

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

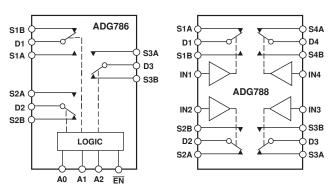
2.5 Ω , 1.8 V to 5.5 V, \pm 2.5 V Triple/Quad SPDT Switches in Chip Scale Packages

ADG786/ADG788

FEATURES

1.8 V to 5.5 V Single Supply ±2.5 V Dual Supply 2.5 Ω On Resistance 0.5 Ω On Resistance Flatness 100 pA Leakage Currents 19 ns Switching Times Triple SPDT: ADG786 Quad SPDT: ADG788

20-Lead 4 mm \times 4 mm Chip Scale Packages


Low Power Consumption TTL/CMOS-Compatible Inputs

For Functionally-Equivalent Devices in 16-Lead TSSOP

Packages, See ADG733/ADG734
Qualified for automotive applications

APPLICATIONS Data Acquisition Systems Communication Systems Relay Replacement Audio and Video Switching Battery-Powered Systems

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

GENERAL DESCRIPTION

The ADG786 and ADG788 are low voltage, CMOS devices comprising three independently selectable SPDT (single pole, double throw) switches and four independently selectable SPDT switches respectively.

Low power consumption and operating supply range of 1.8 V to 5.5 V and dual ± 2.5 V make the ADG786 and ADG788 ideal for battery powered, portable instruments and many other applications. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. An $\overline{\rm EN}$ input on the ADG786 is used to enable or disable the device. When disabled, all channels are switched OFF.

These multiplexers are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, high signal bandwidths and low leakage currents. On resistance is in the region of a few ohms, is closely matched between switches and very flat over the full signal range. These parts can operate equally well in either direction and have an input signal range which extends to the supplies.

The ADG786 and ADG788 are available in small 20-lead chip scale packages.

PRODUCT HIGHLIGHTS

- 1. Small 20-Lead 4 mm × 4 mm Chip Scale Packages (CSP).
- 2. Single/Dual Supply Operation. The ADG786 and ADG788 are fully specified and guaranteed with 3 V \pm 10% and 5 V \pm 10% single supply rails, and \pm 2.5 V \pm 10% dual supply rails.
- 3. Low On Resistance (2.5 Ω typical).
- 4. Low Power Consumption (<0.01 μW).
- 5. Guaranteed Break-Before-Make Switching Action.

$\textbf{ADG786/ADG788-SPECIFICATIONS}^{1} \text{ (V}_{DD} = 5 \text{ V} \pm 10\%, \text{ V}_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ unless otherwise noted.)}$

	B V	ersion		
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
On Resistance (R _{ON})	2.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
	4.5	5.0	Ω max	Test Circuit 1
On-Resistance Match between		0.1	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
Channels (ΔR_{ON})		0.4	Ω max	
On-Resistance Flatness $(R_{FLAT(ON)})$	0.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
		1.2	Ω max	
LEAKAGE CURRENTS				$V_{\rm DD} = 5.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
	±0.1	±0.3	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_D = V_S = 1 \text{ V, or } 4.5 \text{ V;}$
	±0.1	±0.5	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current		0.0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INI}$ or V_{INH}
IVE IVII		±0.1	μA max	IN INE INI
C _{IN} , Digital Input Capacitance	4		pF typ	
DYNAMIC CHARACTERISTICS ²				
t_{ON}	19		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		34	ns max	$V_{S1A} = 3 \text{ V}, V_{S1B} = 0 \text{ V}, \text{ Test Circuit 4}$
$t_{ m OFF}$	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		12	ns max	$V_S = 3 \text{ V}$, Test Circuit 4
$ADG786 t_{ON}(\overline{EN})$	20		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		40	ns max	$V_S = 3 \text{ V}, \text{ Test Circuit 5}$
$t_{OFF}(\overline{EN})$	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		12	ns max	$V_S = 3 \text{ V}$, Test Circuit 5
Break-Before-Make Time Delay, t _D	13		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		1	ns min	$V_S = 3 \text{ V}, \text{ Test Circuit 6}$
Charge Injection	±3		pC typ	$V_S = 2 V, R_S = 0 \Omega, C_L = 1 nF;$
0.007				Test Circuit 7
Off Isolation	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
Channel-to-Channel Crosstalk	-80		dB typ	Test Circuit 8 $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
Channel-to-Channel Clossian	-60		ив тур	$R_L = 50 \Omega$, $C_L = 5 \text{ pr}$, $I = 1 \text{ MHz}$, Test Circuit 9
-3 dB Bandwidth	160		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10
C _S (OFF)	11		pF typ	f = 1 MHz
$C_D, C_S(ON)$	34		pF typ	f = 1 MHz
POWER REQUIREMENTS			- **	$V_{\rm DD} = 5.5 \text{ V}$
I _{DD}	0.001		μA typ	Digital Inputs = 0 V or 5.5 V
-עע	0.001	1.0	μA max	0m inputs

