imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2.1 Ω On Resistance, ±15 V/+12 V/±5 V *i*CMOS Dual SPST Switches

Data Sheet

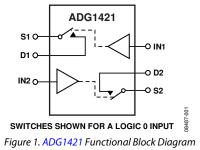
FEATURES

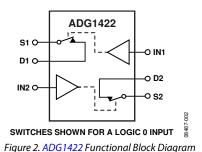
2.1 Ω on resistance

0.5 Ω maximum on resistance flatness Up to 250 mA continuous current Fully specified at +12 V, ±15 V, ±5 V No V_L supply required 3 V logic-compatible inputs Rail-to-rail operation 10-lead MSOP and 10-lead, 3 mm × 3 mm LFCSP packages

APPLICATIONS

Automatic test equipment Data acquisition systems Relay replacements Battery-powered systems Sample-and-hold systems Audio signal routing Video signal routing Communication systems


GENERAL DESCRIPTION


The ADG1421/ADG1422/ADG1423 contain two independent single-pole/single-throw (SPST) switches. The ADG1421 and ADG1422 differ only in that the digital control logic is inverted. The ADG1421 switches are turned on with Logic 1 on the appropriate control input, and Logic 0 is required for the ADG1422. The ADG1423 has one switch with digital control logic similar to that of the ADG1421; the logic is inverted on the other switch. The ADG1423 exhibits break-before-make switching action for use in multiplexer applications. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The *i*CMOS* (industrial CMOS) modular manufacturing process combines high voltage, complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage parts has achieved. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

ADG1421/ADG1422/ADG1423

FUNCTIONAL BLOCK DIAGRAM

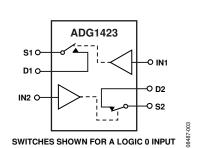


Figure 3. ADG1423 Functional Block Diagram

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. The *i*CMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

PRODUCT HIGHLIGHTS

- 1. 2.4 Ω maximum on resistance at 25°C.
- 2. Minimum distortion.
- 3. 3 V logic-compatible digital inputs: $V_{INH} = 2.0$ V, $V_{INL} = 0.8$ V.
- 4. No V_L logic power supply required.
- 5. 10-lead MSOP and 10-lead, 3 mm × 3 mm LFCSP packages.

Rev. A Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications1
General Description
Functional Block Diagram1
Product Highlights 1
Revision History 2
Specifications
±15 V Dual Supply
+12 V Single Supply
±5 V Dual Supply5

REVISION HISTORY

7/14—Rev. 0 to Rev. A

Changes to Table 1	3
Updated Outline Dimensions 1	5
10/09—Revision 0: Initial Version	

Continuous Current per Channel, S or D	6
Absolute Maximum Ratings	7
Thermal Resistance	7
ESD Caution	7
Pin Configuration and Function Descriptions	8
Typical Performance Characteristics	9
Test Circuits	12
Terminology	14
Outline Dimensions	15
Ordering Guide	16

