

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CMOS, ± 5 V/+5 V, 4 Ω , Single SPDT Switches

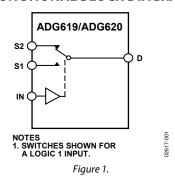
ADG619/ADG620

FEATURES

6.5 Ω (maximum) on resistance 0.8 Ω (maximum) on-resistance flatness 2.7 V to 5.5 V single supply ± 2.7 V to ± 5.5 V dual supply Rail-to-rail operation 8-lead SOT-23, 8-lead MSOP Typical power consumption (<0.1 μ W) TTL-/CMOS-compatible inputs

APPLICATIONS

Automatic test equipment Power routing Communication systems Data acquisition systems Sample-and-hold systems Avionics Relay replacement Battery-powered systems


GENERAL DESCRIPTION

The ADG619/ADG620 are monolithic, CMOS single-pole double-throw (SPDT) switches. Each switch conducts equally well in both directions when the device is on.

The ADG619/ADG620 offer a low on resistance of 4 Ω , which is matched to within 0.7 Ω between channels. These switches also provide low power dissipation, yet result in high switching speeds. The ADG619 exhibits break-before-make switching action, thus preventing momentary shorting when switching channels. The ADG620 exhibits make-before-break action.

The ADG619/ADG620 are available in an 8-lead SOT-23 and an 8-lead MSOP.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. Low on resistance (R_{ON}): 4 Ω typical.
- 2. Dual ± 2.7 V to ± 5.5 V or single 2.7 V to 5.5 V supplies.
- 3. Low power dissipation.
- Fast t_{ON}/t_{OFF}.
- 5. Tiny, 8-lead SOT-23 and 8-lead MSOP.

Table 1. Truth Table for the ADG619/ADG620

IN	Switch S1	Switch S2
0	On	Off
1	Off	On

TABLE OF CONTENTS

Features1
Applications
Functional Block Diagram
General Description
Product Highlights
Revision History
Specifications
Dual Supply 3
Single Supply5
REVISION HISTORY
REVISION HISTORY 3/07—Rev. B to Rev. C
3/07—Rev. B to Rev. C
3/07—Rev. B to Rev. C Changes to Specifications
3/07—Rev. B to Rev. C Changes to Specifications
3/07—Rev. B to Rev. C Changes to Specifications
3/07—Rev. B to Rev. C Changes to Specifications
3/07—Rev. B to Rev. C Changes to Specifications
3/07—Rev. B to Rev. C Changes to Specifications

Absolute Maximum Ratings6
ESD Caution6
Pin Configurations and Function Descriptions7
Typical Performance Characteristics8
Terminology
Test Circuits
Outline Dimensions
Ordering Guide

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V. All specifications -40°C to +85°C, unless otherwise noted.

Table 2.

		B Version ¹		
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V _{SS} to V _{DD}	V	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance (RoN)	4		Ωtyp	$V_S = \pm 4.5 \text{ V, } I_{DS} = -10 \text{ mA; see Figure 15}$
	6.5	8.5	Ω max	
R_{ON} Match Between Channels (ΔR_{ON})	0.7		Ωtyp	$V_S = \pm 4.5 \text{ V, } I_{DS} = -10 \text{ mA}$
	1.1	1.35	Ω max	
On-Resistance Flatness (RFLAT (ON))	0.7	0.8	Ωtyp	$V_S = \pm 3.3 \text{ V, } I_{DS} = -10 \text{ mA}$
	1.35	1.4	Ω max	
LEAKAGE CURRENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, I₅ (Off)	±0.01		nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V}; \text{ see Figure 16}$
	±0.25	±1	nA max	
Channel On Leakage, ID, Is (On)	±0.01		nA typ	$V_S = V_D = \pm 4.5 \text{ V}$; see Figure 17
, , , , , , , , , , , , , , , , , , ,	±0.25	±1	nA max	J. S.
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	V _{IN} = V _{INI} or V _{INH}
,		±0.1	μA max	
Digital Input Capacitance, CIN	2		pF typ	
DYNAMIC CHARACTERISTICS ²			1 ,	
ADG619				
ton	80		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	120	155	ns max	V _s = 3.3 V; see Figure 18
toff	45		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	75	90	ns max	V _s = 3.3 V; see Figure 18
Break-Before-Make Time Delay, t _{BBM}	40		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
·		10	ns min	$V_{S1} = V_{S2} = 3.3 \text{ V}$; see Figure 19
ADG620				
ton	40		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	65	85	ns max	V _S = 3.3 V; see Figure 18
toff	200		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	330	400	ns max	$V_s = 3.3 \text{ V}$; see Figure 18
Make-Before-Break Time Delay, t _{MBB}	160		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		10	ns min	$V_S = 0 V$; see Figure 20
Charge Injection	110		pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 21
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 22
Channel-to-Channel Crosstalk	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 23
Bandwidth –3 dB	190		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 24
C _s (Off)	25		pF typ	f = 1 MHz
C_D , C_S (On)	95		pF typ	f = 1 MHz