NOTES

¹Temperature range is as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

 $\begin{tabular}{ll} \textbf{SPECIFICATIONS}^1 & (V_{DD} = 3 \ V \pm 10\%, \ V_{SS} = 0 \ V, \ GND = 0 \ V, \ unless \ otherwise \ noted.) \end{tabular}$

	B Version					
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments		
ANALOG SWITCH						
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V			
On Resistance (R _{ON})	6		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$		
On Desistant Metals between	11	12	Ωmax	Test Circuit 1		
On-Resistance Match between		0.1	Ωtyp	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$		
Channels (ΔR_{ON}) On-Resistance Flatness ($R_{FLAT(ON)}$)		0.5 3	Ω max Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$		
			32 typ			
LEAKAGE CURRENTS	1001			$V_{DD} = 3.3 \text{ V}$		
Source OFF Leakage I _S (OFF)	±0.01	±0.2	nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$		
Channel ON Leakage L. L. (ON)	±0.1 ±0.01	±0.3	nA max	Test Circuit 2		
Channel ON Leakage I _D , I _S (ON)	±0.01 ±0.1	±0.5	nA typ nA max	V _S = V _D = 1 V or 3 V; Test Circuit 3		
	±0.1	10.5	IIA IIIax	1 est Cheun 5		
DIGITAL INPUTS		2.0	***			
Input High Voltage, V		2.0	V min			
Input Low Voltage, V _{INL} Input Current		0.8	V max			
I_{INL} or I_{INH}	0.005		μA typ	$V_{IN} = V_{INI}$ or V_{INH}		
INC OF INH	0.003	±0.1	μA max	VIN - VINL OI VINH		
C _{IN} , Digital Input Capacitance	4	_0.1	pF typ			
DYNAMIC CHARACTERISTICS ²			1 71			
t _{on}	28		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$		
		55	ns max	$V_{S1A} = 2 \text{ V}, V_{S1B} = 0 \text{ V}, \text{ Test Circuit 4}$		
$t_{ m OFF}$	9		ns typ	$R_L = 300 \ \Omega, C_L = 35 \ pF;$		
<u></u>		16	ns max	$V_S = 2 V$, Test Circuit 4		
$ADG786 t_{ON}(\overline{EN})$	29		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$		
		60	ns max	$V_S = 2 \text{ V}$, Test Circuit 5		
$t_{\mathrm{OFF}}(\overline{\mathrm{EN}})$	9	1.6	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$		
Doorly Defense Make Time Delense 4	22	16	ns max	$V_S = 2 \text{ V}$, Test Circuit 5		
Break-Before-Make Time Delay, t _D	22	1	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;		
Charge Injection	±3	1	ns min pC typ	$V_S = 2 \text{ V}$, Test Circuit 6 $V_S = 1 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$;		
Charge injection	13		pc typ	$V_S = 1$ V, $K_S = 0$ 22, $C_L = 1$ Hr, Test Circuit 7		
Off Isolation	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;		
				Test Circuit 8		
Channel-to-Channel Crosstalk	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$		
				Test Circuit 9		
-3 dB Bandwidth	160		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10		
C_{s} (OFF)	11		pF typ	f = 1 MHz		
$C_D, C_S (ON)$	34		pF typ	f = 1 MHz		
POWER REQUIREMENTS				$V_{DD} = 3.3 \text{ V}$		
I_{DD}	0.001		μA typ	Digital Inputs = 0 V or 3.3 V		
		1.0	μA max			

REV.C -3-

¹Temperature ranges are as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG786/ADG788-SPECIFICATIONS¹

DUAL SUPPLY (V_{DD} = +2.5 V \pm 10%, V_{SS} = -2.5 V \pm 10%, GND = 0 V, unless otherwise noted.)

