: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

44 V supply maximum ratings $V_{s S}$ to $V_{D D}$ analog signal range Low on resistance (80Ω maximum)

Low power

Fast switching
ton < 160 ns
$t_{\text {off }}<150$ ns
Break-before-make switching action

APPLICATIONS

Audio and video routing

Automatic test equipment
Data acquisition systems
Battery powered systems
Sample hold systems
Communication systems
Avionics

PRODUCT HIGHLIGHTS

1. Extended Signal Range.
2. The ADG406/ADG407/ADG426 are fabricated on an
 range which extends to the supply rails.
3. Low Power Dissipation.
4. Low Ron.
5. Single/Dual Supply Operation.
6. Single Supply Operation.
7. For applications where the analog signal is unipolar, the ADG406/ADG407/ADG426 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and remain functional with single supplies as low as +5 V .

FUNCTIONAL BLOCK DIAGRAMS

Figure 3.

Rev. B

ADG406/ADG407/ADG426

TABLE OF CONTENTS

Features 1
Applications. 1
Product Highlights 1
Functional Block Diagrams. 1
Revision History 2
General Description 3
Specifications 4
Dual Supply 4
Single Supply6
REVISION HISTORY
5/10—Rev. A to Rev. B
Changes to Ordering Guide 20
6/09—Rev. 0 to Rev. A
Updated Format Universal
Removed T Grade Universal
Added Table 4 9
Added Table 6. 10
Added Table 8 11
Updated Outline Dimensions 18
Changes to Ordering Guide 19
ADG426 Timing Diagrams. 7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configurations and Function Descriptions 9
Typical Performance Characteristics 12
Test Circuits 15
Terminology 18
Outline Dimensions 19
Ordering Guide 20

4/94—Revision 0: Initial Version

ADG406/ADG407/ADG426

GENERAL DESCRIPTION

The ADG406, ADG407, and ADG426 are monolithic CMOS analog multiplexers. The ADG406 and ADG426 switch one of sixteen inputs to a common output as determined by the 4 -bit binary address lines: A0, A1, A2, and A3. The ADG426 has on-chip address and control latches that facilitate microprocessor interfacing. The ADG407 switches one of eight differential inputs to a common differential output as determined by the 3-bit binary address lines A0, A1 and A2. An EN input on all devices is used to enable or disable the device. When disabled, all channels are switched off.

The ADG406/ADG407/ADG426 are designed on an enhanced L^{2} MOS process that provides low power dissipation yet gives high switching speed and low on resistance. These features make the parts suitable for high speed data acquisition systems and audio signal switching. Low power dissipation makes the parts suitable for battery powered systems. Each channel conducts equally well in both directions when on and has an input signal range which extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

ADG406/ADG407/ADG426

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {sS }}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

\begin{tabular}{|c|c|c|c|c|}
\hline Parameter \({ }^{1}\) \& \(+25^{\circ} \mathrm{C}\) \& \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \& Unit \& Test Conditions/Comments \\
\hline \begin{tabular}{l}
ANALOG SWITCH \\
Analog Signal Range Ron \\
Ron Match
\end{tabular} \& 50
80
4 \& \begin{tabular}{l}
\(\mathrm{V}_{S S}\) to \(\mathrm{V}_{\mathrm{DD}}\) \\
125
\end{tabular} \& \begin{tabular}{l}
V \\
\(\Omega\) typ \\
\(\Omega\) max \\
\(\Omega\) typ
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\
\& \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
LEAKAGE CURRENTS \\
Source Off Leakage \(\mathrm{I}_{5}\) (Off) \\
Drain Off Leakage \(I_{D}\) (Off) \\
ADG406, ADG426 \\
ADG407 \\
Channel On Leakage \(\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})\) \\
ADG406, ADG426 \\
ADG407
\end{tabular} \& \[
\begin{aligned}
\& \pm 0.5 \\
\& \pm 1 \\
\& \pm 1 \\
\& \pm 1 \\
\& \pm 1
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 20 \\
\& \pm 20 \\
\& \pm 20 \\
\& \pm 20 \\
\& \pm 20
\end{aligned}
\] \& \begin{tabular}{l}
nA max \\
nA max nA max \\
nA max \\
nA max
\end{tabular} \& \[
\begin{aligned}
\& V_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} \text {, see Figure } 26 \\
\& \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} \text {; see Figure } 27
\end{aligned}
\]
\[
\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 28
\] \\
\hline \begin{tabular}{l}
DIGITAL INPUTS \\
Input High Voltage, \(\mathrm{V}_{\mathrm{INH}}\) \\
Input Low Voltage, VINL \\
Input Current \\
linl or linh \\
\(\mathrm{C}_{\text {IN }}\), Digital Input Capacitance
\end{tabular} \& 8 \& 2.4
0.8