		B Version ¹				
Parameter	+25°C	+25°C		Test Conditions/Comments		
POWER REQUIREMENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$		
I _{DD}	0.001		μA typ	Digital inputs = 0 V or 5.5 V		
		1.0	μA max			
I _{SS}	0.001		μA typ	Digital inputs = 0 V or 5.5 V		
		1.0	μA max			

 $^{^1}$ Temperature range for B version is -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V. All specifications -40° C to $+85^{\circ}$ C, unless otherwise noted.

Table 3.

		B Version ¹				
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments		
ANALOG SWITCH						
Analog Signal Range		$0 V to V_{DD}$	V	$V_{DD} = 4.5 \text{ V}, V_{SS} = 0 \text{ V}$		
On Resistance (Ron)	7		Ωtyp	$V_S = 0 \text{ V to } 4.5 \text{ V}, I_{DS} = -10 \text{ mA}; \text{ see Figure } 1.5 \text{ m}$		
	10	12.5	Ω max			
R _{ON} Match Between Channels (ΔR _{ON})	0.8		Ωtyp	$V_S = 0 \text{ V to } 4.5 \text{ V, } I_{DS} = -10 \text{mA}$		
2	1.1	1.3	Ω max			
On-Resistance Flatness (R _{FLAT (ON)})	0.5	0.5	Ωtyp	$V_s = 1.5 \text{ V to } 3.3 \text{ V, } I_{DS} = -10 \text{ mA}$		
Of resistance harness (real (ON))	0.5	1.2	Ω max	1.5 7 65 5.5 77 65		
LEAKAGE CURRENTS				$V_{DD} = 5.5 \text{ V}$		
Source Off Leakage, I _S (Off)	±0.01		nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 16}$		
Source on Leanage, is (on)	±0.25	±1	nA max	V ₃ = 1 V ₇ 1.5 V ₇ V _D = 1.5 V ₇ 1 V ₇ Sec 1 igaic 10		
Channel On Leakage, ID, IS (On)	±0.23		nA typ	$V_S = V_D = 1 \text{ V}/4.5 \text{ V}$; see Figure 17		
Charmer Off Leakage, ID, IS (Off)	±0.01	1		vs = vb = 1 v/4.5 v, see Figure 17		
DIGITAL INPUTS	10.23	±1	nA max			
Input High Voltage, V _{INH}		2.4	V min			
		0.8	V max			
Input Low Voltage, V _{INL}	0.005	0.0	-	V V 20V		
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$		
D: :: 11		±0.1	μA max			
Digital Input Capacitance, C _{IN}	2		pF typ			
DYNAMIC CHARACTERISTICS ²						
ADG619						
ton	120		ns typ	$R_L = 300 \Omega, C_L = 35 pF$		
	220	280	ns max	$V_S = 3.3 \text{ V}$; see Figure 18		
t off	50		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$		
	75	110	ns max	$V_S = 3.3 \text{ V}$; see Figure 18		
Break-Before-Make Time Delay, tbbm	70		ns typ	$R_L = 300 \Omega, C_L = 35 pF$		
		10	ns min	$V_{S1} = V_{S2} = 3.3 \text{ V}$; see Figure 19		
ADG620						
ton	50		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$		
	85	110	ns max	$V_S = 3.3 \text{ V}$; see Figure 18		
t off	210		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$		
	340	420	ns max	$V_S = 3.3 \text{ V}$; see Figure 18		
Make-Before-Break Time Delay, t _{MBB}	170		ns typ	$R_L = 300 \Omega, C_L = 35 pF$		
,		10	ns min	V _s = 3.3 V; see Figure 20		
Charge Injection	6		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see Figure 21}$		
Off Isolation	- 67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 22		
Channel-to-Channel Crosstalk	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 23		
Bandwidth –3 dB	190		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 24		
C _s (OFF)	25		pF typ	f = 1 MHz		
C _D , C _S (ON)	95		pF typ	f = 1 MHz		
POWER REQUIREMENTS	75		ן אי נאָף	$V_{DD} = 5.5 \text{ V}$		
	0.001		uA tun	Digital inputs = 0 V or 5.5 V		
I_{DD}	0.001	1.0	μA typ	Digital illputs = 0 v or 5.5 v		
		1.0	μA max			

 $^{^1}$ Temperature range for B version is -40°C to +85°C. 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

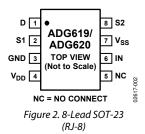
 $T_A = 25$ °C, unless otherwise noted.

