

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

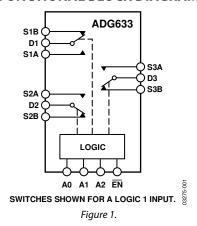
CMOS, ±5 V/+5 V/+3 V, Triple SPDT Switch

ADG633 Data Sheet

FEATURES

±2 V to ±6 V dual-supply operation 2 V to 12 V single-supply operation Temperature range: -40°C to +125°C <0.2 nA leakage currents 52 Ω on resistance over full signal range Rail-to-rail switching operation 16-lead LFCSP and TSSOP packages Typical power consumption: <0.1 μW TTL-/CMOS-compatible inputs Package upgrades to 74HC4053 and MAX4053/MAX4583

APPLICATIONS


Automatic test equipment Data acquisition systems Battery-powered systems Communications systems Audio and video signal routing **Relay replacement** Sample-and-hold systems **Industrial control systems**

GENERAL DESCRIPTION

The ADG633 is a low voltage CMOS device comprising three independently selectable single-pole, double-throw (SPDT) switches. The device is fully specified for ± 5 V, +5 V, and +3 V supplies. The ADG633 switches are turned on with a logic low (or high) on the appropriate control input. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. An EN input is used to enable or disable the device. When the device is disabled, all channels are switched off.

The ADG633 is designed on an enhanced process that provides lower power dissipation, yet is capable of high switching speeds. Low power consumption and an operating supply range of 2 V to 12 V make the ADG633 ideal for battery-powered, portable instruments. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels.

FUNCTIONAL BLOCK DIAGRAM

All digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/CMOS logic compatibility when using single +5 V or dual ±5 V supplies.

The ADG633 is available in a small, 16-lead TSSOP package and a 16-lead, 4 mm × 4 mm LFCSP package.

PRODUCT HIGHLIGHTS

- Single- and dual-supply operation. The ADG633 offers high performance and is fully specified and guaranteed with ± 5 V, +5 V, and +3 V supply rails.
- Temperature range: -40° C to $+125^{\circ}$ C.
- Guaranteed break-before-make switching action.
- Low power consumption, typically $<0.1 \mu W$.
- Small, 16-lead TSSOP and 16-lead, 4 mm × 4 mm LFCSP packages.

Trademarks and registered trademarks are the property of their respective owners.

ADG633* PRODUCT PAGE QUICK LINKS

Last Content Update: 03/03/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

 Evaluation Board for 16 lead TSSOP Devices in the Switch/ Mux Portfolio

DOCUMENTATION

Data Sheet

 ADG633: CMOS, ±5 V/+5 V/+3 V, Triple SPDT Switch Data Sheet

User Guides

 UG-945: Evaluation Board for 16-Lead TSSOP Devices in the Switches and Multiplexers Portfolio

REFERENCE DESIGNS \Box

- CN0312
- CN0363

REFERENCE MATERIALS \Box

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

Technical Articles

- CMOS Switches Offer High Performance in Low Power, Wideband Applications
- · Data-acquisition system uses fault protection
- Enhanced Multiplexing for MEMS Optical Cross Connects
- Temperature monitor measures three thermal zones

DESIGN RESOURCES 🖵

- · ADG633 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all ADG633 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK \Box

Submit feedback for this data sheet.

TABLE OF CONTENTS

reatures	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	
Dual-Supply Operation	3
Single-Supply Operation	

Absolute Maximum Ratings	6
ESD Caution	6
Pin Configurations and Function Descriptions	7
Typical Performance Characteristics	8
Terminology	11
Test Circuits	12
Outline Dimensions	14
Ordering Guide	14

REVISION HISTORY

2/2017—Rev. A to Rev. B

-, - 0 1, 10 11 10 110 11 2	
Deleted B Version	Throughout
Changes to Features Section, Applications Section, a	and Product
Highlights Section	1
Added Note 2 to Table 1; Renumbered Sequentially	3
Added Note 2 to Table 2; Renumbered Sequentially	4
Added Note 2 to Table 3; Renumbered Sequentially	5
Added Note 1 to Table 4; Renumbered Sequentially	6
Changes to Figure 3 and Table 6	7
Updated Outline Dimensions	14
Changes to Ordering Guide	14