SPECIFICATIONS ±15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	–40°C to +85°C	–40°C to +105°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range				V _{DD} to V _{SS}	V	
On Resistance, R _{ON}	2.1				Ωtyp	$V_s = \pm 10 V$, $I_s = -10 mA$; see Figure 23
	2.4	2.8	2.95	3.2	Ωmax	$V_{DD} = +13.5 V$, $V_{SS} = -13.5 V$
On Resistance Match Between Channels, ΔR_{ON}	0.02				Ωtyp	$V_{s} = \pm 10 V$, $I_{s} = -10 mA$
	0.1	0.12	0.124	0.13	Ωmax	
On Resistance Flatness, R _{FLAT (ON)}	0.4				Ωtyp	$V_s = \pm 10 V$, $I_s = -10 mA$
	0.5	0.6	0.63	0.65	Ωmax	
LEAKAGE CURRENTS						$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.1				nA typ	$V_s = \pm 10 \text{ V}, V_D = \pm 10 \text{ V}; \text{ see Figure 24}$
	±0.5	±2	±9	±75	nA max	
Drain Off Leakage, I _D (Off)	±0.1			_/0	nA typ	$V_s = \pm 10 \text{ V}, V_D = \pm 10 \text{ V}; \text{ see Figure 24}$
	±0.5	±2	±9	±75	nA max	13guie
Channel On Leakage, I _D , I _s (On)	±0.2	- -	_, _,	275	nA typ	$V_{\rm S} = V_{\rm D} = \pm 10$ V; see Figure 25
	±0.2 ±1	±2	±9	±75	nA max	$v_3 = v_0 = \pm 10$ v, see Figure 25
DIGITAL INPUTS	<u> </u>	- <u>-</u>	÷2	±,,,	in that	
				2.0	V min	
Input High Voltage, V _{INH}						
Input Low Voltage, VINL	0.005			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			.01	μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
				±0.1	µA max	
Digital Input Capacitance, C _{IN}	4				pF typ	
DYNAMIC CHARACTERISTICS ¹						
ton	115				ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	145	180		210	ns max	V _s = 10 V; see Figure 26
toff	115				ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	145	165		190	ns max	$V_s = 10 V$; see Figure 26
Break-Before-Make Time Delay, t _D (ADG1423 Only)	45				ns typ	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$
				30	ns min	$V_{S1} = V_{S2} = 10 V$; see Figure 27
Charge Injection	-5				pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 28
Off Isolation	-64				dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Channel-to-Channel Crosstalk	-74				dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
Total Harmonic Distortion + Noise	0.016				% typ	$R_L = 10 \text{ k}\Omega$, 5 V rms, f = 20 Hz to 20 kHz; see Figure 32
–3 dB Bandwidth	180				MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 31
Insertion Loss	0.12				dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
Cs (Off)	18				pF typ	$f = 1 MHz; V_s = 0 V$
$C_{\rm D}$ (Off)	22				pF typ	$f = 1 MHz; V_s = 0 V$
C _D , C _S (On)	86				pF typ	$f = 1 MHz; V_s = 0 V$
POWER REQUIREMENTS					1 71	$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
IDD	0.002				μA typ	Digital inputs = $0 \text{ V or } V_{DD}$
	0.002			1.0	μA max	
lod	120			1.0	μA typ	Digital inputs = 5 V
עטו	120			190	μΑ typ μΑ max	
	0.000			190	•	Digital inputs $= 0.1/5.1/5.1/5$
lss	0.002			1.0	μA typ	Digital inputs = 0 V, 5 V, or V_{DD}
				1.0	μA max	
V _{DD} /V _{ss}	1			±4.5/±16.5	V min/max	Ground = 0 V