	B V	ersion		
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	
On Resistance (R _{ON})	2.5	55 DD	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA;
CON)	4.5	5.0	Ωmax	Test Circuit 1
On-Resistance Match between		0.1	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10 \text{ mA}$
Channels (ΔR_{ON})		0.4	Ωmax	- 3 - 33 - 4 - 4 - 20 - 4
On-Resistance Flatness $(R_{FLAT(ON)})$	0.5		Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10 \text{ mA}$
(PLAT(ON))		1.2	Ω max	· 3 · 33 · · · DD · -D3 · · · · · · · · · · · · ·
LEAKAGE CURRENTS				$V_{DD} = +2.75 \text{ V}, V_{SS} = -2.75 \text{ V}$
Source OFF Leakage I_S (OFF)	±0.01		nA typ	$V_S = +2.25 \text{ V/}-1.25 \text{ V}, V_D = -1.25 \text{ V/}+2.25 \text{ V}$
Source Off Leakage 15 (Off)	±0.1	±0.3	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.01	20.3	nA typ	$V_S = V_D = +2.25 \text{ V/}-1.25 \text{ V}$, Test Circuit 3
Channel Oli Beakage 15, 15 (Oliv)	±0.1	±0.5	nA max	\(\frac{1}{2} \) \(\fra
DIGITAL INPUTS		_0.5	III III III III III III III III III II	
		1.7	V min	
Input High Voltage, V _{INH}		0.7	V mini	
Input Low Voltage, V _{INL} Input Current		0.7	v III ax	
•	0.005		11 A 4xxm	V V on V
I_{INL} or I_{INH}	0.003	±0.1	μA typ	$V_{\rm IN} = V_{\rm INL}$ or $V_{\rm INH}$
C _{IN} , Digital Input Capacitance	4	±0.1	μA max pF typ	
DYNAMIC CHARACTERISTICS ²	-		r7r	
	21		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
t_{ON}	21	35	ns typ	$V_{S1A} = 1.5 \text{ V}, V_{S1B} = 0 \text{ V}, \text{ Test Circuit 4}$
t	10	33		$R_L = 300 \Omega$, $C_L = 35 pF$;
$t_{ m OFF}$	10	16	ns typ ns max	$V_S = 1.5 \text{ V}$, Test Circuit 4
ADG786 $t_{ON}(\overline{EN})$	21	10		$R_L = 300 \Omega$, $C_L = 35 pF$;
$ADO 700 t_{ON}(EN)$	21	40	ns typ ns max	$V_S = 1.5 \text{ V}$, Test Circuit 5
$t_{\mathrm{OFF}}(\overline{\mathrm{EN}})$	10	40	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
tOFF(LIV)	10	16	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 5
Break-Before-Make Time Delay, t _D	13	10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
Break-Belore-Wake Time Delay, to	13	1	ns min	$V_S = 1.5 \text{ V}$, Test Circuit 6
Charge Injection	±5	1	pC typ	$V_S = 0$ V, $R_S = 0$ Ω , $C_L = 1$ nF;
Charge injection	±3		рс тур	Test Circuit 7
Off Isolation	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
On Isolation	00		ав тур	Test Circuit 8
Channel-to-Channel Crosstalk	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
Chamber to Chamber Crosstant			ub typ	Test Circuit 9
-3 dB Bandwidth	160		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10
C_{S} (OFF)	11		pF typ	f = 1 MHz
$C_D, C_S (ON)$	34		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{\rm DD} = +2.75 \text{ V}$
I _{DD}	0.001		μA typ	Digital Inputs = 0 V or 2.75 V
<i>DD</i>		1.0	μA max	r
${ m I}_{ m SS}$	0.001		μA typ	$V_{SS} = -2.75 \text{ V}$
55	1	1.0	μA max	Digital Inputs = 0 V or 2.75 V

NOTES

-4- REV. C

¹Temperature range is as follows: B Version: -40°C to +85°C.