11/2009—Rev. 0 to Rev. A

• • • • • • • • • • • • • • • • • • • •	
Changes to Table 4	6
Added Table 5; Renumbered Sequentially	7
Changes to Table 6	7
Update Outline Dimensions	
Changes to Ordering Guide	14

2/2003—Revision 0: Initial Version

SPECIFICATIONS

DUAL-SUPPLY OPERATION

 V_{DD} = +5 V, V_{SS} = -5 V, GND = 0 V, T_A = -40°C to +125°C, unless otherwise noted.

Table 1.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance, R _{ON}	52		33 25	Ωtyp	$V_s = \pm 4.5 \text{ V}, I_s = 1 \text{ mA}; \text{ see Figure 20}$
, civ	75	90	100	Ω max	$V_s = \pm 4.5 \text{ V}, I_s = 1 \text{ mA}; \text{ see Figure 20}$
On-Resistance Match	0.8			Ωtyp	$V_s = +3.5 \text{ V, } I_s = 1 \text{ mA}$
Between Channels, ΔR _{ON}	0.0			12 () [V5 = 13.5 V, 15 = 1 1111/
, 514	1.3	1.8	2	Ω max	$V_s = +3.5 \text{ V}, I_s = 1 \text{ mA}$
On-Resistance Flatness, R _{FLAT(ON)}	9			Ωtyp	$V_{DD} = +5 \text{ V}, V_{SS} = -5 \text{ V}, V_{S} = \pm 3 \text{ V}, I_{S} = 1 \text{ mA}$
O	12	13	14	Ω max	$V_{DD} = +5 \text{ V}, V_{SS} = -5 \text{ V}, V_S = \pm 3 \text{ V}, I_S = 1 \text{ mA}$
LEAKAGE CURRENTS	12	.5		12 max	$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, I _{S(OFF)}	±0.005			nA typ	$V_{DD} = \pm 4.5 \text{ V}, V_{SS} = \pm 4.5 \text{ V}; \text{ see Figure 21}$
Source of Leakage, I _{S(OFF)}					
	±0.2		±5	nA max	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V}; \text{ see Figure 21}$
Drain Off Leakage, I _{D(OFF)}	±0.005			nA typ	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V}; \text{ see Figure 22}$
	±0.2		±5	nA max	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V}; \text{ see Figure 22}$
Channel On Leakage, I _{D(ON)} , I _{S(ON)}	±0.005			nA typ	$V_D = V_S = \pm 4.5 \text{ V}$; see Figure 23
2 : 5(5.4) 5(614)	±0.2		±5	nA max	$V_D = V_S = \pm 4.5 \text{ V}$; see Figure 23
DIGITAL INPUTS					J 3 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		0.0	μΑ typ	$V_{IN} = V_{INI}$ or V_{INH}
input current, i _{INL} or i _{INH}	0.003		±1	μΑ typ	$V_{IN} = V_{INI} \text{ or } V_{INH}$ $V_{IN} = V_{INI} \text{ or } V_{INH}$
Digital Input Canacitance C	2		I	1 '	$\mathbf{v}_{IN} = \mathbf{v}_{INL} Or \mathbf{v}_{INH}$
Digital Input Capacitance, C _{IN} DYNAMIC CHARACTERISTICS ¹	2			pF typ	
	60				D 200 0 C 25 25 V 2V 5 5 2 24
t _{transition}	60	1.10	400	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 24
(EA)	90	110	130	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 24
t_{ON} $\overline{(EN)}$	70			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
<u></u>	95	120	135	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
$t_{OFF}(\overline{EN})$	25			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
	40	45	50	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
Break-Before-Make Time Delay, t _{BBM}	40			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3 V$; see Figure 25
			10	ns min	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3 V$; see Figure 25
Charge Injection	2			pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 27
	4			pC max	$V_{S} = 0 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \text{ see Figure 27}$
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion, THD + N	0.025			% typ	$R_1 = 600 \Omega$, 2 V p-p, $f = 20 \text{ Hz to } 20 \text{ kHz}$
Channel-to-Channel Crosstalk	-90			dB typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 1 MHz$; see Figure 30
–3 dB Bandwidth	580			MHz typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$; see Figure 29
C _{S(OFF)}	4			pF typ	f = 1 MHz
_ ' '	7				f = 1 MHz
C _{D(OFF)}	12			pF typ pF typ	f = 1 MHz
C _{D(ON)} , C _{S(ON)} POWER REQUIREMENTS ²	12	+	+	pr ιyp	
	0.01			۸ 4	$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I _{DD}	0.01			μA typ	Digital inputs = 0 V or 5.5 V
			1	μA max	Digital inputs = 0 V or 5.5 V
I _{SS}	0.01			μA typ	Digital inputs = 0 V or 5.5 V
			1	μA max	Digital inputs = 0 V or 5.5 V

