mail

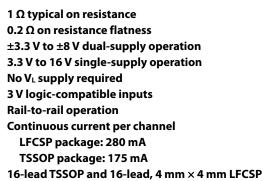
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


1 Ω Typical On Resistance, ±5 V, +12 V, +5 V, and +3.3 V Quad SPST Switches

Data Sheet

ADG1611/ADG1612/ADG1613

FEATURES

FUNCTIONAL BLOCK DIAGRAMS

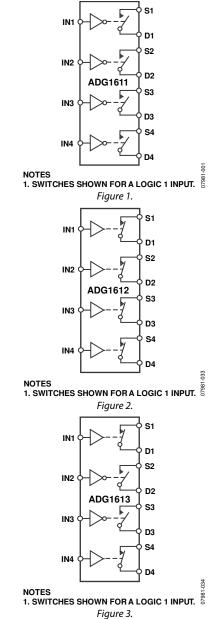
APPLICATIONS

Communication systems Medical systems Audio signal routing Video signal routing Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Relay replacements

GENERAL DESCRIPTION

The ADG1611/ADG1612/ADG1613 contain four independent single-pole/single-throw (SPST) switches. The ADG1611 and ADG1612 differ only in that the digital control logic is inverted. The ADG1611 switches are turned on with Logic 0 on the appropriate control input, while Logic 1 is required for the ADG1612 switches. The ADG1613 has two switches with digital control logic similar to that of the ADG1611; the logic is inverted on the other two switches. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The ADG1613 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is the low charge injection for minimum transients when switching the digital inputs.


The ultralow on resistance of these switches make them ideal solutions for data acquisition and gain switching applications where low on resistance and distortion is critical. The on resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals.

The CMOS construction ensures ultralow power dissipation, making them ideally suited for portable and battery-powered instruments.

Rev. C

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

PRODUCT HIGHLIGHTS

- 1. 1.6Ω maximum on resistance over temperature.
- 2. Minimum distortion: THD + N = 0.007%.
- 3. 3 V logic-compatible digital inputs: $V_{INH} = 2.0$ V, $V_{INL} = 0.8$ V.
- 4. No V_L logic power supply required.
- 5. Ultralow power dissipation: <16 nW.
- 6. 16-lead TSSOP and 16-lead, 4 mm × 4 mm LFCSP.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2009-2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features 1
Applications1
General Description1
Functional Block Diagrams1
Product Highlights1
Revision History 2
Specifications
±5 V Dual Supply
12 V Single Supply 4
5 V Single Supply5

REVISION HISTORY

5/15—Rev. B to Rev. C	
Changed NC Pin to NIC Pin	Throughout
Updated Outline Dimensions	
Changes to Ordering Guide	

3/12-Rev. A to Rev. B

Changes to Figure 1611

8/09—Rev. 0 to Rev. A

Changes to On Resistance (RON) Parameter, On Resistance Mate	ch
Between Channels (ΔR_{ON}) Parameter, and On Resistance Flatnes	ss
(R _{FLATON}) Parameter, Table 4	. 6
Changes to Figure 7 Caption	10

1/09—Revision 0: Initial Version

3.3 V Single Supply	6
Continuous Current per Channel, S or D	7
Absolute Maximum Ratings	8
ESD Caution	8
Pin Configurations and Function Descriptions	9
Typical Performance Characteristics	10
Test Circuits	13
Terminology	15
Outline Dimensions	16
Ordering Guide	16