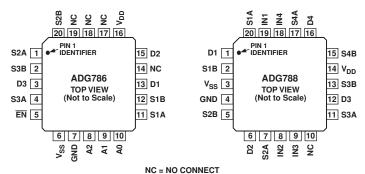
²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

Storage Temperature Range	-	-6:	5°(C	to) -	+150°C
Junction Temperature							150°C
20 Lead CSP, θ_{JA} Thermal Impedance						3	32°C/W
Lead Temperature, Soldering (10 sec)							300°C
IR Reflow, Peak Temperature							220°C

NOTES

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.


²Overvoltages at A, EN, IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG786/ADG788 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS

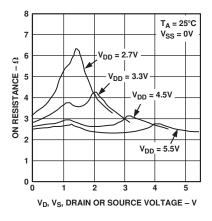
EXPOSED PAD TIED TO SUBSTRATE, V_{SS}

REV.C –5–

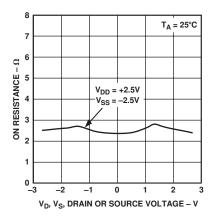
Table I. ADG786 Truth Table

A2	A1	A0	EN	ON Switch
X	X	X	1	None
0	0	0	0	D1-S1A, D2-S2A, D3-S3A
0	0	1	0	D1-S1B, D2-S2A, D3-S3A
0	1	0	0	D1-S1A, D2-S2B, D3-S3A
0	1	1	0	D1-S1B, D2-S2B, D3-S3A
1	0	0	0	D1-S1A, D2-S2A, D3-S3B
1	0	1	0	D1-S1B, D2-S2A, D3-S3B
1	1	0	0	D1-S1A, D2-S2B, D3-S3B
1	1	1	0	D1-S1B, D2-S2B, D3-S3B

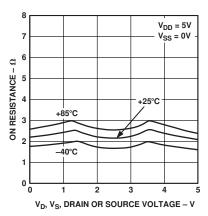
Table II. ADG788 Truth Table

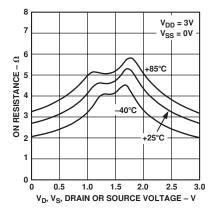

Logic	Switch A	Switch B			
0	OFF	ON			
1	ON	OFF			

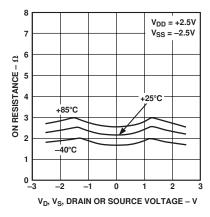
TERMINOLOGY

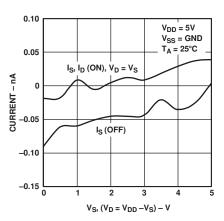

V_{DD}	Most Positive Power Supply Potential
V_{SS}	Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground close to the device.
I_{DD}	Positive Supply Current
I_{SS}	Negative Supply Current
GND	Ground (0 V) Reference
S	Source Terminal. May be an input or output
D	Drain Terminal. May be an input or output
IN	Logic Control Input
$V_D(V_S)$	Analog Voltage on Terminals D, S
R_{ON}	Ohmic Resistance between D and S
ΔR_{ON}	On Resistance Match between Any Two Channels, i.e., R_{ON} max – R_{ON} min.
$R_{FLAT(\mathrm{ON})}$	Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
I_{S} (OFF)	Source Leakage Current with the Switch "OFF"
$I_D, I_S(ON)$	Channel Leakage Current with the Switch "ON"
V_{INL}	Maximum Input Voltage for Logic "0"
V_{INH}	Minimum Input Voltage for Logic "1"
$I_{INL}(I_{INH})$	Input Current of the Digital Input
C_{S} (OFF)	"OFF" Switch Source Capacitance. Measured with reference to ground.
$C_D, C_S(ON)$	"ON" Switch Capacitance. Measured with reference to ground.
C_{IN}	Digital Input Capacitance
t_{ON}	Delay time measured between the 50% and 90% points of the digital inputs and the switch "ON" condition.
t_{OFF}	Delay time measured between the 50% and 90% points of the digital input and the switch "OFF" condition.
$t_{ON}(\overline{EN})$	Delay time between the 50% and 90% points of the $\overline{\rm EN}$ digital input and the switch "ON" condition.
$t_{OFF}(\overline{EN})$	Delay time between the 50% and 90% points of the $\overline{\text{EN}}$ digital input and the switch "OFF" condition.
t_{OPEN}	"OFF" time measured between the 80% points of both switches when switching from one address state to another
Charge	A measure of the glitch impulse transferred Injection from the digital input to the analog output during switching.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
On Response	The Frequency Response of the "ON" Switch
Insertion Loss	The Loss Due to the ON Resistance of the Switch.