¹ Guaranteed by design; not subject to production test. ² The device is fully specified at a ±5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (±2 V to ±6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{INLY} V_{INHY}, and switching times. The optimal power-up sequence for the device is: ground, V_{DD}, V_{SS}, and then the digital inputs, before applying the analog input

SINGLE-SUPPLY OPERATION

 $\rm V_{DD}$ = 5 V, $\rm V_{SS}$ = 0 V, GND = 0 V, $\rm T_A$ = $-40^{\circ}C$ to +125°C, unless otherwise noted.

Table 2.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V _{DD}	V	$V_{DD} = 4.5 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance, R _{ON}	85			Ωtyp	$V_s = 0 \text{ V to } 4.5 \text{ V}, I_s = 1 \text{ mA}; \text{ see Figure } 20$
	150	160	200	Ω max	$V_s = 0 \text{ V to } 4.5 \text{ V}, I_s = 1 \text{ mA}; \text{ see Figure } 20$
On-Resistance Match Between Channels, ΔR_{ON}	4.5			Ωtyp	$V_S = +3.5 \text{ V, } I_S = 1 \text{ mA}$
	8	9	10	Ω max	$V_s = +3.5 \text{ V}, I_s = 1 \text{ mA}$
On-Resistance Flatness, R _{FLAT(ON)}	13	14	16	Ωtyp	$V_{DD} = 5 \text{ V}, V_{SS} = 0 \text{ V}, V_{S} = 1.5 \text{ V to } 4 \text{ V}, I_{S} = 1 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 5.5 \text{ V}$
Source Off Leakage, I _{S(OFF)}	±0.005			nA typ	$V_S = 1 \text{ V/4.5 V}, V_D = 4.5 \text{ V/1 V}; \text{ see Figure 21}$
3 / 5(011)	±0.2		±5	nA max	$V_s = 1 \text{ V/4.5 V}, V_D = 4.5 \text{ V/1 V}; \text{ see Figure 21}$
Drain Off Leakage, I _{D(OFF)}	±0.005			nA typ	$V_S = 1 \text{ V/4.5 V}, V_D = 4.5 \text{ V/1 V}; \text{ see Figure 22}$
	±0.2		±5	nA max	$V_S = 1 \text{ V/4.5 V, } V_D = 4.5 \text{ V/1 V; see Figure 22}$
Channel On Leakage, I _{D(ON)} , I _{S(ON)}	±0.005			nA typ	$V_S = V_D = 1 \text{ V or } 4.5 \text{ V}; \text{ see Figure } 23$
C. a	±0.2		±5	nA max	$V_s = V_D = 1 \text{ V or } 4.5 \text{ V}; \text{ see Figure 23}$
DIGITAL INPUTS	20.2			Tirktitiax	75 10 11 01 115 17500 11gare 25
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INI}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		0.8	μΑ typ	$V_{IN} = V_{INI}$ or V_{INH}
input current, i _{INL} or i _{INH}	0.005		±1	μΑ typ μΑ max	$V_{\text{IN}} = V_{\text{INL}} \text{ or } V_{\text{INH}}$ $V_{\text{IN}} = V_{\text{INL}} \text{ or } V_{\text{INH}}$
Digital Input Capacitance, C _{IN}	2		±1	μΑ max pF typ	$\mathbf{v}_{IN} = \mathbf{v}_{INL} Or \mathbf{v}_{INH}$
DYNAMIC CHARACTERISTICS ¹	2			рг тур	
	100				D 200 0 C 25 = 5 V 2 V 2 2 5 5 5 5 2 4
t _{transition}	100	100	220	ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$, $V_S = 3 \text{ V}$; see Figure 24
(FN)	150	190	220	ns max	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$, $V_S = 3 \text{ V}$; see Figure 24
t_{ON} (\overline{EN})	100			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
_	150	190	220	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
t_{OFF} (\overline{EN})	25			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
	35	45	50	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
Break-Before-Make Time Delay, t _{BBM}	90			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3 V$; see Figure 25
			10	ns min	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3 V$; see Figure 25
Charge Injection	0.5			pC typ	$V_S = 2.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 27}$
	1			pC max	$V_S = 2.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 27}$
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
–3 dB Bandwidth	520			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
$C_{S(OFF)}$	5			pF typ	f = 1 MHz
C _{D(OFF)}	8			pF typ	f = 1 MHz
$C_{D(ON)}$, $C_{S(ON)}$	12			pF typ	f = 1 MHz
POWER REQUIREMENTS ²					$V_{DD} = 5.5 \text{ V}$
I _{DD}	0.01			μA typ	Digital inputs = 0 V or 5.5 V
			1	μA max	Digital inputs = 0 V or 5.5 V