SPECIFICATIONS

±5 V DUAL SUPPLY

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance (Ron)	1			Ωtyp	$V_{s} = \pm 4.5 V$, $I_{s} = -10 mA$; see Figure 24
	1.2	1.4	1.6	Ωmax	$V_{DD} = \pm 4.5 \text{ V}, \text{ V}_{SS} = \pm 4.5 \text{ V}$
On Resistance Match Between Channels (ΔR _{ON})	0.04			Ωtyp	$V_s = \pm 4.5 V$, $I_s = -10 mA$
	0.08	0.09	0.1	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.2			Ωtyp	$V_{s} = \pm 4.5 V$, $I_{s} = -10 mA$
	0.25	0.29	0.34	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +5.5 V, V_{SS} = -5.5 V$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_{s} = \pm 4.5 V, V_{D} = \mp 4.5 V;$ see Figure 25
					$v_{S} = \pm 4.5 v, v_{D} = \pm 4.5 v, see Figure 25$
	±0.3	±1	±6	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_s = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V};$ see Figure 25
	±0.3	±1	±б	nA max	
Channel On Leakage, I _D , I _s (On)	±0.2			nA typ	$V_s = V_D = \pm 4.5 V$; see Figure 26
	±0.4	±1.5	±10	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	+0.005		±0.1	μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	µA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
ton	165			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	212	253	285	ns max	$V_s = 2.5 V$; see Figure 31
toff	105			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	137	150	159	ns max	$V_s = 2.5 V$; see Figure 31
Break-Before-Make Time Delay, t _D (ADG1613 Only)	25			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			20	ns min	$V_{S1} = V_{S2} = 2.5 V$; see Figure 32
Charge Injection	140			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 33
Off Isolation	70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Channel-to-Channel Crosstalk	110			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion + Noise (THD + N)	0.007			% typ	$R_L = 110 \Omega$, 5 V p-p, f = 20 Hz to 20 kHz; see Figure 30
–3 dB Bandwidth	42			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
C _s (Off)	63			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D (Off)	63			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D , C _s (On)	154			pF typ	$V_{s} = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
lod	0.001			μA typ	Digital inputs = $0 V$ or V_{DD}
			1.0	µA max	
V _{DD} /V _{SS}			±3.3/±8	V min/max	

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (R _{ON})	0.95			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$; see Figure 24
	1.1	1.25	1.45	Ωmax	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On Resistance Match Between Channels (ΔR_{ON})	0.03			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	0.06	0.7	0.08	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.2			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	0.23	0.27	0.32	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, I _s (Off)	±0.1			nA typ	$V_s = 1 V/10 V$, $V_s = 10 V/1 V$, see Figure 25
Source on Leanage, 13 (on)	±0.3	±1	±6	nA max	
Drain Off Leakage, I _D (Off)	±0.1	÷1	±0	nA typ	$V_s = 1 V/10 V$, $V_s = 10 V/1 V$ see Figure 25
	±0.1	±1	±б	nA max	
Channel On Leakage, I _D , I _s (On)	±0.3	<u> </u>	±0	nA typ	$V_s = V_D = 1 V$ or 10 V; see Figure 26
Channel On Leakage, 10, 15 (Oh)	±0.2	±1.5	±10	nA max	$v_{S} = v_{D} = 1$ v or 10 v, see Figure 20
DIGITAL INPUTS	10.4	1.5	10		
Input High Voltage, VINH			2.0	V min	
Input Low Voltage, VINH			2.0 0.8	V max	
Input Current, Inc or Inn	0.001		0.0		$V_{\rm IN} = V_{\rm GND} \text{ or } V_{\rm DD}$
Input current, INL of INH	0.001		10.1	µA typ	$\mathbf{v}_{\text{IN}} = \mathbf{v}_{\text{GND}} \mathbf{OI} \mathbf{v}_{\text{DD}}$
	-		±0.1	μA max	
Digital Input Capacitance, CIN	5			pF typ	
	125				
t _{on}	125	100	215	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	156	190	215	ns max	$V_s = 8 V$; see Figure 31
toff	75			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	87	93	99	ns max	$V_s = 8 V$; see Figure 31
Break-Before-Make Time Delay, t _D (ADG1613 Only)	35			ns typ	$R_L = 300 \ \Omega$, $C_L = 35 \ pF$
			30	ns min	$V_{S1} = V_{S2} = 8 V$; see Figure 32
Charge Injection	170			pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 33
Off Isolation	70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Channel-to-Channel Crosstalk	110			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion + Noise	0.012			% typ	R∟ = 110 Ω, 5 V p-p, f = 20 Hz to 20 kHz; see Figure 30
–3 dB Bandwidth	38			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
Cs (Off)	60			pF typ	$V_s = 6 V, f = 1 MHz$
C_{D} (Off)	60			pF typ	$V_{s} = 6 V, f = 1 MHz$
C _D , C _s (On)	154			pF typ	$V_{s} = 6 V, f = 1 MHz$
POWER REQUIREMENTS				r 7r	$V_{DD} = 12 V$
lop	0.001			μA typ	Digital inputs = 0 V or V_{DD}
	0.001		1	μA max	
lod	320			μA typ	Digital inputs = 5 V
עטי	520		480	μΑ typ μΑ max	
Vaa			3.3/16	V min/max	
V _{DD}			5.5/10	v min/max	

