

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

$2.5~\Omega$ CMOS Low Power Dual 2:1 Mux/Demux USB 1.1 Switch

ADG787

FEATURES

USB 1.1 signal switching compliant

-3 dB bandwidth, 150 MHz

Tiny 10-lead LFCSP and MSOP packages, 10-ball WLCSP package

Single-supply 1.8 V to 5.5 V operation

Low on resistance

2.5 Ω typical

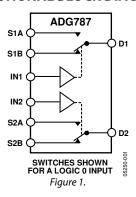
3.45 Ω maximum at 85°C

Typical power consumption: <0.1 μW

APPLICATIONS

USB 1.1 signal switching circuits
Cellular phones
PDAs
MP3 players
Battery-powered systems
Headphone switching
Audio and video signal routing
Communications systems

GENERAL DESCRIPTION


The ADG787 is a low voltage, CMOS device that contains two independently selectable single-pole, double-throw (SPDT) switches. It is designed as a general analog-to-digital switch and can also be used for routing USB 1.1 signals.

This device offers low on resistance of typically 2.5 Ω , making the part an attractive solution for applications that require low distortion through the switch.

The ADG787 comes in a 10-ball WLCSP, a tiny 10-lead LFCSP, and a tiny 10-lead MSOP. These packages make the ADG787 the ideal solution for space-constrained applications.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG787 exhibits break-before-make switching action.

FUNCTIONAL BLOCK DIAGRAM

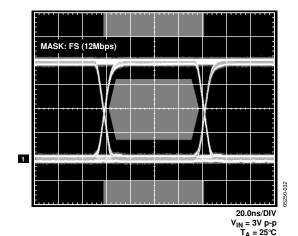


Figure 2. Eye Pattern; 12 Mbps, $V_{DD} = 4.2 \text{ V}$, PRBS 31

ADG787* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

 Evaluation Board for 10-Lead MSOP Devices in the Switches and Multiplexers Portfolio

DOCUMENTATION

Data Sheet

- ADG787: 2.5 Ω CMOS Low Power Dual 2:1 Mux/Demux USB 1.1 Switch Data Sheet

TOOLS AND SIMULATIONS

ADG787 SPICE Macro Model

REFERENCE DESIGNS \Box

CN0196

REFERENCE MATERIALS 🖳

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

DESIGN RESOURCES 🖵

- ADG787 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADG787 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

ADG787

TABLE OF CONTENTS

Features I	L
Applications1	
Functional Block Diagram1	L
General Description1	L
Specifications	;
Absolute Maximum Ratings5	;
ESD Caution5	5

Pin Configurations and Function Descriptions	.6
Truth Table	.6
Typical Performance Characteristics	.7
Test Circuits	.1
Terminology1	3
Outline Dimensions	4
Ordering Guide	5

REVISION HISTORY

5/06—Rev. 0 to Rev. A

Updated Formatting	Universal
Changes to Table 1	3
Changes to Table 3	5
Changes to Ordering Guide	15

1/05—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\rm DD}$ = 4.2 V to 5.5 V, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	B Version ¹	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	
On Resistance (R _{ON})	2.5		Ωtyp	$V_{DD} = 4.2 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
	3	3.45	Ω max	See Figure 28
On Resistance Match Between Channels (ΔR_{ON})	0.02		Ωtyp	$V_{DD} = 4.2 \text{ V}, V_S = 3.5 \text{ V}, I_S = 10 \text{ mA}$
		0.1	Ω max	
On Resistance Flatness (R _{FLAT (ON)})	0.65		Ωtyp	$V_{DD} = 4.2 \text{ V}, V_S = 0 \text{ V to } V_{DD}$
	0.8	0.95	Ω max	$I_S = 10 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = 5.5 \text{ V}$
Source Off Leakage, Is (OFF)	±0.05		nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 29}$
Channel On Leakage, ID, Is (ON)	±0.05		nA typ	$V_S = V_D = 1 \text{ V or } 4.5 \text{ V; see Figure } 30$
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	μA max	
C _{IN} , Digital Input Capacitance	2.5		pF typ	
DYNAMIC CHARACTERISTICS ²				
t_ON	13		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	19	22	ns max	$V_S = 3 V$; see Figure 31
t _{OFF}	3		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	5	6	ns max	$V_S = 3 V$; see Figure 31
Propagation Delay Skew, t _{SKEW}	0.06		ns typ	$C_L = 50 \text{ pF; } V_S = 3 \text{ V}$
		0.15	ns max	·
Break-Before-Make Time Delay (t _{BBM})	10		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
,		5	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$; see Figure 32
Charge Injection	14		pC typ	$V_D = 1 \text{ V, R}_S = 0 \Omega$, $C_L = 1 \text{ nF; see Figure 33}$
Off Isolation	-63		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 34
Channel-to-Channel Crosstalk	-110		dB typ	S1A to S2A/S1B to S2B; $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 37
	-63		dB typ	S1A to S1B/S2A to S2B; $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 36
Total Harmonic Distortion (THD + N)	0.03		%	$R_L = 32 \Omega$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, $V_S = 2 \text{ V p-p}$
Insertion Loss	-0.2		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
-3 dB Bandwidth	145		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
C _s (OFF)	16		pF typ	
C _D , C _s (ON)	40		pF typ	
POWER REQUIREMENTS			·	$V_{DD} = 5.5 \text{ V}$
I _{DD}	0.005		μA typ	Digital inputs = 0 V or 5.5 V
	1		F 7F	