¹ Guaranteed by design; not subject to production test.
² The device is fully specified at a ±5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (±2 V to ±6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{INL}, V_{INH}, and switching times. The optimal power-up sequence for the device is: ground, V_{DD}, V_{SS}, and then the digital inputs, before applying the analog input

 $V_{\rm DD}$ = 2.7 V to 3.6 V, $V_{\rm SS}$ = 0 V, GND = 0 V, $T_{\rm A}$ = -40°C to +125°C, unless otherwise noted.

Table 3.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V _{DD}	V	$V_{DD} = 2.7 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance, R _{ON}	185			Ωtyp	$V_s = 0 \text{ V to } 2.7 \text{ V}, I_s = 0.1 \text{ mA; see Figure } 20$
	300	350	400	Ω max	$V_s = 0 \text{ V to } 2.7 \text{ V, } I_s = 0.1 \text{ mA; see Figure } 20$
On-Resistance Match	2			Ωtyp	$V_S = +1.5 \text{ V}, I_S = 0.1 \text{ mA}$
Between Channels, ΔR_{ON}					
	4.5	6	7	Ω max	$V_S = +1.5 \text{ V}, I_S = 0.1 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 3.3 \text{ V}$
Source Off Leakage, I _{S(OFF)}	±0.005			nA typ	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V}; \text{ see Figure 21}$
	±0.2		±5	nA max	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V}; \text{ see Figure 21}$
Drain Off Leakage, I _{D(OFF)}	±0.005			nA typ	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V}; \text{ see Figure 22}$
	±0.2		±5	nA max	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V}; \text{ see Figure 22}$
Channel On Leakage, I _{D(ON)} , I _{S(ON)}	±0.005			nA typ	$V_S = V_D = 1 \text{ V or } 3 \text{ V}$; see Figure 23
	±0.2		±5	nA max	$V_S = V_D = 1 \text{ V or } 3 \text{ V}$; see Figure 23
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.5	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±1	μA max	$V_{IN} = V_{INL}$ or V_{INH}
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{transition}	170			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$; see Figure 24
	300	370	400	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$; see Figure 24
t_{ON} (\overline{EN})	200			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$; see Figure 26
	310	380	420	ns max	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_S = 1.5 V$; see Figure 26
t _{OFF} (EN)	30			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$; see Figure 26
	40	55	75	ns max	$R_1 = 300 \Omega$, $C_1 = 35 \text{pF}$, $V_S = 1.5 \text{V}$; see Figure 26
Break-Before-Make Time Delay, t _{rrm}	180			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 1.5 V$; see Figure 25
,, ppini			10	ns min	$R_1 = 300 \Omega$, $C_1 = 35 \text{pF}$, $V_{51} = V_{52} = 1.5 \text{V}$; see Figure 25
Charge Injection	1			pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_1 = 1 \text{ nF; see Figure 27}$
,	2			pC max	$V_s = 1.5 \text{ V}, R_s = 0 \Omega, C_1 = 1 \text{ nF}; \text{ see Figure 27}$
Off Isolation	-90			dB typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 1 MHz$; see Figure 28
Channel-to-Channel Crosstalk	-90			dB typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 1 MHz$; see Figure 30
–3 dB Bandwidth	500			MHz typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$; see Figure 29
C _{S(OFF)}	5			pF typ	f = 1 MHz
C _{D(OFF)}	8			pF typ	f = 1 MHz
$C_{D(ON)}, C_{S(ON)}$	12			pF typ	f = 1 MHz
POWER REQUIREMENTS ²				1 /1	V _{DD} = 3.3 V
I _{DD}	0.01			μA typ	Digital inputs = 0 V or 3.3 V
טט			1	μA max	Digital inputs = 0 V or 3.3 V