+12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V$ to V_{DD}	V	
On Resistance, R _{on}	4			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$; see Figure 23
	4.6	5.5	6.2	Ωmax	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On Resistance Match Between Channels, ΔR_{ON}	0.03			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	0.15	0.17	0.18	Ωmax	
On Resistance Flatness, R _{FLAT (ON)}	1.2			Ωtyp	$V_{s} = 0V$ to 10 V, $I_{s} = -10$ mA
	1.5	1.75	1.9	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, \text{V}_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.05			nA typ	$V_{s} = 1 V/10 V$, $V_{D} = 10 V/1 V$; see Figure 24
5,2,2,7	±0.5	±2	±75	nA max	
Drain Off Leakage, I _D (Off)	±0.05			nA typ	$V_{s} = 1 V/10 V, V_{D} = 10 V/1 V$; see Figure 24
	±0.5	±2	±75	nA max	······································
Channel On Leakage, I _D , Is (On)	±0.1	-	_,,,	nA typ	$V_s = V_D = 1 V \text{ or } 10 V$; see Figure 25
	±1	±2	±75	nA max	
DIGITAL INPUTS		<u> </u>	1.1.5	TI/ THUX	
Input High Voltage, VINH			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
	0.005		0.0	-	$V_{IN} = V_{GND} \text{ or } V_{DD}$
	0.005		±0.1	μA typ μA max	VIN - VGND OI VDD
Digital Input Canaditanca C	4		±0.1	-	
Digital Input Capacitance, C _{IN} DYNAMIC CHARACTERISTICS ¹	4			pF typ	
	100				
t _{on}	180	205	240	ns typ	$R_{L} = 300 \Omega, C_{L} = 35 \text{ pF}$
	230	295	340	ns max	$V_s = 8 V$; see Figure 26
toff	130			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	165	205	235	ns max	$V_s = 8 V$; see Figure 26
Break-Before-Make Time Delay, t _D (ADG1423 Only)	70			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			48	ns min	$V_{s1} = V_{s2} = 8 V$; see Figure 27
Charge Injection	30			pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 28
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Channel-to-Channel Crosstalk	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
–3 dB Bandwidth	140			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 31
Insertion Loss	0.26			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
Cs (Off)	31			pF typ	$f = 1 MHz; V_s = 6 V$
C_{D} (Off)	36			pF typ	$f = 1 \text{ MHz}; V_s = 6 \text{ V}$
C_D, C_S (On)	90			pF typ	$f = 1 MHz; V_s = 6 V$
POWER REQUIREMENTS				10 7F	$V_{DD} = 13.2 V$
	0.001			μA typ	Digital inputs = 0 V or V_{DD}
עטי	0.001		1.0	μΑ typ μΑ max	
l _{DD}	120		1.0	μA max μA typ	Digital inputs = 5 V
טטו	120		100		
N.			190 5/16 5	µA max	$C_{round} = 0 V V_{round} = 0 V$
V _{DD}			5/16.5	V min/max	$Ground = 0 V, V_{SS} = 0 V$

±5 V DUAL SUPPLY

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, R _{on}	4.5			Ωtyp	$V_s = \pm 4.5 \text{ V}, I_s = -10 \text{ mA}$; see Figure 23
	5.2	6.2	7	Ωmax	$V_{DD} = +4.5 V$, $V_{SS} = -4.5 V$
On Resistance Match Between Channels, ΔR_{ON}	0.04			Ωtyp	$V_s = \pm 4.5V; I_s = -10 \text{ mA}$
	0.18	0.2	0.21	Ωmax	
On Resistance Flatness, R _{FLAT (ON)}	1.3			Ωtyp	$V_s = \pm 4.5 V$, $I_s = -10 mA$
	1.6	1.85	2	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.05			nA typ	$V_{s} = \pm 4.5 V, V_{D} = \mp 4.5 V$; see Figure 24
	±0.5	±2	±75	nA max	
Drain Off Leakage, I _D (Off)	±0.05			nA typ	$V = 14 E V V = \pm 4 E V \cos 24$
		1.2	. 75		$V_{s} = \pm 4.5 \text{ V}, V_{D} = \mp 4.5 \text{ V}; \text{ see Figure 24}$
Channel On Laskage L. L. (On)	±0.5	±2	±75	nA max	
Channel On Leakage, I _D , I _s (On)	±0.1	1.2	. 75	nA typ	$V_{\rm S} = V_{\rm D} = \pm 4.5$ V; see Figure 25
DIGITAL INPUTS	±1	±2	±75	nA max	
			2.0	Vanin	
Input High Voltage, VINH			2.0 0.8	V min	
Input Low Voltage, V _{INL}	0.005		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		.01	μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
Divital Input Conscitance C	4		±0.1	µA max	
Digital Input Capacitance, C _{IN}	4			pF typ	
	285			netun	D 200 O C 25 mE
t _{on}	370	460	520	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	220	400	520	ns max	$V_s = 3 V$; see Figure 26 $R_L = 300 \Omega$, $C_L = 35 pF$
toff	220	350	395	ns typ	$R_L = 300 \Omega_2, C_L = 35 \text{ pr}$ V _s = 3 V; see Figure 26
Prosk Potoro Mako Timo Dalay + (ADC1422 Only)	295 85	330	292	ns max	$R_L = 300 \Omega, C_L = 35 pF$
Break-Before-Make Time Delay, t _D (ADG1423 Only)	65		45	ns typ	$V_{s1} = V_{s2} = 3 V$; see Figure 27
Charge Injection	82		45	ns min	$V_{S1} = V_{S2} = 3 V$, see Figure 27 $V_S = 0 V$, $R_S = 0 \Omega$, $C_L = 1 nF$;
Charge Injection				pC typ	see Figure 28
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Channel-to-Channel Crosstalk	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
Total Harmonic Distortion + Noise	0.04			% typ	$R_L = 10$ kΩ, 5 V p-p, f = 20 Hz to 20 kHz; see Figure 32
–3 dB Bandwidth	150			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 31
Insertion Loss	0.25			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
Cs (Off)	25			pF typ	$V_s = 0V, f = 1 MHz$
$C_{\rm D}$ (Off)	30			pF typ	$V_s = 0V, f = 1 MHz$
C_{D} , C_{s} (On)	100			pF typ	$V_s = 0V, f = 1 MHz$
POWER REQUIREMENTS				1 91	$V_{DD} = 5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
	0.001			μA typ	Digital inputs = $0 \text{ V or } V_{DD}$
-55	0.001		1.0	μA max	
lss	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
	2.001		1.0	μA max	- <u></u>
V _{DD} /V _{SS}			±4.5/±16.5	V min/max	Ground = 0 V