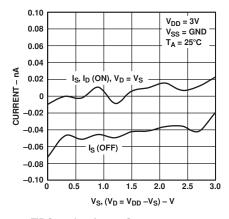
-6- REV. C

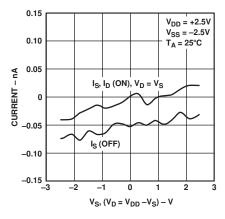

Typical Performance Characteristics-ADG786/ADG788

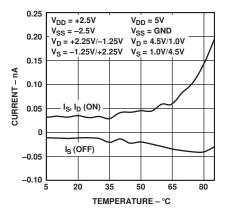

TPC 1. On Resistance as a Function of $V_D(V_S)$ for Single Supply


TPC 2. On Resistance as a Function of $V_D(V_S)$ for Dual Supply

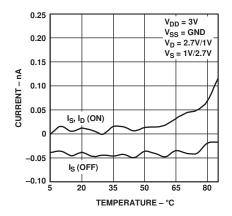

TPC 3. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Single Supply


TPC 4. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Single Supply

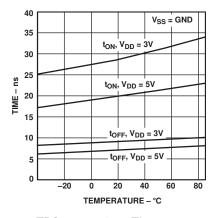

TPC 5. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Dual Supply


TPC 6. Leakage Currents as a Function of $V_D(V_S)$

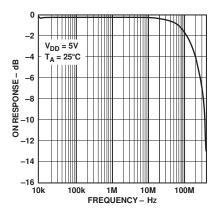
TPC 7. Leakage Currents as a Function of $V_D(V_S)$

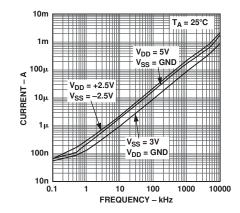


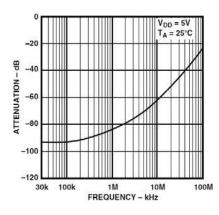
TPC 8. Leakage Currents as a Function of $V_D(V_S)$

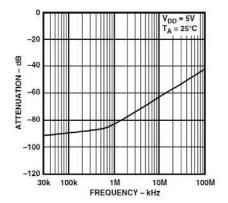


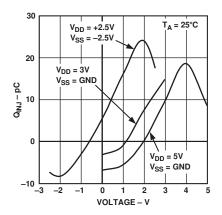
TPC 9. Leakage Currents as a Function of Temperature