 $^{^1}$ Temperature ranges: B version: -40°C to $+85^\circ\text{C}$ for the MSOP and LFCSP packages, and -25°C to $+85^\circ\text{C}$ for the WLCSP package. 2 Guaranteed by design, not production tested.

ADG787

 V_{DD} = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	B Version ¹	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range			V	
On Resistance (Ron)	4		Ωtyp	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}$
	5.75	6	Ω max	I _s = 10 mA; see Figure 28
On Resistance Match Between Channels (ΔR _{ON})	0.07		Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 1.5 \text{ V}$
	0.3	0.35	Ω max	$I_S = 10 \text{ mA}$
On Resistance Flatness (R _{FLAT (ON)})	1.6		Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}$
	2.3	2.6	Ω max	$I_S = 10 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = 3.6 \text{ V}$
Source Off Leakage, I _s (OFF)	±0.01		nA typ	$V_S = 0.6 \text{ V}/3.3 \text{ V}, V_D = 3.3 \text{ V}/0.6 \text{ V}$; see Figure 29
Channel On Leakage, ID, IS (ON)	±0.01		nA typ	$V_S = V_D = 0.6 \text{ V or } 3.3 \text{ V; see Figure } 30$
DIGITAL INPUTS				
Input High Voltage, V _{INH}		1.3	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	μA max	
C _{IN} , Digital Input Capacitance	2		pF typ	
DYNAMIC CHARACTERISTICS ²				
ton	18		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	30	35	ns max	$V_S = 1.5 \text{ V}$; see Figure 31
toff	4		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	6	7	ns max	$V_S = 1.5 \text{ V}$; see Figure 31
Propagation Delay Skew, tskew	0.04		ns typ	$C_L = 50 \text{ pF}; V_S = 1.5 \text{ V}$
		0.12	ns max	
Break-Before-Make Time Delay (t _{BBM})	15		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
		5	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V}$; see Figure 32
Charge Injection	10		pC typ	$V_D = 1.25 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 33}$
Off Isolation	-63		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 34
Channel-to-Channel Crosstalk	-110		dB typ	S1A to S2A/S1B to S2B; $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 37
	-63		dB typ	S1A to S1B/S2A to S2B; $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 35
Total Harmonic Distortion (THD + N)	0.07		%	$R_L = 32 \Omega$, $f = 20 Hz$ to $20 kHz$, $V_S = 1.5 V p-p$
Insertion Loss	-0.24		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
–3 dB Bandwidth	145		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
C _S (OFF)	16		pF typ	
C_D , C_S (ON)	40		pF typ	
POWER REQUIREMENTS				$V_{DD} = 3.6 \text{ V}$
loo	0.005		μA typ	Digital inputs = 0 V or 3.6 V
	1	1	μA max	