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 4.

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL ¹					
±15 V Dual Supply					$V_{DD} = +13.5 V, V_{SS} = -13.5 V$
10-Lead MSOP ($\theta_{JA} = 142^{\circ}C/W$)	185	120	75	mA maximum	
10-Lead LFCSP ($\theta_{JA} = 76^{\circ}C/W$)	250	155	85	mA maximum	
+12 V Single Supply					$V_{DD} = 10.8 V$, $V_{SS} = 0 V$
10-Lead MSOP ($\theta_{JA} = 142^{\circ}C/W$)	150	100	65	mA maximum	
10-Lead LFCSP ($\theta_{JA} = 76^{\circ}C/W$)	205	130	80	mA maximum	
±5 V Dual Supply					$V_{DD} = +4.5 V, V_{SS} = -4.5 V$
10-Lead MSOP ($\theta_{JA} = 142^{\circ}C/W$)	145	100	65	mA maximum	
10-Lead LFCSP ($\theta_{JA} = 76^{\circ}C/W$)	195	125	75	mA maximum	

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 5.

Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	–0.3 V to +25 V
V _{ss} to GND	+0.3 V to -25 V
Analog Inputs ¹	$V_{SS} - 0.3$ V to $V_{DD} + 0.3$ V or 30 mA, whichever occurs first
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D (Pulsed at 1 ms, 10% Duty-Cycle Maximum)	
10-Lead MSOP (4-Layer Board)	300 mA
10-Lead LFCSP	400 mA
Continuous Current per Channel, S or D	Data in Table 4 + 15% mA
Operating Temperature Range Industrial	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
Reflow Soldering Peak Temperature, Pb Free	260°C

¹ Over voltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Table 6. Thermal Resistance

Package Type	Αιθ	οιθ	Unit
10-Lead MSOP (4-Layer Board)	142	44	°C/W
10-Lead LFCSP	76		°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

08487-004

S1	1	p.	ADG1421/	0	10	D1	
S2	2	þ	ADG1422/	С	9	D2	
NC	3	2	ADG1423	£	8	V _{SS}	
GND	4	þ	TOP VIEW (Not to Scale)	С	7	IN1	
V_{DD}	5	3	(NOT TO Scale)	C	6	IN2	
NOTES 1. EXPOSED PAD TIED TO SUBSTRATE, V _{SS} . 2. NC = NO CONNECT							