± 1 \& | V min |
| :--- |
| V max |
| $\mu \mathrm{A}$ max |
| pF typ | \& \[

$$
\begin{aligned}
& V_{\text {IN }}=0 \text { or } V_{D D} \\
& f=1 \mathrm{MHz}
\end{aligned}
$$
\]

\hline | DYNAMIC CHARACTERISTICS² |
| :--- |
| ttransition | \& \& 250 \& ns typ ns max \& $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{1}= \pm 10 \mathrm{~V}, \mathrm{~V}_{2}=\mp 10 \mathrm{~V}$; see Figure 29

\hline Break Before Make Delay, topen \& 10 \& 10 \& ns min \& $\mathrm{RL}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, see Figure 30

\hline ton (EN, $\overline{\mathrm{WR}})$

toff (EN, $\overline{\mathrm{RS}})$ \& \[
$$
\begin{aligned}
& 120 \\
& 160 \\
& 110 \\
& 150
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 175 \\
& 225 \\
& 130 \\
& 180
\end{aligned}
$$

\] \& | ns typ |
| :--- |
| ns max |
| ns typ |
| ns max | \& | $R_{L}=300 \Omega, C_{L}=35 p F ; V_{S}=5 \mathrm{~V}$, see Figure 31 |
| :--- |
| $R_{L}=300 \Omega, C_{L}=35 p F ; V_{S}=5 \mathrm{~V}$, see Figure 31 |

\hline | ADG426 Only |
| :--- |
| t_{w}, Write Pulse Width |
| ts, Address, Enable Setup Time |
| t_{H}, Address, Enable Hold Time |
| $t_{\text {ts }}$, Reset Pulse Width | \& \& \[

$$
\begin{aligned}
& 100 \\
& 100 \\
& 10 \\
& 100
\end{aligned}
$$

\] \& ns min ns min ns min ns min \& \[

V_{s}=+5 \mathrm{~V}
\]

\hline Charge Injection \& 8 \& \& pC typ \& | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ |
| :--- |
| See Figure 34 |

\hline Off Isolation \& -75 \& \& dB typ \& $$
\begin{aligned}
& \mathrm{RL}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{kHz} ; \\
& \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} \text {, see Figure } 35
\end{aligned}
$$

\hline Channel-to-Channel Crosstalk \& 85 \& \& dB typ \& $\mathrm{R}_{L}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{kHz}$, see Figure 36

\hline C_{s} (Off) \& 5 \& \& pF typ \& $\mathrm{f}=1 \mathrm{MHz}$

\hline C_{D} (Off) \& \& \& \& $\mathrm{f}=1 \mathrm{MHz}$

\hline ADG406, ADG426 \& 50 \& \& pF typ \&

\hline ADG407 \& 25 \& \& pF typ \&

\hline $$
\begin{aligned}
& \mathrm{C}_{\mathrm{D}}, \mathrm{C}_{5}(\mathrm{On}) \\
& \text { ADG406, ADG426 } \\
& \text { ADG407 }
\end{aligned}
$$ \& 60

40 \& \& pF typ pF typ \& $\mathrm{f}=1 \mathrm{MHz}$

\hline
\end{tabular}

ADG406/ADG407/ADG426

Parameter ${ }^{1}$	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS				$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$
IDD		1	$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$
		5	$\mu \mathrm{Amax}$	
Iss		1	$\mu \mathrm{A}$ typ	
		5	$\mu \mathrm{Amax}$	
IDD	100		$\mu \mathrm{A}$ typ	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$
	200	500	$\mu \mathrm{A} \max$	
Iss		1	$\mu \mathrm{A}$ typ	
		5	$\mu \mathrm{A}$ max	

${ }^{1}$ Temperature ranges is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