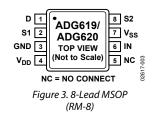
Table 4.

1 able 4.	
Parameter	Rating
V _{DD} to V _{SS}	13 V
V _{DD} to GND	−0.3 V to +6.5 V
V_{SS} to GND	+0.3 V to −6.5 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Digital Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or } 30 \text{ mA}$ (whichever occurs first)
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, S or D	50 mA
Operating Temperature Range	
Industrial (B Version)	-40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
MSOP	
θ_{JA} Thermal Impedance	206°C/W
θ_{JC} Thermal Impedance	44°C/W
SOT-23	
θ_{JA} Thermal Impedance	229.6°C/W
θ_{JC} Thermal Impedance	91.99°C/W
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature	220°C

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Only one absolute maximum rating may be applied at a time.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	D	Drain Terminal. Can be an input or output.
2	S1	Source Terminal. Can be an input or output.
3	GND	Ground (0 V) Reference.
4	V_{DD}	Most Positive Power Supply.
5	NC	No Connect. Not internally connected.
6	IN	Logic Control Input.
7	Vss	Most Negative Power Supply. This pin is only used in dual-supply applications and should be tied to ground in single-supply applications.
8	S2	Source Terminal. Can be an input or output.

TYPICAL PERFORMANCE CHARACTERISTICS



Figure 4. On Resistance vs. VD, Vs (Dual Supply)

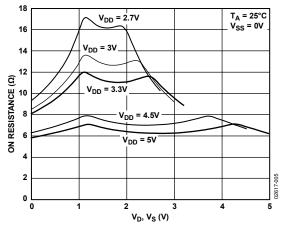


Figure 5. On Resistance vs. V_D , V_S (Single Supply)

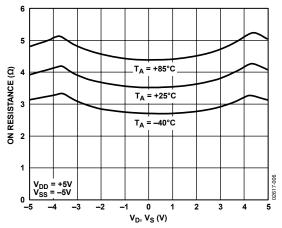


Figure 6. On Resistance vs. V_D , V_S for Different Temperatures (Dual Supply)

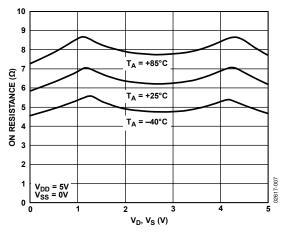


Figure 7. On Resistance vs. V_D, V_S for Different Temperatures (Single Supply)

Figure 8. Leakage Currents vs. Temperature (Dual Supply)

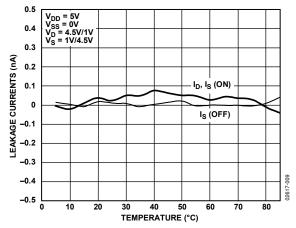


Figure 9. Leakage Currents vs. Temperature (Single Supply)

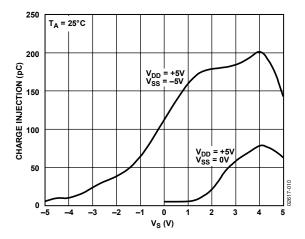


Figure 10. Charge Injection vs. Source Voltage

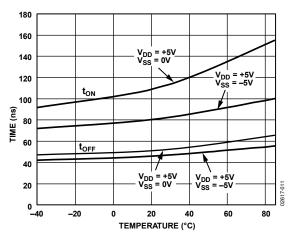


Figure 11. ton/toff Times vs. Temperatures

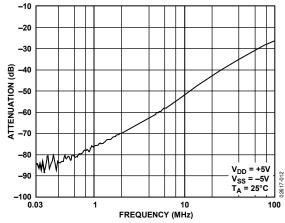


Figure 12. Off Isolation vs. Frequency

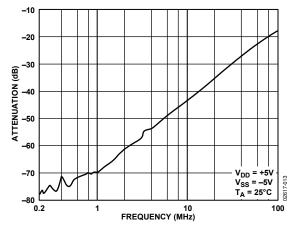


Figure 13. Crosstalk vs. Frequency

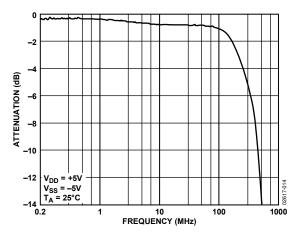


Figure 14. On Response vs. Frequency

TERMINOLOGY

 I_{DD}

Positive supply current.

 \mathbf{I}_{SS}

Negative supply current.

Ron

Ohmic resistance between D and S terminals.

 ΔR_{ON}

On resistance match between any two channels.

R_{FLAT} (ON)

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (Off)

Source leakage current with the switch off.

 I_D , I_S (On)

Channel leakage current with the switch on.