5 V SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	–40°C to +85°C	–40°C to 125°C	Unit	Test Conditions/Comments
ANALOG SWITCH		105 4			
Analog Signal Range			0 V to V _{DD}	v	
On Resistance (R _{ON})	1.7			Ω typ	$V_{s} = 0 V$ to 4.5 V, $I_{s} = -10 \text{ mA}$; see Figure 24
	2.15	2.4	2.7	Ωmax	$V_{DD} = 4.5 V, V_{SS} = 0 V$
On Resistance Match Between Channels (ΔR_{ON})	0.05		2.7	Ωtyp	$V_s = 0 V$ to 4.5 V, $I_s = -10 \text{ mA}$
	0.09	0.12	0.15	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.4	0.12	0.115	Ωtyp	$V_s = 0 V$ to 4.5 V, $I_s = -10 mA$
	0.53	0.55	0.6	Ωmax	
LEAKAGE CURRENTS	0.00	0.00	010		$V_{DD} = 5.5 V, V_{SS} = 0 V$
Source Off Leakage, I _s (Off)	±0.05			nA typ	$V_s = 1 V/4.5 V, V_D = 4.5 V/1 V$; see Figure 25
Source on Leanage, is (on)	±0.3	±1	±б	nA max	
Drain Off Leakage, I _D (Off)	±0.05		_0	nA typ	$V_s = 1 V/4.5 V, V_D = 4.5 V/1 V;$ see Figure 25
	±0.3	±1	±б	nA max	
Channel On Leakage, I _D , Is (On)	±0.15		_0	nA typ	$V_s = V_D = 1 V$ or 4.5 V; see Figure 26
	±0.4	±1.5	±10	nA max	
DIGITAL INPUTS					
Input High Voltage, VINH			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, line or linh	0.001			µA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	µA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ¹	-			1 71	
t _{on}	215			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	279	334	376	ns max	$V_{s} = 2.5 V$; see Figure 31
toff	115			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	150	169	180	ns max	$V_s = 2.5 V$; see Figure 31
Break-Before-Make Time Delay, t _D (ADG1613 Only)	35			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			25	ns min	$V_{s1} = V_{s2} = 2.5 V$; see Figure 32
Charge Injection	80			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 33
Off Isolation	70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
Channel-to-Channel Crosstalk	110			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 28
Total Harmonic Distortion + Noise	0.093			% typ	$R_L = 110 \Omega$, f = 20 Hz to 20 kHz, V _s = 3.5 V p-p; see Figure 30
–3 dB Bandwidth	42			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
C _s (Off)	72			pF typ	$V_s = 2.5 V, f = 1 MHz$
C _D (Off)	72			pF typ	$V_s = 2.5 V, f = 1 MHz$
C _D , C _s (On)	160			pF typ	$V_s = 2.5 V, f = 1 MHz$
POWER REQUIREMENTS					V _{DD} = 5.5 V
lod	0.001			µA typ	Digital inputs = $0 V$ or V_{DD}
			1	μA max	
V _{DD}			3.3/16	V min/max	

