	$0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}$ $3.7$ $0.9$	V   $\Omega$ typ   $\Omega$ max   $\Omega$ typ   $\Omega$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 20 \\ & \mathrm{~V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS   Source Off Leakage, Is (Off)   Drain Off Leakage, $I_{D}$ (Off)   Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.02 \\ & \pm 0.4 \\ & \pm 0.02 \\ & \pm 0.4 \\ & \pm 0.1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 3 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 150 \\ & \pm 150 \end{aligned}$	nA typ   nA max   nA typ   nA max   nA typ   nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {; see Figure } 22 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current, linl or linh Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 0.002 \\ & 4 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	$V$ min   V max   $\mu A$ typ   $\mu \mathrm{A}$ max   pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {di }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$   ton   toff   Charge Injection   Off Isolation   Total Harmonic Distortion + Noise   -3 dB Bandwidth   Insertion Loss   $\mathrm{C}_{\mathrm{s}}$ (Off)   $C_{D}$ (Off)   $C_{D}, C_{S}(O n)$	$\begin{aligned} & 290 \\ & 375 \\ & 235 \\ & 305 \\ & 145 \\ & -58 \\ & 0.02 \\ & 79 \\ & 0.14 \\ & 52 \\ & 58 \\ & 198 \\ & \hline \end{aligned}$	$\begin{aligned} & 460 \\ & 365 \end{aligned}$	520 405	ns typ ns max ns typ ns max pC typ dB typ \% typ   MHz typ dB typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { see Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, 5 \mathrm{Vp-p,f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \\ & \text { see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {; see Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 26 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS IDD Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	0.001 0.001		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \pm 4.5 / \pm 16.5 \end{aligned}$	$\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $\checkmark$ min/max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Ground }=0 \mathrm{~V} \end{aligned}$

[^2]
## ADG1401/ADG1402

## CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, S or D ${ }^{1}$					
$\pm 15$ V Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-13.5 \mathrm{~V}$
8 -Lead MSOP ( $\theta_{\mathrm{JA}}=206^{\circ} \mathrm{C} / \mathrm{W}$ )	275	190	125	mA maximum	
8 -Lead LFCSP ( $\theta_{\text {JA }}=50.8^{\circ} \mathrm{C} / \mathrm{W}$ )	430	275	160	mA maximum	
+12 V Single Supply					$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
8 -Lead MSOP ( $\theta_{\text {JA }}=206^{\circ} \mathrm{C} / \mathrm{W}$ )	255	180	120	mA maximum	
8 -Lead LFCSP ( $\theta_{\text {JA }}=50.8^{\circ} \mathrm{C} / \mathrm{W}$ )	355	235	145	mA maximum	
$\pm 5 \mathrm{~V}$ Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-4.5 \mathrm{~V}$
8 -Lead MSOP ( $\theta_{\text {JA }}=206^{\circ} \mathrm{C} / \mathrm{W}$ )	250	175	120	mA maximum	
8 -Lead LFCSP $\left(\theta_{\mathrm{JA}}=50.8^{\circ} \mathrm{C} / \mathrm{W}\right)$	340	225	140	mA maximum	

[^3]
## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 5.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	35 V
$V_{\text {DD }}$ to GND	-0.3 V to +25 V
Vss to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty-Cycle Maximum)	
8-Lead MSOP (4-Layer Board)	500 mA
8-Lead LFCSP	700 mA
Continuous Current per Channel, S or D	Data in Table $4+15 \%$
Operating Temperature Range Industrial	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature, Pb Free	$260^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

Table 6. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}$	$\boldsymbol{\theta}_{\mathbf{\prime}}$	Unit
8-Lead MSOP (4-Layer Board)	206	44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead LFCSP	50.8		${ }^{\circ} \mathrm{C} / \mathrm{W}$

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

${ }^{1}$ Over voltages at $\mathrm{IN}, \mathrm{S}$, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ADG1401/ADG1402

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS




Table 7. ADG1401/ADG1402 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S	Source Terminal. This pin can be an input or output.
2	NC	No Connect.
3	GND	Ground (O V) Reference.
4	VDD	Most Positive Power Supply Potential.
5	NC	No Connect.
6	IN	Logic Control Input.
7	VSS 2	Most Negative Power Supply Potential.
8	D	Drain Terminal. This pin can be an input or output.
	EPAD	Exposed pad tied to substrate, $\mathrm{V}_{5 s}$ for LFCSP package.