ADG406/ADG407/ADG426

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter ${ }^{1}$	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range Ron	$\begin{aligned} & 90 \\ & 125 \end{aligned}$	0 to $V_{D D}$ 200	V Ω typ Ω max	$\begin{aligned} & V_{D}=+3 \mathrm{~V},+8.5 \mathrm{~V}, \mathrm{Is}=-1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+10.8 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage Is (Off) Drain Off Leakage ID (Off) ADG406, ADG426 ADG407 Channel On Leakage $\mathrm{I}_{\mathrm{o}}, \mathrm{Is}_{\mathrm{s}}(\mathrm{On})$ ADG406, ADG426 ADG407	$\begin{aligned} & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 20 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	nA max nA max nA max nA max nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=8 \mathrm{~V} / 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.1 \mathrm{~V} / 8 \mathrm{~V} \text {; see Figure } 26 \\ & \mathrm{~V}_{\mathrm{D}}=8 \mathrm{~V} / 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.1 \mathrm{~V} / 8 \mathrm{~V} \text {; see Figure } 27 \end{aligned}$ $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V} / 0.1 \mathrm{~V} \text {, see Figure } 28$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current linl or linh Cin, Digital Input Capacitance	8	$\begin{array}{r} 2.4 \\ 0.8 \\ \\ \pm 1 \end{array}$	V min V max $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{I N}=0 \text { or } V_{D D} \\ & f=1 \mathrm{MHz} \end{aligned}$
DYNAMIC CHARACTERISTICS² $t_{\text {transition }}$ Break Before Make Delay, topen $\mathrm{t}_{\mathrm{on}}(\mathrm{EN}, \overline{\mathrm{WR}})$ $t_{\text {off }}(E N, \overline{\mathrm{RS}})$	$\begin{aligned} & 180 \\ & 220 \\ & 10 \\ & 180 \\ & 240 \\ & 135 \\ & 180 \end{aligned}$	350 350 220	ns typ ns max ns typ ns typ ns max ns typ ns max	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{1}=8 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{2}=0 \mathrm{~V} / 8 \mathrm{~V} \text {; see Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \text {, see Figure } 30 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \text { see Figure } 31 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \text {, see Figure } 31 \end{aligned}$
ADG426 Only t_{w}, Write Pulse Width ts, Address, Enable Setup Time t_{t}, Address, Enable Hold Time $t_{\text {RS }}$, Reset Pulse Width Charge Injection Off Isolation Channel-to-Channel Crosstalk C_{s} (Off) C_{D} (Off) ADG406, ADG426 ADG407 $\mathrm{C}_{\mathrm{D},} \mathrm{C}_{\mathrm{S}}(\mathrm{On})$ ADG406, ADG426 ADG407	5 -75 85 8 80 40 100 50	$\begin{aligned} & 100 \\ & 100 \\ & 10 \\ & 100 \end{aligned}$	ns min ns min ns min ns min pC typ dB typ dB typ pF typ pF typ pF typ pF typ pF typ	$\begin{aligned} & V_{S}=+5 \mathrm{~V} \\ & V_{S}=6 \mathrm{~V}, R_{S}=0 \Omega, C_{L}=1 \mathrm{nF} \text {; see Figure } 34 \\ & R_{L}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{kHz} \text {; see Figure } 35 \\ & R_{L}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{kHz} \text {; see Figure } 36 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS ldo IDD	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$ 500	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V} \end{aligned}$

[^0]
ADG426 TIMING DIAGRAMS

Figure 4. Timing Sequence for Latching the Switch Address and Enable Inputs
Figure 4 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while $\overline{\mathrm{WR}}$ is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of $\overline{\mathrm{WR}}$.

Figure 5 shows the reset pulse width, t_{r}, and the reset turn off time, toff ($\overline{\mathrm{RS}}$).

Note that all digital input signals rise and fall times are measured from 10% to 90% of $3 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=20 \mathrm{~ns}$.

ADG406/ADG407/ADG426

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	44 V
Vod to GND	-0.3 V to +25 V
Vss to GND	+0.3 V to -25 V
Analog, Digital Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 20 mA , whichever occurs first
Continuous Current, S or D	20 mA
Peak Current, S or D	40 mA
	(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)
Operating Temperature Range Industrial (B Version) $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Plastic Package	
$\theta_{\text {JA, }}$, Thermal Impedance	$75^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$260^{\circ} \mathrm{C}$
PLCC Package	
$\theta_{\text {JA, }}$, Thermal Impedance	$80^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
SSOP Package	
θ_{jA}, Thermal Impedance	$122^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

[^1]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 7. 28-Lead PLCC

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V_{DD}	Most Positive Power Supply Potential.
$2,3,13$	NC	No Connect.
4 to 11	S16 to S9	Source Terminal 16 to Source Terminal 9. These pins can be inputs or outputs.
12	GND	Ground (0 V) Reference.
14 to 17	A3 to A0	Logic Control Input.
18	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin
	is high, the Ax logic inputs determine which switch is turned on.	
19 to 26	S1 to 8	Source Terminal 1 to Source Terminal 8. These pins can be inputs or outputs.
27	VSs	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
28	D	Drain Terminal. This pin can be an input or an output.