 V_D, V_S

Analog voltage on Terminal D and Terminal S.

 V_{INL}

Maximum input voltage for Logic 0.

 V_{INH}

Minimum input voltage for Logic 1.

 I_{INL} , I_{INH}

Input current of the digital input.

Cs (Off)

Off switch source capacitance.

 C_D , C_S (On)

On switch capacitance.

ton

Delay between applying the digital control input and the output switching on.

toff

Delay between applying the digital control input and the output switching off.

tmrr

On time is measured between the 80% points of both switches, when switching from one address state to another.

trrn

Off time or on time is measured between the 90% points of both switches, when switching from one address state to another.

Charge Injection

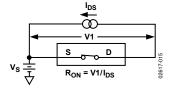
A measure of the glitch impulse transferred from the digital input to the analog output during switching.

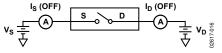
Crosstalk

A measure of unwanted signal coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.


Bandwidth


The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

TEST CIRCUITS

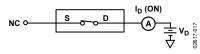
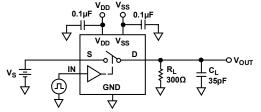



Figure 15. On Resistance

Figure 16. Off Leakage

Figure 17. On Leakage

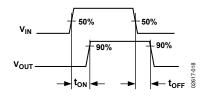
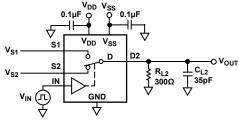



Figure 18. Switching Times

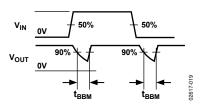
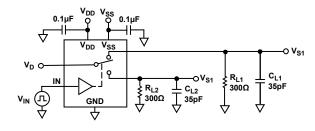



Figure 19. Break-Before-Make Time Delay, t_{BBM} (ADG619 Only)

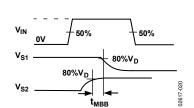


Figure 20. Make-Before-Break Time Delay, t_{MBB} (ADG620 Only)

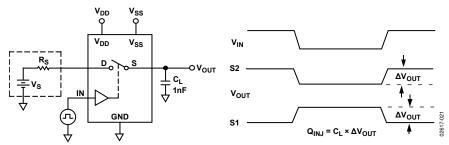


Figure 21. Charge Injection

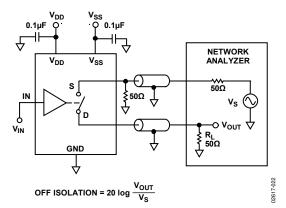


Figure 22. Off Isolation

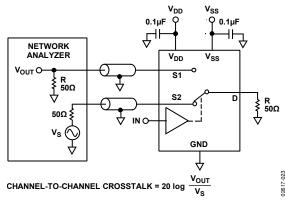
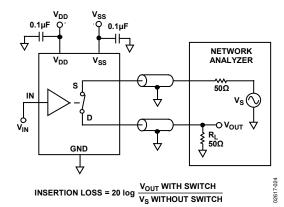
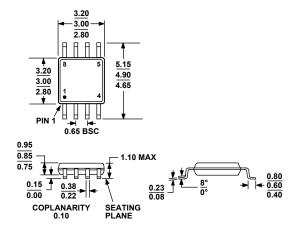
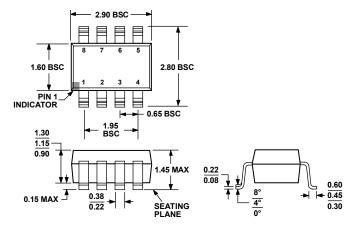


Figure 23. Channel-to-Channel Crosstalk


Figure 24. Bandwidth

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA

Figure 25. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178-BA

Figure 26. 8-Lead Small Outline Transistor Package [SOT-23] (RJ-8) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding ¹
ADG619BRM	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRM-REEL	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRM-REEL7	−40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRMZ ²	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRMZ-REEL ²	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRMZ-REEL7 ²	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRT-REEL	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SVB
ADG619BRT-REEL7	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SVB
ADG619BRT-500RL7	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SVB
ADG619BRTZ-REEL ²	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SCC
ADG619BRTZ-REEL7 ²	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SCC
ADG619BRTZ-500RL7 ²	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SCC
ADG620BRM	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRM-REEL	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRM-REEL7	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRMZ ²	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	S21
ADG620BRT-REEL	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SWB
ADG620BRT-REEL7	−40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SWB
ADG620BRTZ-REEL7 ²	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	S21

 $^{^{\}rm 1}$ Branding on SOT-23 and MSOP is limited to three characters due to space constraints. $^{\rm 2}$ Z = RoHS Compliant Part.

NOTES

A	D	G	6	1	9/	A	D	G	6	2	0	

NOTES