REV.C -7-

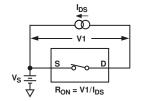

TPC 10. Leakage Currents as a Function of Temperature

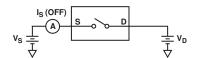

TPC 11. t_{ON}/t_{OFF} Times vs. Temperature


TPC 12. On Response vs. Frequency

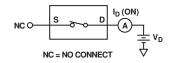

TPC 13. Input Current, I_{DD} vs. Switching Frequency

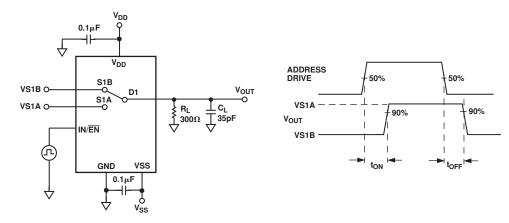
TPC 14. Off Isolation vs. Frequency

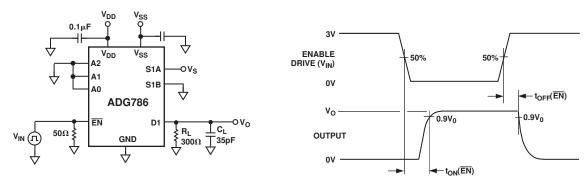

TPC 15. Crosstalk vs. Frequency

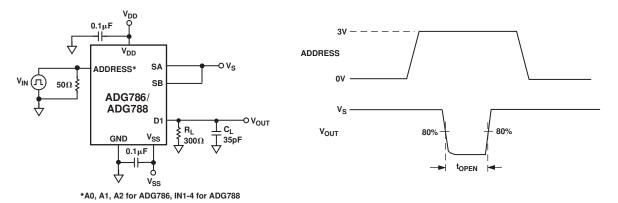

TPC 16. Charge Injection vs. Source Voltage

-8- REV. C

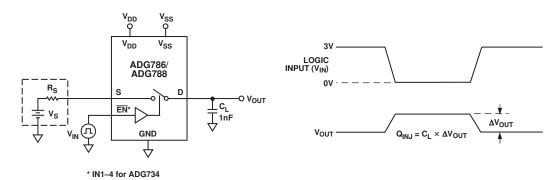

Test Circuits


Test Circuit 1. On Resistance

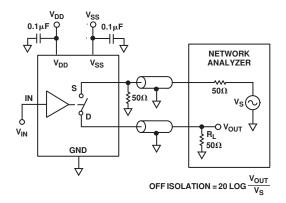

Test Circuit 2. I_S (OFF)


Test Circuit 3. I_D (ON)

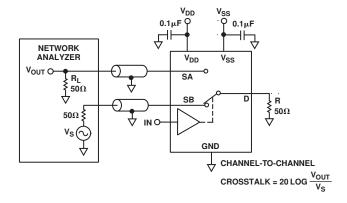
Test Circuit 4. Switching Times, t_{ON}, t_{OFF}

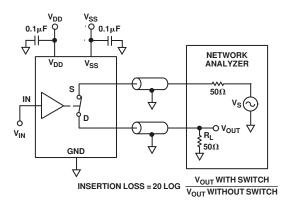


Test Circuit 5. Enable Delay, t_{ON} (\overline{EN}), t_{OFF} (\overline{EN})



Test Circuit 6. Break-Before-Make Delay, t_{OPEN}


REV.C –9–


Test Circuit 7. Charge Injection

Test Circuit 8. OFF Isolation

Test Circuit 9. Channel-to-Channel Crosstalk

Test Circuit 10. Bandwidth

Power Supply Sequencing

When using CMOS devices, care must be taken to ensure correct power supply sequencing. Incorrect sequencing can result in the device being subjected to stresses beyond those maximum ratings listed in the data sheet. Digital and analog inputs should be applied to the device after supplies and ground. In dual supply applications, if digital and analog inputs may be applied prior to $V_{\rm DD}$ and $V_{\rm SS}$ supplies, the addition of a Schottky diode connected between $V_{\rm SS}$ and GND will ensure that the device powers on correctly. For single supply applications, $V_{\rm SS}$ should be tied to GND as close to the device as possible.

-10- REV.C

OUTLINE DIMENSIONS

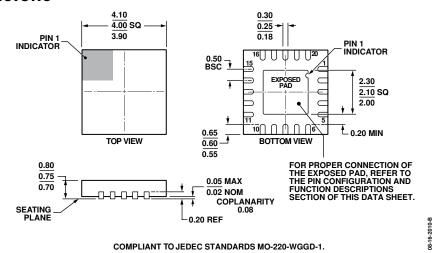


Figure 1. 20-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-20-6) Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1,2}	Temperature Range	Package Description	Package Option
ADG786BCPZ	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-6
ADG786BCPZ-REEL7	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-6
ADG786WBCPZ-REEL7	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-6
ADG788BCPZ	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-6
ADG788BCPZ-REEL	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-6
ADG788BCPZ-REEL7	-40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-6
EVAL-ADG788EBZ		Evaluation Board	

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The ADG786W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

REVISION HISTORY

VEAISION LISTON !		
9/15—Rev. B to Rev. C	8/12—Rev. 0 to Rev. A	
Change to Functional Block Diagrams1	Updated Outline Dimensions	1
Updated Outline Dimensions11	Changes to Ordering Guide	1
Changes to Ordering Guide11	Added Automotive Products Section	1
10/13—Rev. A to Rev. B	7/01—Revision 0: Initial Version	
Changed Off Isolation from -72 dB to -80 dB and Channel-to-		
Channel Crosstalk from -67 dB to -80 dB (Throughout)2		
Changes to TPC 14 and TPC 158		

² W = Qualified for Automotive Applications.