Table 5. Truth Table (ADG406)

A3	A2	A1	A0	EN	On Switch
X	X	X	X	0	None
0	0	0	0	1	1
0	0	0	1	2	
0	0	1	1	3	
0	1	0	1	4	
0	1	0	1	5	
0	1	1	1	6	
0	0	0	1	7	
0	0	1	1	8	
1	0	1	1	9	
1	1	0	1	10	
1	1	1	1	11	
1	1	1	1	12	
1	1	0	1	13	
1	1	1	1	15	
1	1	1	16		

ADG406/ADG407/ADG426

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VDD	Most Positive Power Supply Potential.
2	DB	Drain Terminal B. This pin can be an input or an output.
$3,13,14$	NC	No Connect.
4 to 11	S8B to S1B	Source Terminal 8B to Source Terminal 1B. These pins can be inputs or outputs.
12	GND	Ground (0 V) Reference.
15 to 17	A2 to A0	Logic Control Input. 18
	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on.
19 to 26	S1A to S8A	Source Terminal 1A to Source Terminal 8A. These pins can be inputs or outputs. 27
VSS	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground. 28	DA

Table 7. Truth Table (ADG407)

A2	A1	A0	EN	On Switch Pair
X	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	0	1	5
1	0	1	6	7
1	0	1	8	
1	1	1	1	
1	1	1		

Figure 10. 28-Lead PDIP/SSOP
Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$V_{\text {DD }}$	Most Positive Power Supply Potential.
2	NC	No Connect.
3	$\overline{\mathrm{RS}}$	Active Low Logic Input. When this pin is low, all switches are open, and address and enable latches registers are cleared to 0.
4 to 11	S16 to S9	Source Terminal 16 to Source Terminal 9. These pins can be inputs or outputs.
12	GND	Ground (0 V) Reference.
13	$\overline{\text { WR }}$	The rising edge of the $\overline{\mathrm{WR}}$ signal latches the state of the address control lines and the enable line.
14 to 17	A3 to A0	Logic Control Input.
18	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on.
19 to 26	S1 to S8	Source Terminal 1 to Source Terminal 8. These pins can be inputs or outputs.
27	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
28	D	Drain Terminal. This pin can be an input or an output.

Table 9. Truth Table (ADG426)

A3	A2	A1	A0	EN	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R S}}$	On switch
X	X	X	X	X	$\mathbf{\Lambda}$	1	Retains previous switch condition
X	X	X	X	X	X	0	None (address and enable latches cleared)
X	X	X	X	0	0	1	None
0	0	0	0	1	0	1	1
0	0	0	1	1	0	1	2
0	0	1	0	1	0	1	3
0	0	1	1	1	0	1	4
0	1	0	0	1	0	1	5
0	1	0	1	1	0	1	6
0	1	1	0	1	0	1	7
0	1	1	1	1	0	1	8
1	0	0	0	1	0	1	9
1	0	0	1	1	0	1	10
1	0	1	0	1	0	1	11
1	0	1	1	1	0	1	12
1	1	0	0	1	0	1	13
1	1	0	1	1	0	1	14
1	1	1	0	1	0	1	15
1	1	1	1	1	0	1	16

ADG406/ADG407/ADG426

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 11. Ron as a Function of $V_{D}\left(V_{S}\right)$: Dual Supplies

Figure 12. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 13. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 14. Ron as a Function of $V_{D}\left(V_{S}\right)$: Single Supplies

Figure 15. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 16. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

ADG406/ADG407/ADG426

Figure 17. Positive Supply Current vs. Switching Frequency

Figure 18. Switching Time vs. VIN (Bipolar Supply)

Figure 19. Switching Time vs. Bipolar Supply

Figure 20. Negative Supply Current vs. Switching Frequency

Figure 21. Switching Time vs. VIN (Single Supply)