 $^{^1}$ Temperature range: B version: -40°C to $+85^\circ\text{C}$ for the MSOP and LFCSP packages, and -25°C to $+85^\circ\text{C}$ for the WLCSP package. 2 Guaranteed by design, not production tested.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to GND	-0.3 V to +6 V
Analog Inputs ¹ , Digital Inputs	-0.3 V to V _{DD} + 0.3 V or 30 mA (whichever occurs first)
Peak Current, S or D	
5 V Operation	300 mA
3.3 V Operation	200 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current, S or D	
5 V Operation	100 mA
3.3 V Operation	80 mA
Operating Temperature Range	
Extended Industrial (B Version)	
MSOP and LFCSP packages	-40°C to +85°C
Industrial (B version)	
WLCSP package	-25°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
WLCSP Package (4-Layer Board)	
θ_{JA} Thermal Impedance	120°C/W
LFCSP Package (4-Layer Board)	
θ_{JA} Thermal Impedance	61°C/W
MSOP Package (4-Layer Board)	
θ_{JA} Thermal Impedance	142°C/W
θ_{JC} Thermal Impedance	43.7°C/W
Lead-Free Temperature Soldering	
IR Reflow, Peak Temperature	
Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	10 sec to 40 sec

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Overvoltages at the IN, S, or D pins are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

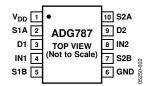


Figure 3. 10-Lead LFCSP and 10-lead MSOP Pin Configuration

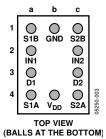


Figure 4. 10-Ball WLCSP Pin Configuration

Table 4. 10-Lead LFCSP/MSOP Pin Function Descriptions

Table 5. 10-Lead WLCSP Pin Function Descriptions

					<u> </u>
Pin			Ball		
No.	Mnemonic	Description	Location	Mnemonic	Description
1	V_{DD}	Most Positive Power Supply Potential.	1a	S1B	Source Terminal. May be an input or
2	S1A	Source Terminal. May be an input or			output.
		output.	1b	GND	Ground (0 V) Reference.
3	D1	Drain Terminal. May be an input or	1c	S2B	Source Terminal. May be an input or
		output.			output.
4	IN1	Logic Control Input.	2a	IN1	Source Terminal. May be an input or
5	S1B	Source Terminal. May be an input or			output.
		output.	2c	IN2	Logic Control Input.
6	GND	Ground (0 V) Reference.	3a	D1	Drain Terminal. May be an input or
7	S2B	Source Terminal. May be an input or			output.
		output.	3c	D2	Drain Terminal. May be an input or
8	IN2	Logic Control Input.			output.
9	D2	Drain Terminal. May be an input or	4a	S1A	Logic Control Input.
		output.	4b	V_{DD}	Most Positive Power Supply Potential.
10	S2A	Source Terminal. May be an input or	4c	S2A	Source Terminal. May be an input or
		output.			output.

TRUTH TABLE

Table 6.

Logic (IN1/IN2)	Switch 1A/2A	Switch 1B/2B
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. V_D (V_S), $V_{DD} = 4.2 \text{ V to } 5.5 \text{ V}$