3.3 V SINGLE SUPPLY

 V_{DD} = 3.3 V, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{\text{DD}}$	V	
On Resistance (R _{ON})	3.2	3.4	3.6	Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$, $V_{DD} = 3.3 \text{ V}$, $V_{ss} = 0 \text{ V}$; see Figure 24
On Resistance Match Between Channels (ΔR_{ON})	0.06	0.07	0.08	Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}$, $I_{s} = -10 \text{ mA}$
On Resistance Flatness (R _{FLAT(ON)})	1.2	1.3	1.4	Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}$, $I_{s} = -10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 3.6 V, V_{SS} = 0 V$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_s = 0.6 V/3 V, V_D = 3 V/0.6 V;$ see Figure 25
-	±0.3	±1	±б	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_s = 0.6 V/3 V, V_D = 3 V/0.6 V$; see Figure 25
	±0.3	±1	±б	nA max	
Channel On Leakage, I _D , I _S (On)	±0.1			nA typ	$V_s = V_D = 0.6 V$ or 3 V; see Figure 26
	±0.4	±1.5	±10	nA max	
DIGITAL INPUTS					
Input High Voltage, VINH			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, Incl or Inh	0.001			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	µA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
ton	350			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	493	556	603	ns max	$V_s = 1.5 V$; see Figure 31
toff	190			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	263	286	300	ns max	$V_s = 1.5 V$; see Figure 31
Break-Before-Make Time Delay, t _D (ADG1613 Only)	25			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			18	ns min	$V_{s1} = V_{s2} = 1.5 V$; see Figure 32
Charge Injection	50			pC typ	$V_s = 1.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 33
Off Isolation	70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
Channel-to-Channel Crosstalk	110			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 28
Total Harmonic Distortion + Noise	0.18			% typ	$R_L = 110 \Omega$, f = 20 Hz to 20 kHz, V _s = 2 V p-p; see Figure 30
–3 dB Bandwidth	52			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
C _s (Off)	76			pF typ	$V_s = 1.5 V, f = 1 MHz$
C_{D} (Off)	76			pF typ	$V_s = 1.5 V, f = 1 MHz$
C _D , C _s (On)	160			pF typ	$V_s = 1.5 V, f = 1 MHz$
POWER REQUIREMENTS	-			1 71	$V_{DD} = 3.6 V$
	0.001			μA typ	Digital inputs = 0 V or V_{DD}
		1.0	1.0	µA max	

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table	5.
I uuic	•••

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, S OR D				
$V_{DD} = +5 V, V_{SS} = -5 V$				
TSSOP ($\theta_{JA} = 150.4^{\circ}C/W$)	175	119	70	mA maximum
LFCSP ($\theta_{JA} = 48.7^{\circ}C/W$)	280	175	95	mA maximum
$V_{DD} = 12 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 150.4^{\circ}C/W$)	206	135	84	mA maximum
LFCSP ($\theta_{JA} = 48.7^{\circ}C/W$)	336	203	108	mA maximum
$V_{DD} = 5 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 150.4^{\circ}C/W$)	140	91	63	mA maximum
LFCSP ($\theta_{JA} = 48.7^{\circ}C/W$)	220	140	84	mA maximum
$V_{DD} = 3.3 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 150.4^{\circ}C/W$)	140	98	70	mA maximum
LFCSP ($\theta_{JA} = 48.7^{\circ}C/W$)	228	150	91	mA maximum

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}$ C, unless otherwise noted.

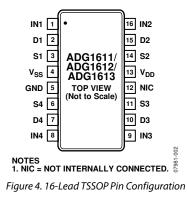
Table 6.

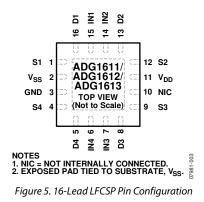
Parameter	Rating
V _{DD} to V _{SS}	18 V
V _{DD} to GND	–0.3 V to +18 V
Vss to GND	+0.3 V to -18 V
Analog Inputs ¹	V _{SS} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	630 mA (pulsed at 1 ms, 10% duty-cycle maximum)
Continuous Current, S or D ²	Data + 15%
Operating Temperature Range	
Industrial (Y Version)	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
16-Lead TSSOP, θ _{JA} Thermal Impedance (2-Layer Board)	150.4°C/W
16-Lead LFCSP, θ _{JA} Thermal Impedance (4-Layer Board)	48.7°C/W
Reflow Soldering Peak Temperature, Pb free	260°C

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

² See Table 5.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may


ESD CAUTION


affect product reliability.

