: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

High Off Isolation -75 dB at 100 MHz
-3 dB Signal Bandwidth $\mathbf{3 0 0}$ MHz
+1.8 V to +5.5 V Single Supply
Low On-Resistance (15 Ω)
Fast Switching Times
$t_{\text {on }}$ Typically 9 ns
$t_{\text {off }}$ Typically 3 ns
Typical Power Consumption <0.01 $\mu \mathrm{W}$
TTL/CMOS Compatible

APPLICATIONS

Audio and Video Switching
RF Switching
Networking Applications
Battery Powered Systems
Communication Systems
Relay Replacement
Sample-and-Hold Systems

GENERAL DESCRIPTION

The ADG751 is a low voltage SPST (single pole, single throw) switch. It is constructed in a T-switch configuration, which results in excellent Off Isolation while maintaining good frequency response in the ON condition.
High off isolation and wide signal bandwidth make this part suitable for switching RF and video signals. Low power consumption and operating supply range of +1.8 V to +5.5 V make it ideal for battery powered, portable instruments.
The ADG751 is designed on a submicron process that provides low power dissipation yet gives high switching speed and low on resistance. This part is a fully bidirectional switch and can handle signals up to and including the supply rails.
The ADG751 is available in 6-lead SOT-23 and 8-lead μ SOIC packages.

REV. A

FUNCTIONAL BLOCK DIAGRAM

SWITCH SHOWN FOR A LOGIC "1" INPUT

PRODUCT HIGHLIGHTS

1. High Off Isolation -75 dB at 100 MHz .
2. -3 dB Signal Bandwidth 300 MHz .
3. Low On-Resistance (15Ω).
4. Low Power Consumption, typically $<0.01 \mu \mathrm{~W}$.
5. Tiny 6 -lead SOT-23 and 8 -lead μ SOIC packages.

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- Evaluation Board for 6 lead SOT23 Devices in the Switches/Multiplexers Portfolio
- Evaluation Board for 8 lead MSOP Devices in the Switch/ Mux Portfolio

DOCUMENTATION \square

Data Sheet

- ADG751: CMOS, Low Voltage, RF/Video, SPST Switch Data Sheet

User Guides

- UG-893: Evaluating the 8-Lead MSOP Devices in the Switch/Mux Portfolio
- UG-948: Evaluation Board for 6-Lead SOT-23 Devices in the Switches and Multiplexers Portfolio

REFERENCE MATERIALS

Product Selection Guide

- Switches and Multiplexers Product Selection Guide

Technical Articles

- CMOS Switches Offer High Performance in Low Power, Wideband Applications
- Data-acquisition system uses fault protection
- Enhanced Multiplexing for MEMS Optical Cross Connects
- Temperature monitor measures three thermal zones

DESIGN RESOURCES

- ADG751 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADG751 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

Parameter	B Grade		A Grade		Units	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			
ANALOG SWITCH Analog Signal Range On-Resistance (R_{ON}) On-Resistance Flatness ($\mathrm{R}_{\text {Flat(ON) }}$)	28 35 3	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 40 \\ & 5 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 20 \\ & 3 \end{aligned}$	V Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ;$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{gathered} \pm 3.0 \\ \pm 3.0 \\ \pm 3.0 \end{gathered}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{gathered} \pm 3.0 \\ \pm 3.0 \\ \pm 3.0 \end{gathered}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; }$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} \text {, or } 4.5 \mathrm{~V} \text {; }$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ C_{IN}, Digital Input Capacitance	0.001 2	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 0.5 \end{gathered}$	0.001 2	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.5 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ t_{ON} $\mathrm{t}_{\text {OFF }}$ Charge Injection Off Isolation -3 dB Bandwidth C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 9 \\ & 3 \\ & 1 \\ & -75 \\ & -180 \\ & 4 \\ & 4 \\ & 26 \end{aligned}$	13	$\begin{aligned} & 9 \\ & 3 \\ & 1 \\ & -65 \\ & 300 \\ & 4 \\ & 4 \\ & 15 \end{aligned}$	13	ns typ ns max ns typ ns max pC typ dB typ MHz typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ;$ $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF} ;$ Test Circuit 5 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{MHz}$ Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 7
POWER REQUIREMENTS I_{DD}	$\begin{aligned} & 0.001 \\ & 0.1 \end{aligned}$	0.5	$\begin{aligned} & 0.001 \\ & 0.1 \end{aligned}$	0.5	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or }+5.5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Guaranteed by design, not subject to production test
Specifications subject to change without notice.