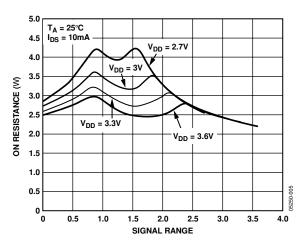


Figure 6. On Resistance vs. V_D (V_S), $V_{DD} = 2.7 V$ to 3.6 V

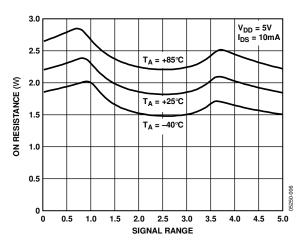


Figure 7. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 5 V$

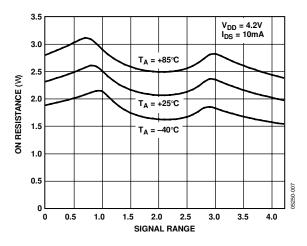


Figure 8. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 4.2 \text{ V}$

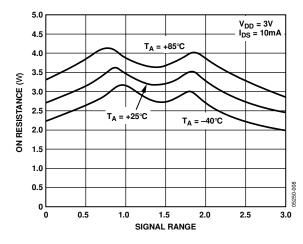


Figure 9. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 3 V$

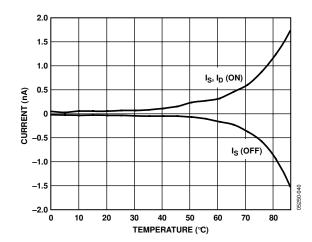


Figure 10. Leakage Current vs. Temperature, $V_{DD} = 5.5 \text{ V}$

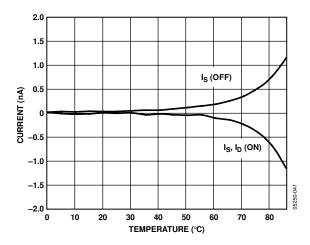


Figure 11. Leakage Current vs. Temperature, $V_{DD} = 3.3 \text{ V}$

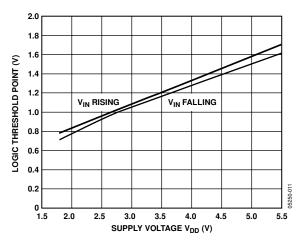


Figure 12. Threshold Voltage vs. Supply

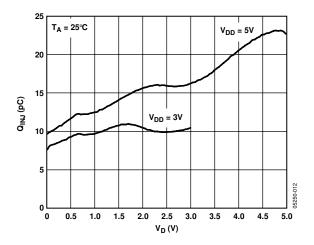


Figure 13. Charge Injection vs. Source Voltage

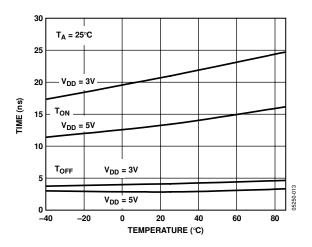


Figure 14. t_{ON}/t_{OFF} Time vs. Temperature

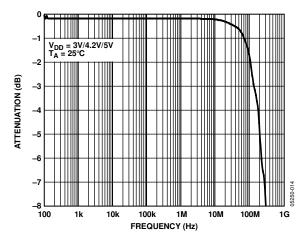


Figure 15. Bandwidth

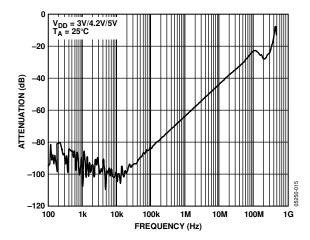


Figure 16. Off Isolation vs. Frequency

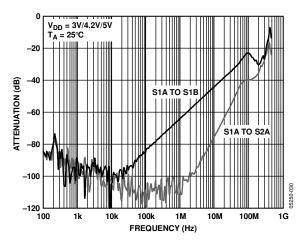


Figure 17. Crosstalk vs. Frequency

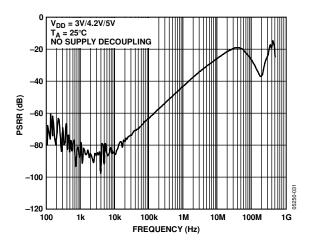


Figure 18. AC Power Supply Rejection Ratio (PSRR)