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 7. Pin Function Descriptions

Pin No.				
16-Lead TSSOP	16-Lead LFCSP	Mnemonic	Description	
1	15	IN1	Logic Control Input.	
2	16	D1	Drain Terminal. This pin can be an input or output.	
3	1	S1	Source Terminal. This pin can be an input or output.	
4	2	Vss	Most Negative Power Supply Potential.	
5	3	GND	Ground (0 V) Reference.	
6	4	S4	Source Terminal. This pin can be an input or output.	
7	5	D4	Drain Terminal. This pin can be an input or output.	
8	6	IN4	Logic Control Input.	
9	7	IN3	Logic Control Input.	
10	8	D3	Drain Terminal. This pin can be an input or output.	
11	9	S3	Source Terminal. This pin can be an input or output.	
12	10	NIC	Not Internally Connected.	
13	11	V _{DD}	Most Positive Power Supply Potential.	
14	12	S2	Source Terminal. This pin can be an input or output.	
15	13	D2	Drain Terminal. This pin can be an input or output.	
16	14	IN2	Logic Control Input.	
Not applicable	17 (EPAD)	EP (EPAD)	Exposed Pad. Tied to substrate, Vss.	

Table 8. ADG1611/ADG1612 Truth Table

ADG1611 INx	ADG1612 INx	Switch Condition
0	1	On
1	0	Off

Table 9. ADG1613 Truth Table

Logic (INx)	Switch 1, Switch 4	Switch 2, Switch 3
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS



Figure 6. On Resistance as a Function of V_D (V_s) for Dual Supply

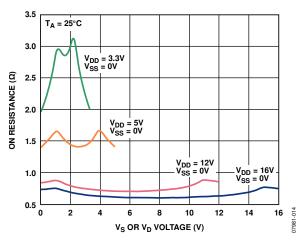


Figure 7. On Resistance as a Function of V_D (V_s) for Single Supply

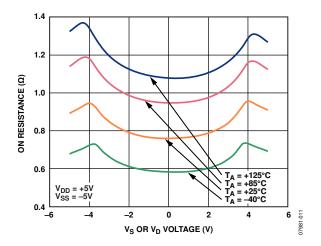


Figure 8. On Resistance as a Function of $V_{\rm D}$ (V_s) for Different Temperatures, ± 5 V Dual Supply

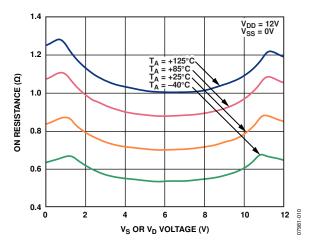


Figure 9. On Resistance as a Function of V_D (V₃) for Different Temperatures, 12 V Single Supply

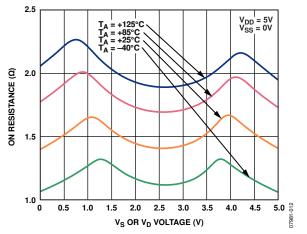


Figure 10. On Resistance as a Function of V_D (V_S) for Different Temperatures, 5 V Single Supply

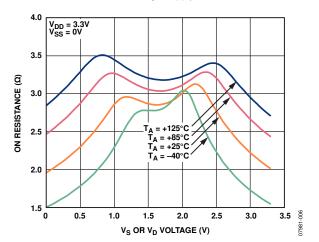


Figure 11. On Resistance as a Function of V_D (V_s) for Different Temperatures, 3.3 V Single Supply