¹ Guaranteed by design; not subject to production test.

² The device is fully specified at a ±5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (±2 V to ±6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{INL}, V_{INH}, and switching times. The optimal power-up sequence for the device is: ground, V_{DD}, V_{SS}, and then the digital inputs, before applying the analog input signal.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

Table 4.	
Parameter	Rating
V_{DD} to V_{SS}^{1}	13 V
V _{DD} to GND	−0.3 V to +13 V
V_{SS} to GND	+0.3 V to −6.5 V
Analog Inputs ²	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Digital Inputs ²	$GND - 0.3 V$ to $V_{DD} + 0.3 V$ or 10 mA, whichever occurs first
Peak Current, S or D	40 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, S or D	20 mA
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
$\theta_{ extsf{JA}}$ Thermal Impedance	
16-Lead TSSOP	150.4°C/W
16-Lead LFCSP, 4-Layer Board	70°C/W
Lead Soldering	
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature (<20 sec)	220°C
(Pb-Free) Soldering	
Reflow, Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	20 sec to 40 sec
ESD	4 kV

 $^{^1}$ The device is fully specified at a ± 5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (± 2 V to ± 6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{INL} , V_{INH} , and switching times. The optimal power-up sequence for the device is: ground, V_{DD} , V_{SS} , and then the digital inputs, before applying the analog input signal.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² Overvoltages at Ax, EN, S, or D are clamped by internal diodes. Limit current to the maximum ratings given.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

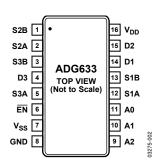
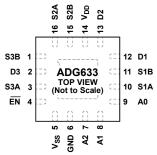



Figure 2. 16-Lead TSSOP Pin Configuration

NOTES 1. THE EXPOSED PADDLE CAN BE LEFT FLOATING OR BE TIED TO $V_{DD},\,V_{SS},\,$ OR GND.

Figure 3. 16-Lead LFCSP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.		_	
TSSOP	LFCSP	Mnemonic	Description
1	15	S2B	Source Terminal of Multiplexer 2. Can be an input or output.
2	16	S2A	Source Terminal of Multiplexer 2. Can be an input or output.
3	1	S3B	Source Terminal of Multiplexer 3. Can be an input or output.
4	2	D3	Drain Terminal of Multiplexer 3. Can be an input or output.
5	3	S3A	Source Terminal of Multiplexer 3. Can be an input or output.
6	4	EN	Digital Control Input. Disables all multiplexers when set high.
7	5	Vss	Most Negative Power Supply Terminal. Tie this pin to GND when using the device with single-supply voltages.
8	6	GND	Ground (0 V) Reference.
9	7	A2	Digital Control Input.
10	8	A1	Digital Control Input.
11	9	A0	Digital Control Input.
12	10	S1A	Source Terminal of Multiplexer 1. Can be an input or output.
13	11	S1B	Source Terminal of Multiplexer 1. Can be an input or output.
14	12	D1	Drain Terminal of Multiplexer 1. Can be an input or output.
15	13	D2	Drain Terminal of Multiplexer 2. Can be an input or output.
16	14	V_{DD}	Most Positive Power Supply Terminal.
Not applicable	EP	EP	Exposed Paddle. The exposed paddle can be left floating or be tied to VDD, Vss, or GND.