Figure 4. 10-Lead LFCSP Pin Configuration

Figure 5. 10-Lead MSOP Pin Configuration

Table 7 10-Lead LECSP Pin Function Descriptions

Table 7.	10-Lead LFCS	SP Pin Function Descriptions	Table 8. 10-Lead MSOP Pin Function Descriptions			
Pin No.	Mnemonic Description		Pin No.	Mnemonic	Description	
1	S1	Source Terminal. This pin can be an input or output.	1	S1	Source Terminal. This pin can be an input or output.	
2	S2	Source Terminal. This pin can be an input or output.	2	S2	Source Terminal. This pin can be an input or output.	
3	NC	No Connect.	3	NC	No Connect.	
4	GND	Ground (0 V) Reference.	4	GND	Ground (0 V) Reference.	
5	V _{DD}	Most Positive Power Supply Potential.	5	V _{DD}	Most Positive Power Supply Potential.	
6	IN2	Logic Control Input.	6	IN2	Logic Control Input.	
7	IN1	Logic Control Input.	7	IN1	Logic Control Input.	
8	Vss	Most Negative Power Supply Potential.	8	V _{ss}	Most Negative Power Supply Potential.	
9	D2	Drain Terminal. This pin can be an input or output.	9	D2	Drain Terminal. This pin can be an input or output.	
10	D1	Drain Terminal. This pin can be an input or output.	10	D1	Drain Terminal. This pin can be an input or output.	
	EPAD	Exposed pad tied to substrate, Vss.				

Table 9. ADG1421/ADG1422 Truth Table

ADG1421 INx	ADG1422 INx	Switch Condition
1	0	On
0	1	Off

Table 10. ADG1423 Truth Table

ADG1423 INx	Switch 1 Condition	Switch 2 Condition
0	Off	On
_1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

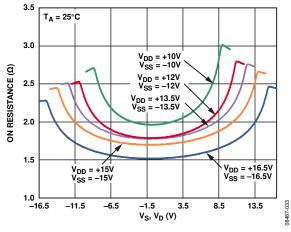


Figure 6. On Resistance as a Function of V_D (V_S) for Dual Supply

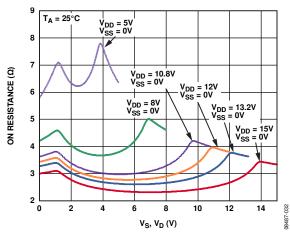


Figure 7. On Resistance as a Function of V_D (V_s) for Single Supply

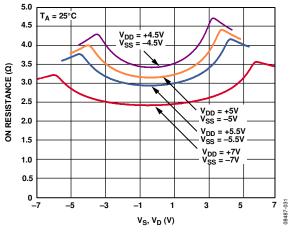


Figure 8. On Resistance as a Function of V_D (V_S) for Dual Supply

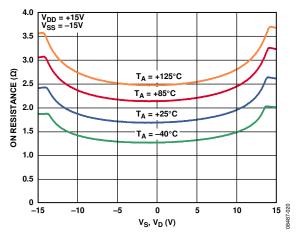


Figure 9. On Resistance as a Function of V_D (V_S) for Different Temperatures, ± 15 V Dual Supply

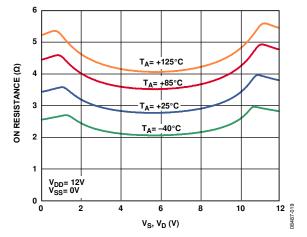


Figure 10. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, +12 V Single Supply

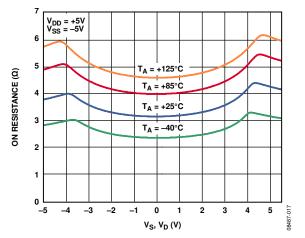


Figure 11. On Resistance as a Function of V_D (Vs) for Different Temperatures, ±5 V Dual Supply