Table 8. ADG1401/ADG1402 Truth Table

ADG1401 IN	ADG1402 IN	Switch Condition
1	0	On
0	1	Off

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 4. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Dual Supply


Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply


Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply


Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, $\pm 15$ V Dual Supply


Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, +12 V Single Supply


Figure 9. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, $\pm 5$ V Dual Supply

## ADG1401/ADG1402



Figure 10. Leakage Currents as a Function of Temperature, $\pm 15$ V Dual Supply


Figure 11. Leakage Currents as a Function of Temperature, +12 V Single Supply


Figure 12. Leakage Currents as a Function of Temperature, $\pm 5$ V Dual Supply


Figure 13. I ID vs. Logic Level


Figure 14. Charge Injection vs. Source Voltage


Figure 15. $t_{\text {ON }} / t_{\text {off }}$ Times vs. Temperature


Figure 16. Off Isolation vs. Frequency


Figure 17. On Response vs. Frequency


Figure 18. THD $+N$ vs. Frequency


Figure 19. ACPSRR vs. Frequency

## ADG1401/ADG1402

TEST CIRCUITS


Figure 20. On Resistance


Figure 22. On Leakage


Figure 21. Off Leakage


Figure 23. Switching Times, $t_{\text {ON }}$ and toff


Figure 24. Charge Injection

## ADG1401/ADG1402



Figure 25. Off Isolation


Figure 26. Bandwidth

## ADG1401/ADG1402

## TERMINOLOGY

IDD
The positive supply current.
Iss
The negative supply current.
$V_{D}\left(V_{s}\right)$
The analog voltage on Terminal D and Terminal S .
$\mathbf{R}_{\text {ON }}$
The ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {Flat (ON) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

## IS (Off)

The source leakage current with the switch off.

## $I_{D}$ (Off)

The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0.
$V_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\mathrm{INH}}\right)$
The input current of the digital input.
$\mathrm{C}_{\mathrm{s}}$ (Off)
The off switch source capacitance, measured with reference to ground.

## $C_{D}$ (Off)

The off switch drain capacitance, measured with reference to ground.

## $\mathrm{C}_{\mathrm{p}}, \mathrm{Cs}$ (On)

The on switch capacitance, measured with reference to ground.
Cin
The digital input capacitance.
$t_{\text {on }}$
Delay time between the $50 \%$ and $90 \%$ points of the digital input and switch on condition. See Figure 23.
$\mathbf{t}_{\text {OFF }}$
Delay time between the $50 \%$ and $90 \%$ points of the digital input and switch off condition. See Figure 23.

## Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching. See Figure 24.

## Off Isolation

A measure of unwanted signal coupling through an off switch. See Figure 25.

## Bandwidth

The frequency at which the output is attenuated by 3 dB .
See Figure 26.

## On Response

The frequency response of the on switch.

## Insertion Loss

The loss due to the on resistance of the switch. See Figure 26.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental. See Figure 27.

## AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of $0.62 \mathrm{~V} \mathrm{p-p}$. The ratio of the amplitude of the signal on the output to the amplitude of the modulation is the ACPSRR. See Figure 19.

## OUTLINE DIMENSIONS



Figure 28. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters


Figure 29. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]
$3 \mathrm{~mm} \times 2 \mathrm{~mm}$ Body, Very Very Thin, Dual Lead (CP-8-4)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG1401BRMZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead Mini Small Outline Package [MSOP]	RM-8	S2T
ADG1401BRMZ-REEL7 $1^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	S2T
ADG1401BCPZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-8-4	2 Y
ADG1402BRMZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	S2U
ADG1402BRMZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	S2U
ADG1402BCPZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-8-4	1F

[^4]
## ADG1401/ADG1402

## NOTES


[^0]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]:    ${ }^{1}$ Guaranteed by design, not subject to production test

[^2]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^3]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^4]:    ${ }^{1} Z=$ RoHS Compliant Part.