Table 6. ADG633 Truth Table

				Switch Condition					
A2	A 1	A0	EN	Switch S1A/D1	Switch S1B/D1	Switch S2A/D2	Switch S2B/D2	Switch S3A/D3	Switch S3B/D3
X ¹	X ¹	X ¹	1	Off	Off	Off	Off	Off	Off
0	0	0	0	On	Off	On	Off	On	Off
0	0	1	0	Off	On	On	Off	On	Off
0	1	0	0	On	Off	Off	On	On	Off
0	1	1	0	Off	On	Off	On	On	Off
1	0	0	0	On	Off	On	Off	Off	On
1	0	1	0	Off	On	On	Off	Off	On
1	1	0	0	On	Off	Off	On	Off	On
1	1	1	0	Off	On	Off	On	Off	On

 $^{^{\}rm 1}$ X means the logic state does not matter; it can be either 0 or 1.

TYPICAL PERFORMANCE CHARACTERISTICS

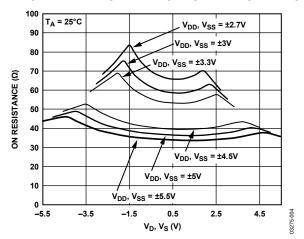


Figure 4. On Resistance vs. V_D (V_S), Dual Supplies

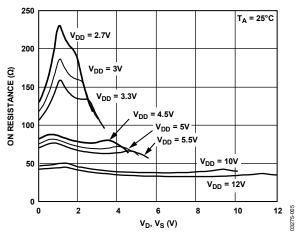


Figure 5. On Resistance vs. V_D (V_S), Single Supply

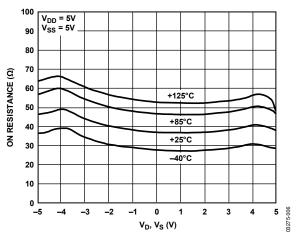


Figure 6. On Resistance vs. V_D (V_S) for Various Temperatures, Dual Supplies

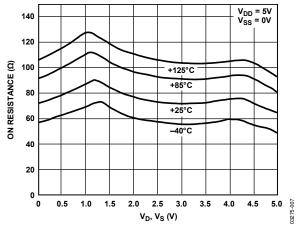


Figure 7. On Resistance vs. V_D (V_S) for Various Temperatures, Single Supply

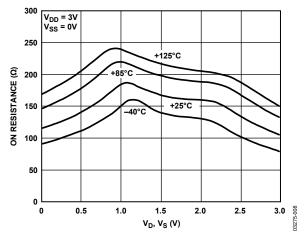


Figure 8. On Resistance vs. V_D (V_S) for Various Temperatures, Single Supply

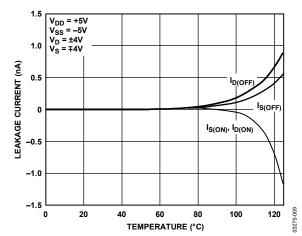


Figure 9. Leakage Current vs. Temperature, Dual Supplies

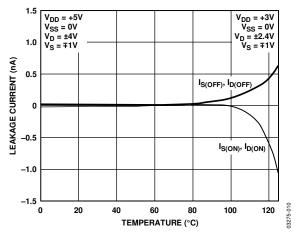


Figure 10. Leakage Current vs. Temperature, Single Supply

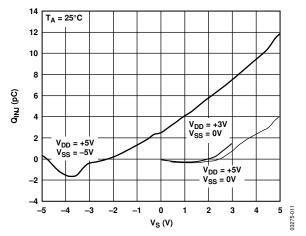


Figure 11. Charge Injection vs. Source Voltage

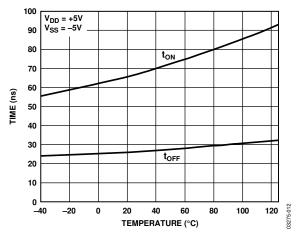


Figure 12. t_{ON}/t_{OFF} Times vs. Temperature, Dual Supplies

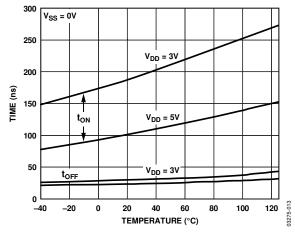


Figure 13. $t_{\rm ON}/t_{\rm OFF}$ Times vs. Temperature, Single Supply

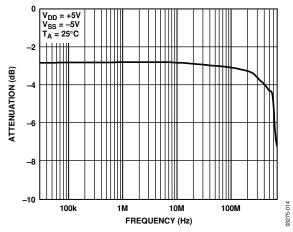


Figure 14. On Response vs. Frequency

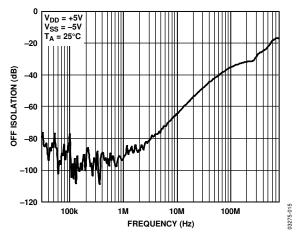


Figure 15. Off Isolation vs. Frequency

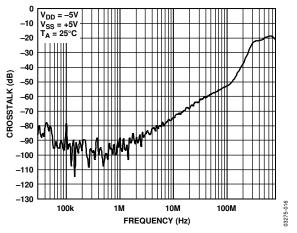


Figure 16. Crosstalk vs. Frequency