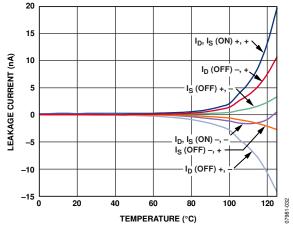


Figure 12. Leakage Currents as a Function of Temperature, ± 5 V Dual Supply

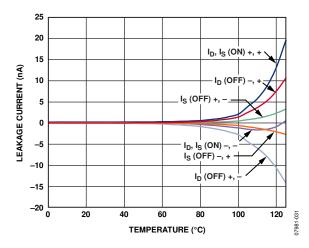


Figure 13. Leakage Currents as a Function of Temperature, 12 V Single Supply

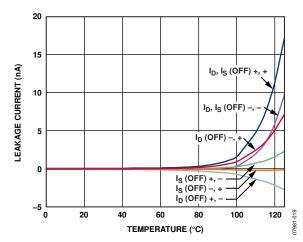


Figure 14. Leakage Currents as a Function of Temperature, 5 V Single Supply

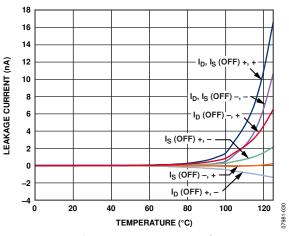
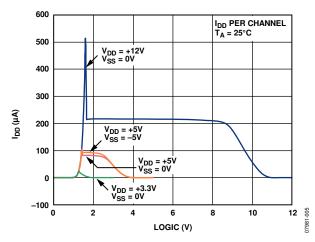




Figure 15. Leakage Currents as a Function of Temperature, 3.3 V Single Supply

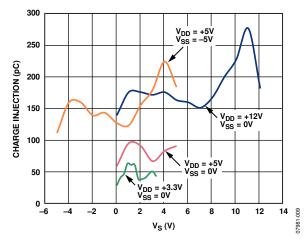


Figure 17. Charge Injection vs. Source Voltage (Vs)

Data Sheet

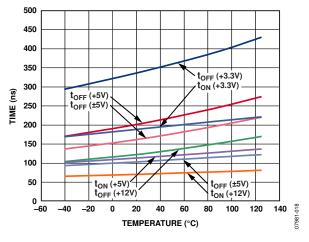
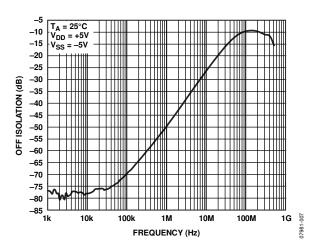



Figure 18. ton/toff Times vs. Temperature

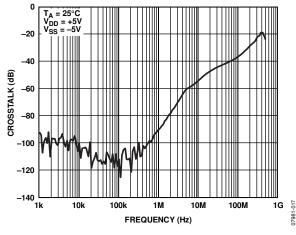
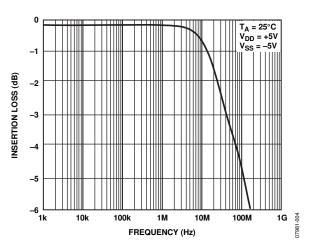
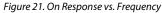




Figure 20. Crosstalk vs. Frequency

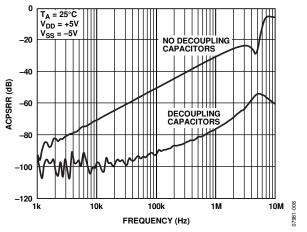


Figure 22. ACPSRR vs. Frequency

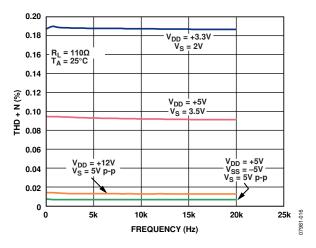
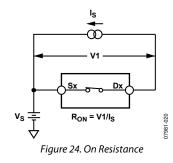
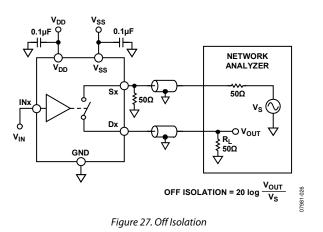
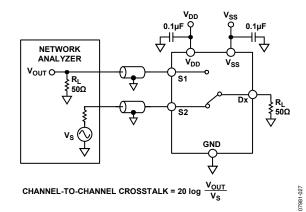
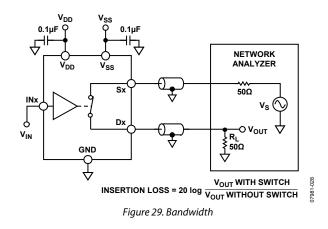
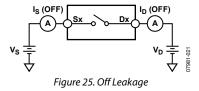
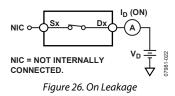
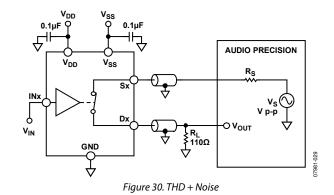
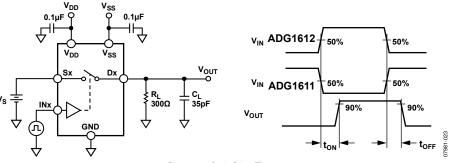