Figure 22. Switching Time vs. Single Supply

ADG406/ADG407/ADG426

Figure 23. Off Isolation vs. Frequency

Figure 24. Crosstalk vs. Frequency

ADG406/ADG407/ADG426

TEST CIRCUITS

Figure 25. On Resistance

Figure 26. I_{s} (Off)

Figure 27. ID (Off)

Figure 28. I_{D} (On)

Figure 29. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$

Figure 30. Break-Before-Make Delay, topen

ADG406/ADG407/ADG426

Figure 31. Enable Delay, toN (EN), toff (EN)

Figure 32. Write Turn-On Time, $t_{0 N}(\overline{W R})$

Figure 33. Reset Turn-Off Time, toff $(\overline{R S})$

Figure 34. Charge Injection

Figure 35. Off Isolation

Figure 36. Crosstalk

ADG406/ADG407/ADG426

TERMINOLOGY

$V_{\text {DD }}$
Most positive power supply potential.
Vss
Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground.

GND

Ground (0 V) reference.
Ron
Ohmic resistance between the D and S terminals.
Ron Match
Difference between the Ron of any two channels.
Is (Off)
Source leakage current when the switch is off.
I_{D} (Off)
Drain leakage current when the switch is off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}$ (On)

Channel leakage current when the switch is on.
V_{D} (Vs)
Analog voltage on Terminal D, Terminal S.
Cs (Off)
Channel input capacitance for off condition.
C_{D} (Off)
Channel output capacitance for off condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$
On switch capacitance.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
ton (EN)
Delay time between the 50% and 90% points of the digital input and switch on condition.
toff (EN)
Delay time between the 50% and 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {transition }}$
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
topen
Off time measured between 80% points of both switches when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
Vinh
Minimum input voltage for Logic 1.
$\mathbf{I}_{\mathrm{INL}}\left(\mathbf{I}_{\mathrm{INH}}\right)$
Input current of the digital input.

Crosstalk

A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.
IDD
Positive supply current.
Iss
Negative supply current.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-011
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE LEADS.

Figure 37. 28-Lead Plastic Dual In-Line Package \{PDIP\} Wide Body (N -28-2)
Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-047-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR

Figure 38. 28-Lead Plastic Leaded Chip Carrier [PLCC] (P-28)
Dimensions shown in inches and (millimeters)

ADG406/ADG407/ADG426

COMPLIANT TO JEDEC STANDARDS MO-150-AH

Figure 39. 28-Lead Shrink Small Outline Package [SSOP]
(RS-28)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option ${ }^{2}$
ADG406BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PDIP	$\mathrm{N}-28-2$
ADG406BNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PDIP	$\mathrm{N}-28-2$
ADG406BP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PLCC	$\mathrm{P}-28$
ADG406BP-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PLCC	$\mathrm{P}-28$
ADG406BPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PLCC	$\mathrm{P}-28$
ADG406BPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PLCC	$\mathrm{P}-28$
ADG407BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PDIP	$\mathrm{N}-28-2$
ADG407BNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PDIP	$\mathrm{N}-28-2$
ADG407BP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PLCC	$\mathrm{P}-28$
ADG407BP-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PLCC	$\mathrm{P}-28$
ADG407BPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PLCC	$\mathrm{P}-28$
ADG407BPZ-RL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PLCC	$\mathrm{P}-28$
ADG407BCHIPS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		DIE
ADG426BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PDIP	$\mathrm{N}-28-2$
ADG426BNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead PDIP	$\mathrm{N}-28-2$
ADG426BRS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead SSOP	$\mathrm{RS}-28$
ADG426BRS-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead SSOP	$\mathrm{RS}-28$
ADG426BRS-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead SSOP	$\mathrm{RS}-28$
ADG426BRSZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead SSOP	$\mathrm{RS}-28$
ADG426BRSZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead SSOP	$\mathrm{RS}-28$

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2} \mathrm{~N}=$ Plastic DIP, $\mathrm{P}=$ Plastic Leaded Chip Carrier (PLCC), RS = Shrink Small Outline Package (SSOP).

[^0]: ${ }^{1}$ Temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Overvoltages at $A, S, D, \overline{W R}$, or $\overline{\mathrm{RS}}$ will be clamped by internal diodes. Current
 should be limited to the maximum ratings given.