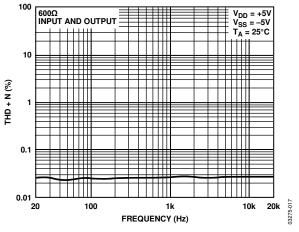


Figure 17. THD + Noise vs. Frequency

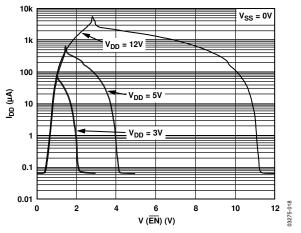


Figure 18. V_{DD} Current vs. Logic Level

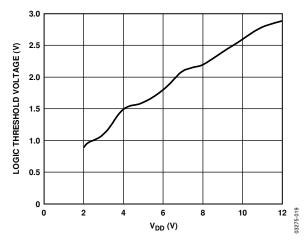


Figure 19. Logic Threshold Voltage vs. $V_{\rm DD}$

TERMINOLOGY

 V_{DD}

Most positive power supply potential.

 V_{ss}

Most negative power supply potential.

 \mathbf{I}_{DD}

Positive supply current.

 I_{ss}

Negative supply current.

GND

Ground (0 V) reference.

S

Source terminal. Can be an input or output.

D

Drain terminal. Can be an input or output.

 $\mathbf{A}_{\mathbf{X}}$

Logic control input.

EN

Active low digital input. When \overline{EN} is high, the device is disabled and all switches are off. When \overline{EN} is low, the Ax logic inputs determine the on switches.

 V_D, V_S

Analog voltage on Terminal D and Terminal S.

Ros

Ohmic resistance between Terminal D and Terminal S.

 ΔR_{ox}

On-resistance match between any two channels, that is,

 $R_{ONMAX} - R_{ONMIN}$.

 $R_{\text{FLAT}(\text{ON})}$

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

I_{S(OFF)}

Source leakage current with the switch off.

 $I_{D(OFF)}$

Drain leakage current with the switch off.

 $I_{D(ON)}$, $I_{S(ON)}$

Channel leakage current with the switch on.

 V_{INL}

Maximum input voltage for Logic 0.

 V_{tnt}

Minimum input voltage for Logic 1.

 $I_{\text{INI}}, I_{\text{INH}}$

Input current of the digital input.

 $C_{S(OFF)}$

Off switch source capacitance. Measured with reference to ground.

 $C_{D(OFF)}$

Off switch drain capacitance. Measured with reference to ground.

 $C_{D(ON)}$, $C_{S(ON)}$

On switch capacitance. Measured with reference to ground.

 C_{IN}

Digital input capacitance.

 $t_{ON}(\overline{EN})$

Delay between applying the digital control input and the output switching on (see Figure 26).