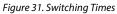
Figure 23. THD + N vs. Frequency

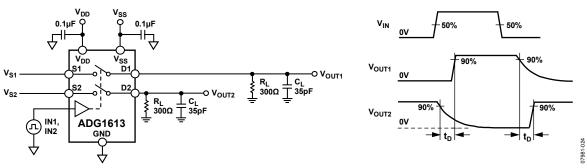
TEST CIRCUITS

ADG1611/ADG1612/ADG1613


Figure 28. Channel-to-Channel Crosstalk





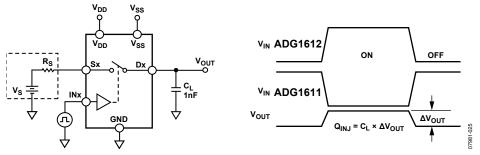


Figure 33. Charge Injection

TERMINOLOGY

\mathbf{I}_{DD}

The positive supply current.

Iss

The negative supply current.

 V_D (Vs) The analog voltage on Terminal D and Terminal S.

Ron

The ohmic resistance between Terminal D and Terminal S.

$\mathbf{R}_{\mathrm{FLAT}(\mathrm{ON})}$

Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

I_D (Off) The drain leakage current with the switch off.

I_D, I_s (On) The channel leakage current with the switch on.

 \mathbf{V}_{INL} The maximum input voltage for Logic 0.

 \mathbf{V}_{INH} The minimum input voltage for Logic 1.

IINL (IINH) The input current of the digital input.

Cs (Off)

The off switch source capacitance, which is measured with reference to ground.

C_D (Off)

The off switch drain capacitance, which is measured with reference to ground.

$C_D, C_S(On)$

The on switch capacitance, which is measured with reference to ground.

Cin

The digital input capacitance.

ADG1611/ADG1612/ADG1613

t_{ON}

The delay between applying the digital control input and the output switching on. See Figure 31.

toff

The delay between applying the digital control input and the output switching off. See Figure 31.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching. See Figure 33.

Off Isolation

A measure of unwanted signal coupling through an off switch. See Figure 27.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. See Figure 28.

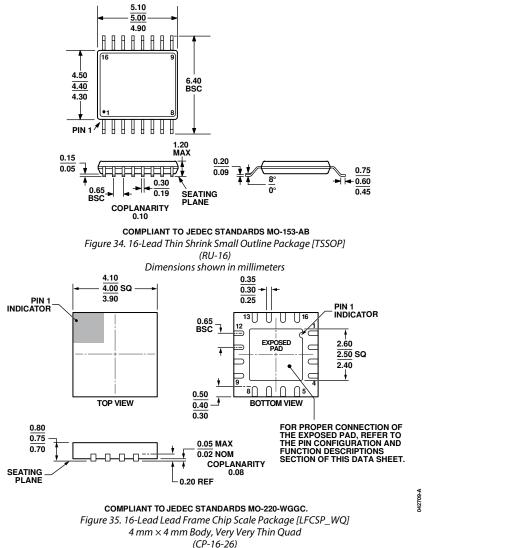
Bandwidth

The frequency at which the output is attenuated by 3 dB. See Figure 29.

On Response The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.


Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental. See Figure 30.

AC Power Supply Rejection Ratio (ACPSRR)

The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

OUTLINE DIMENSIONS

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹ Temperature Range		Package Description	Package Option	
ADG1611BRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1611BRUZ-REEL	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1611BRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1611BCPZ-REEL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-26	
ADG1611BCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-26	
ADG1612BRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1612BRUZ-REEL	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1612BRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1612BCPZ- REEL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-26	
ADG1612BCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-26	
ADG1613BRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1613BRUZ-REEL	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1613BRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1613BCPZ-REEL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-26	
ADG1613BCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-26	

¹ Z = RoHS Compliant Part.

©2009-2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07981-0-5/15(C) ANALOG DEVICES

www.analog.com

Rev. C | Page 16 of 16