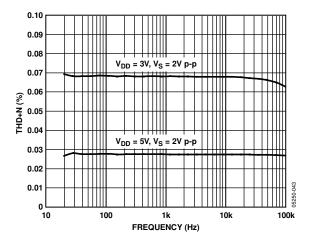


Figure 19. Total Harmonic Distortion + Noise

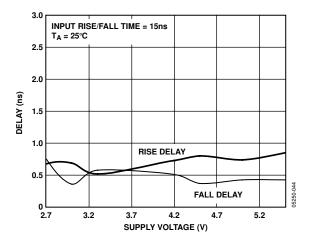


Figure 20. Rise/Fall Time Delay vs. Supply Voltage

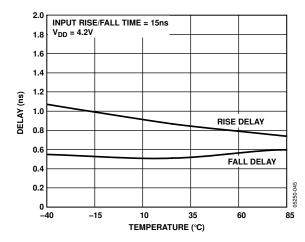


Figure 21. Rise/Fall Time Delay vs. Temperature

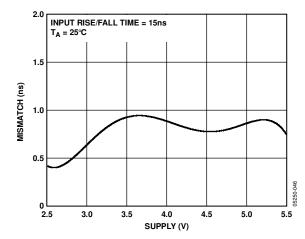


Figure 22. Rise-Time-to-Fall-Time Mismatch vs. Supply Voltage

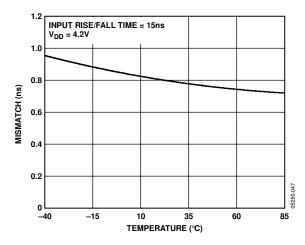


Figure 23. Rise-Time-to-Fall-Time Mismatch vs. Temperature

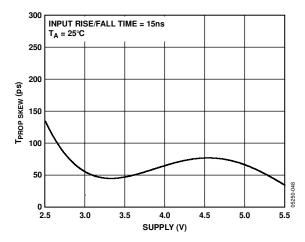


Figure 24. Propagation Delay Skew (tskew) vs. Supply Voltage

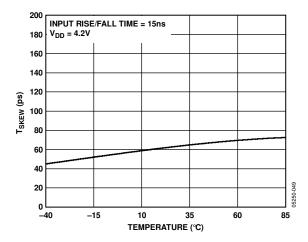


Figure 25. Propagation Delay Skew (t_{SKEW}) vs. Temperature

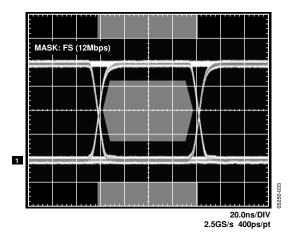


Figure 26. Eye Pattern, 12 Mbps, $V_{DD} = 4.2 \text{ V}$, $T_A = 85 ^{\circ}\text{C}$, PRBS 31

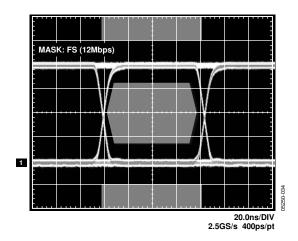


Figure 27. Eye Pattern, 12 Mbps, $V_{DD} = 4.2 \text{ V}$, $T_A = -40 ^{\circ}\text{C}$, PRBS 31

TEST CIRCUITS

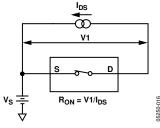


Figure 28. On Resistance

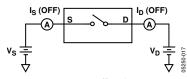


Figure 29. Off Leakage

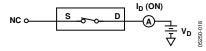


Figure 30. On Leakage

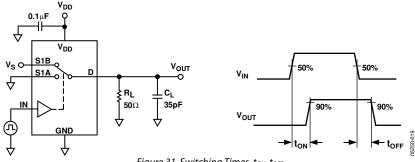


Figure 31. Switching Times, ton, toff

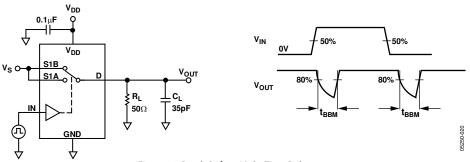
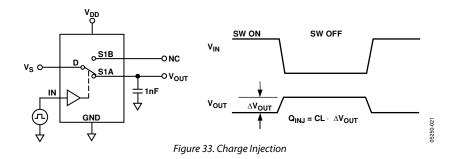



Figure 32. Break-Before-Make Time Delay, t_{BBM}

Rev. A | Page 11 of 16

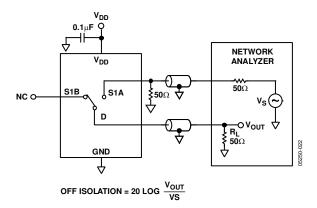


Figure 34. Off Isolation

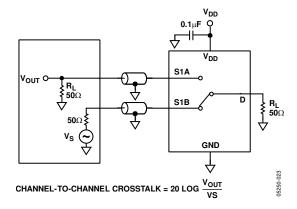
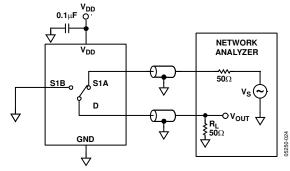



Figure 35. Channel-to-Channel Crosstalk (S1A to S1B)

 $\label{eq:vout_with_switch} \text{INSERTION LOSS} = 20 \ \text{LOG} \ \frac{\text{V}_{\text{OUT}} \ \text{WITH SWITCH}}{\text{V}_{\text{OUT}} \ \text{WITHOUT SWITCH}}$

Figure 36. Bandwidth

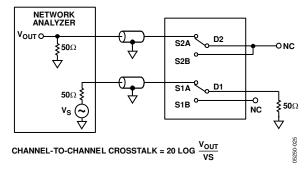


Figure 37. Channel-to-Channel Crosstalk (S1A to S2A)

TERMINOLOGY

I_{DD}

Positive supply current.

$V_D(V_S)$

Analog voltage on Terminal D and Terminal S.