 $t_{OFF}(\overline{EN})$

Delay between applying the digital control input and the output switching off (see Figure 26).

 t_{BBM}

On time, measured between 80% points of both switches when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

TEST CIRCUITS

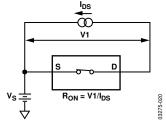


Figure 20. On Resistance

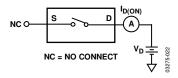


Figure 22. Drain Off Leakage

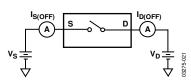


Figure 21. Source Off Leakage

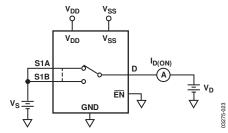
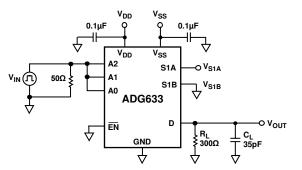



Figure 23. Channel On Leakage

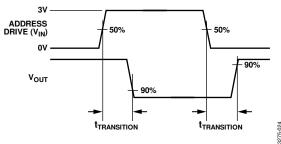
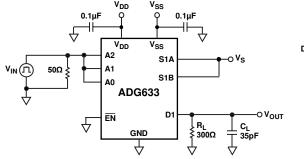



Figure 24. Transition Time, $t_{TRANSITION}$

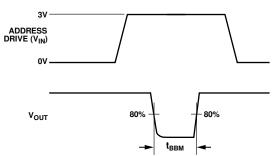


Figure 25. Break-Before-Make Delay, t_{BBM}

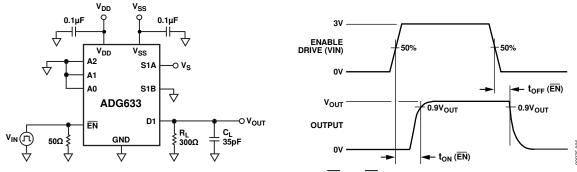


Figure 26. Enable Delay, t_{ON} (\overline{EN}), t_{OFF} (\overline{EN})

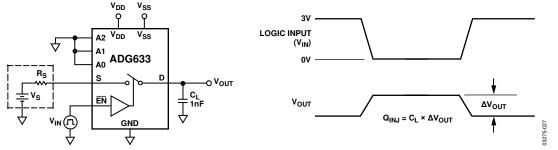


Figure 27. Charge Injection

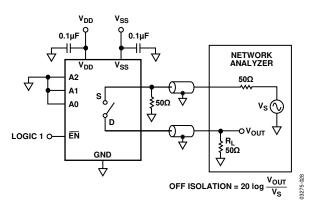


Figure 28. Off Isolation

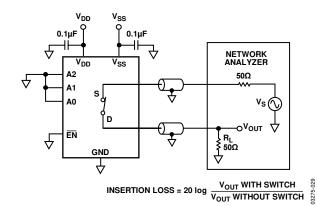


Figure 29. Bandwidth

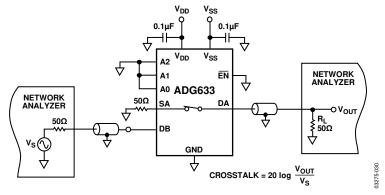
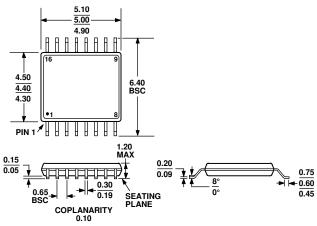



Figure 30. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 31. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

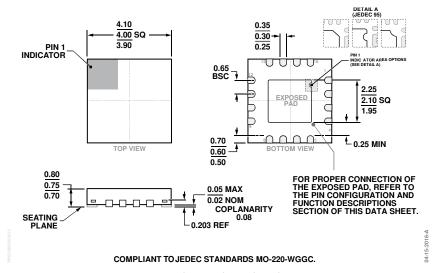


Figure 32. 16-Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-23) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG633YRU	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRU-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YCPZ	−40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG633YCPZ-REEL7	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23

¹ Z = RoHS Compliant Part.

NOTES

NOTES