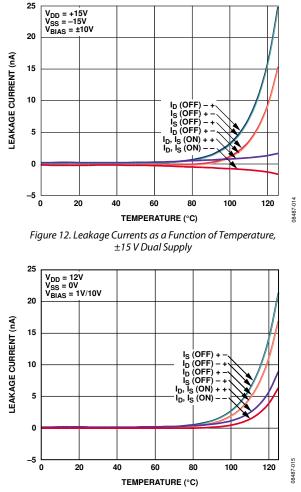


Figure 13. Leakage Currents as a Function of Temperature, +12 V Single Supply

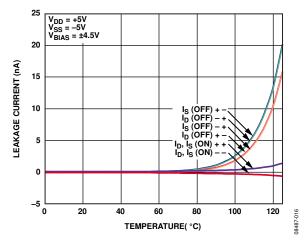


Figure 14. Leakage Currents as a Function of Temperature, ±5 V Dual Supply

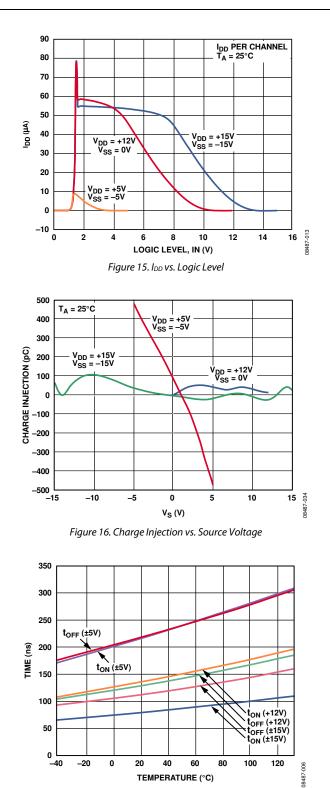
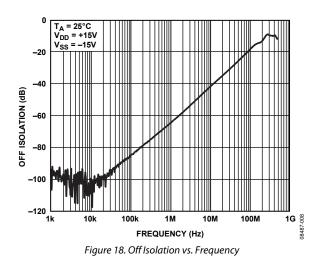
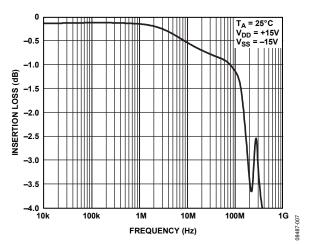




Figure 17. transition Times vs. Temperature

TEMPERATURE (°C)

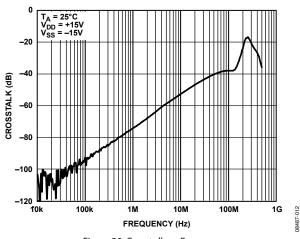
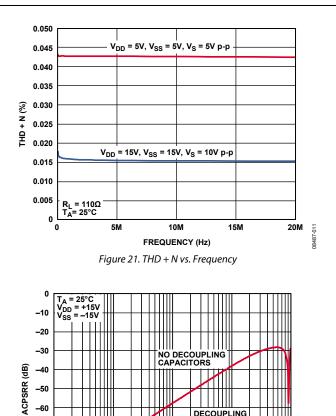



Figure 20. Crosstalk vs. Frequency

FREQUENCY (Hz) Figure 22. ACPSRR vs. Frequency

100k

DECOUPLING

1M

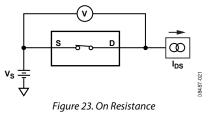
10M

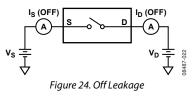
08487-009

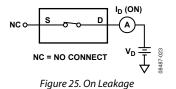
-60

-70

-80


-90


-100


1k

10k

TEST CIRCUITS

87-024

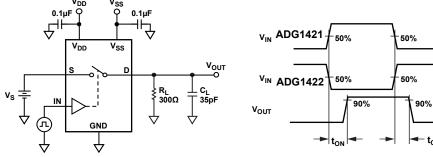


Figure 26. Switching Times

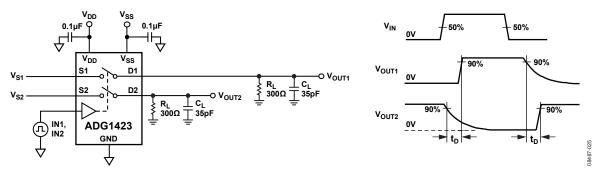
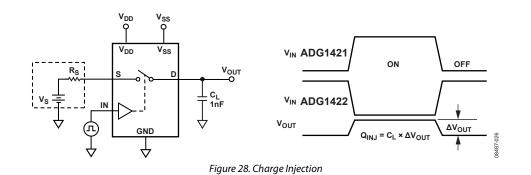
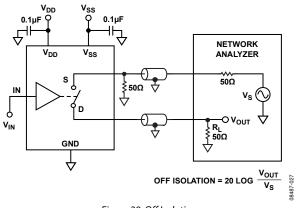
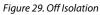
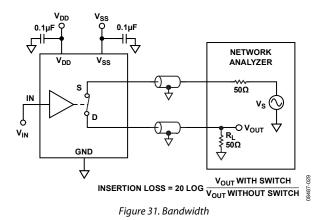