Parameter	B Grade		A Grade		Units	Test Conditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On-Resistance (R_{ON})	60	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 90 \end{aligned}$	35	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 50 \end{aligned}$	V Ω typ Ω max	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA} ;$ Test Circuit 1
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{gathered} \pm 3.0 \\ \pm 3.0 \\ \pm 3.0 \end{gathered}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 3.0 \\ & \pm 3.0 \\ & \pm 3.0 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V} ;$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} \text {, or } 3 \mathrm{~V}$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ C_{IN}, Digital Input Capacitance	0.001 2	$\begin{gathered} 2.0 \\ 0.4 \\ \\ \pm 0.5 \end{gathered}$	0.001 2	2.0 0.4 ± 0.5	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Charge Injection Off Isolation -3 dB Bandwidth C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	12 4 1 -75 180 4 4 26	19	12 4 1 -65 280 4 4 15	19 6	ns typ ns max ns typ ns max pC typ dB typ MHz typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF} ;$ Test Circuit 5 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{MHz}$ Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {, Test Circuit } 7$
POWER REQUIREMENTS I_{DD}	$\begin{aligned} & 0.001 \\ & 0.1 \end{aligned}$	0.5	$\begin{aligned} & 0.001 \\ & 0.1 \end{aligned}$	0.5	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or }+3.3 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$ ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)	
V_{DD} to GND	
Analog, Digital Inputs ${ }^{2} \ldots \ldots \ldots \ldots,-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or30 mA, Whichever Occurs First	
Peak Current, S or D $\ldots \begin{gathered}\text {. } 100 \mathrm{~mA} \\ \text { (Pulsed at } 1 \mathrm{~ms}, 10 \% \text { Duty Cycle Max) }\end{gathered}$	
Continuous Current, S or D	30 mA
Operating Temperature Range	
Industrial (A, B Versions)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (T_{J} Max)	. $+150^{\circ} \mathrm{C}$
Power Dissipation	$\left(\mathrm{T}_{\mathrm{J}} \mathrm{Max}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$
μ SOIC Package	
$\theta_{\text {JA }}$ Thermal Impedance	$206^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JC }}$ Thermal Impedance	$44^{\circ} \mathrm{C} / \mathrm{W}$

SOT-23 Package

θ_{JA} Thermal Impedance . $229.6^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JC }}$ Thermal Impedance . $91.99^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase (60 sec) . $+215^{\circ} \mathrm{C}$
Infrared (15 sec) . $+220^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG751 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD

Table I. Truth Table

ADG751 IN	Switch Condition
0	ON
1	OFF

ADG751-Typical Performance Characteristics

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Single Supplies (A Grade)

Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=3 V(A$ Grade)

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=5$ V (A Grade)

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Single Supplies (B Grade)

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=3 V(B$ Grade)

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=5 \mathrm{~V}$ (B Grade)

Figure 7. On Response vs. Frequency (A Grade)

Figure 8. On Response vs. Frequency (B Grade)

Figure 9. Off Isolation vs. Frequency for Both Grades

Figure 10. Supply Current vs. Input Switching Frequency

Figure 11. Charge Injection vs. Source/Drain Voltage

ADG751

GENERAL DESCRIPTION

The ADG751 is an SPST switch constructed using switches in a T configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition.
Figure 12 shows the T-switch configuration. While the switch is in the OFF state, the shunt switch is closed and the two series switches are open. The closed shunt switch provides a signal path to ground for any of the unwanted signals that find their way through the off capacitances of the series' MOS devices. This results in improved isolation between the input and output than with an ordinary series switch. When the switch is in the ON condition, the shunt switch is open and the signal path is through the two series switches which are now closed.

Figure 12. Basic T-Switch Configuration

LAYOUT CONSIDERATIONS

Where accurate high frequency operation is important, careful consideration should be given to the printed circuit board layout and to grounding. Wire wrap boards, prototype boards and sockets are not recommended because of their high parasitic inductance and capacitance. The part should be soldered directly to a printed circuit board. A ground plane should cover all unused areas of the component side of the board to provide a low impedance path to ground. Removing the ground planes from the area around the part reduces stray capacitance.
Good decoupling is important in achieving optimum performance. V_{DD} should be decoupled with a $0.1 \mu \mathrm{~F}$ surface mount capacitor to ground mounted as close as possible to the device itself.

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Charge Injection

Test Circuit 6. Off Isolation

Test Circuit 7. Bandwidth

ADG751

OUTLINE DIMENSIONS

Figure 12. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178-AB
Figure 13. 6-Lead Small Outline Transistor Package [SOT-23]
Dimensions shown in millimeters

ADG751

ORDERING GUIDE

Model 1	Temperature Range	Brand 2	Package Description	Package Option
ADG751BRMZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SDB	8-Lead Mini Small Outline Package [MSOP]	RM-8
ADG751BRT-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SDB	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG751BRT-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SDB	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG751BRTZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SDB	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG751ARMZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SDA	8-Lead Mini Small Outline Package [MSOP]	RM-8
ADG751ARMZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SDA	8-Lead Mini Small Outline Package [MSOP]	RM-8
ADG751ART-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SDA	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG751ART-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SDA	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG751ARTZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SDA	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2}$ Brand on these packages is limited to three characters due to space constraints.

REVISION HISTORY

8/12-Rev. 0 to Rev. A
Updated Outline Dimensions
Changes to Ordering Guide 11
4/99-Revision 0-Initial Version