Ron

Ohmic resistance between D and S.

RELATION

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

ΔR_{ON}

On resistance match between any two channels.

Is (OFF)

Source leakage current with the switch off.

In (OFF)

Drain leakage current with the switch off.

I_D , I_S (ON)

Channel leakage current with the switch on.

V_{INI}

Maximum input voltage for Logic 0.

V_{INH}

Minimum input voltage for Logic 1.

$I_{\rm INL}\left(I_{\rm INH}\right)$

Input current of the digital input.

Cs (OFF)

Off switch source capacitance. Measured with reference to ground.

C_D (OFF)

Off switch drain capacitance. Measured with reference to ground.

C_D , C_S (ON)

On switch capacitance. Measured with reference to ground.

C_{IN}

Digital input capacitance.

ton

Delay time between the 50% and the 90% points of the digital input and switch on condition.

toff

Delay time between the 50% and the 90% points of the digital input and switch off condition.

t_{BBM}

On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitudes plus noise of a signal, to the fundamental.

Tskew

The measure of the variation in propagation delay between each channel.

Rise Time Delay

The rise time of a signal is a measure of the time for the signal to rise from 10% of the ON level to 90% of the ON level. Rise time delay is the difference between the rise time, measured at the input, and the rise time, measured at the output.

Fall Time Delay

The fall time of a signal is a measure of the time for the signal to fall from 90% of the ON level to 10% of the ON level. Fall time delay is the difference between the fall time, measured at the input, and the fall time, measured at the output.

Rise-Time-to-Fall-Time Mismatch

This is the absolute value between the variation in the fall time and the rise time, measured at the output.

OUTLINE DIMENSIONS

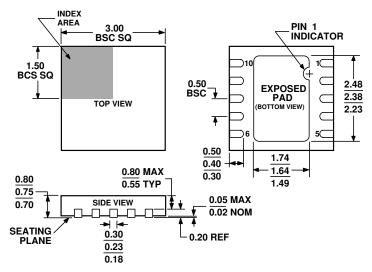
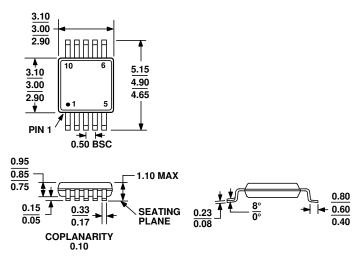



Figure 38. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD] 3 mm × 3 mm Body, Very, Very Thin, Dual Lead (CP-10-9) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-187-BA

Figure 39. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

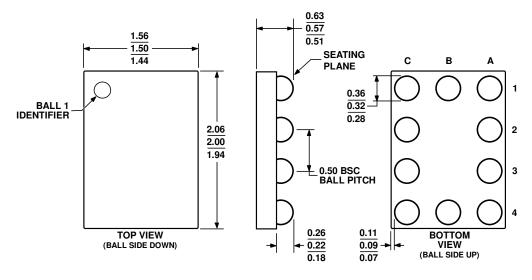


Figure 40. 10-Ball Wafer Level Chip Scale Package [WLCSP] (CB-10) Dimensions shown in millimeters

ORDERING GUIDE

J.1.5 _ 1.1.1.1.5 1.1.5				
Model	Temperature Range	Package Description	Package Option	Branding ¹
ADG787BRMZ ²	-40°C to +85°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	SM1
ADG787BRMZ-500RL7 ²	-40°C to +85°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	SM1
ADG787BRMZ-REEL ²	-40°C to +85°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	SM1
ADG787BCBZ-500RL7 ²	−25°C to +85°C	10-Ball Wafer Level Chip Scale Package (WLCSP)	CB-10	S04
ADG787BCBZ-REEL ²	−25°C to +85°C	10-Ball Wafer Level Chip Scale Package (WLCSP)	CB-10	S04
ADG787BCPZ-500RL7 ²	-40°C to +85°C	10-Lead Lead Frame Chip Scale Package (LFCSP_WD)	CP-10-9	SM1
ADG787BCPZ-REEL ²	-40°C to +85°C	10-Lead Lead Frame Chip Scale Package (LFCSP_WD)	CP-10-9	SM1

 $^{^{\}rm 1}$ Due to space constraints, branding on this package is limited to three characters. $^{\rm 2}$ Z = Pb-free part.

ADG787					
--------	--	--	--	--	--

NOTES