Figure 27. Break-Before-Make Time Delay



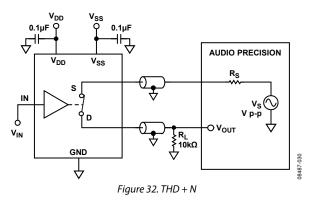

Data Sheet



Figure 30. Channel-to-Channel Crosstalk

08487-028

TERMINOLOGY

\mathbf{I}_{DD}

The positive supply current.

Iss

The negative supply current.

$V_D (V_s)$

The analog voltage on Terminal D and Terminal S.

Ron

The ohmic resistance between Terminal D and Terminal S.

$R_{\rm FLAT\ (ON)}$

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

 \mathbf{I}_{D} (Off) The drain leakage current with the switch off.

 I_D , I_S (On) The channel leakage current with the switch on.

V_{INL} The maximum input voltage for Logic 0.

 $V_{\mbox{\scriptsize INH}}$ The minimum input voltage for Logic 1.

 $I_{\rm INL} \left(I_{\rm INH} \right)$ The input current of the digital input.

Cs (Off)

The off switch source capacitance, measured with reference to ground.

C_D (Off)

The off switch drain capacitance, measured with reference to ground.

$C_D, C_S(On)$

The on switch capacitance, measured with reference to ground.

CIN

The digital input capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and switch on condition. See Figure 26.

toff (EN)

Delay time between the 50% and 90% points of the digital input and switch off condition. See Figure 26.

tTRANSITION

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

Тввм

Off time measured between the 80% point of both switches when switching from one address state to another. See Figure 27.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching. See Figure 28.

Off Isolation

A measure of unwanted signal coupling through an off switch. See Figure 29.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. See Figure 30.

Bandwidth

The frequency at which the output is attenuated by 3 dB. See Figure 31.

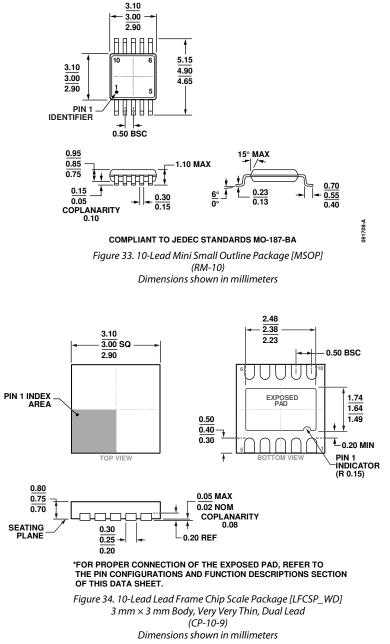
On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch. See Figure 31.

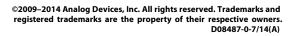
THD + N


The ratio of the harmonic amplitude plus noise of the signal to the fundamental. See Figure 32.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR. See Figure 22.

02-05-2013-C


OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADG1421BRMZ	-40°C to +125°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2V
ADG1421BRMZ-REEL7	–40°C to +125°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2V
ADG1421BCPZ-REEL7	-40°C to +125°C	10- Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	S2V
ADG1422BRMZ	-40°C to +125°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2W
ADG1422BRMZ-REEL7	–40°C to +125°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2W
ADG1422BCPZ-REEL7	–40°C to +125°C	10- Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	S2W
ADG1423BRMZ	-40°C to +125°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2X
ADG1423BRMZ-REEL7	–40°C to +125°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2X
ADG1423BCPZ-REEL7	-40°C to +125°C	10- Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	S2X

 1 Z = RoHS Compliant Part.

www.analog.com

Rev. A | Page 16 of 16