: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

Optimized for very fast response at all input currents Overall bandwidth of $>4 \mathrm{MHz}$ for inputs $>1 \mu \mathrm{~A}$
Bandwidth: $\mathbf{2 5}$ kHz at input of 1 nA and 350 kHz at 10 nA
10 decades of input range: 1 pA to 10 mA
Law conformance: $\pm \mathbf{0 . 2 5} \mathbf{~ d B}$ from $\mathbf{1 0 0} \mathrm{pA}$ to $\mathbf{1 0 0 ~} \boldsymbol{\mu A}$
Log ratio or fixed-intercept operation
Precision voltage references and reference current
Adaptive photodiode (PD) bias for low dark current
Programmable log slope and intercept
Default log slope of $10 \mathrm{mV} / \mathrm{dB}$ at VLOG pin
Single- or dual-supply operation

APPLICATIONS

High accuracy optical power measurement
Wide range baseband log compression
Versatile detector for high speed APC loops

GENERAL DESCRIPTION

The ADL5304 is a high speed logarithmic converter with fast response and low noise over a $200 \mathrm{~dB}(1 \mathrm{pA}$ to 10 mA$)$ measurement range. The ADL5304 provides a nominal logarithmic slope of $10 \mathrm{mV} / \mathrm{dB}$ ($200 \mathrm{mV} /$ decade); other values are easily configured. Logarithmic intercept can be programmed over a wide range with the internal 100 nA current source or externally for log ratio applications. The default intercept value of 3.162 fA places the midpoint of the measurement range of 100 nA at $\mathrm{V}_{\text {LOG }}=1.5 \mathrm{~V}$.

A single positive supply of 5 V is all that is required for operation over a specified 1 pA to 3 mA input range. Dual-supply operation extends the specified input current range to 10 mA .
The ADL5304 accepts two current inputs to the logarithmic argument. The numerator input, $\mathrm{I}_{\mathrm{NUM}}$, flows in the collector of an NPN transistor, connected in a feedback path around a low offset JFET amplifier. The denominator current, $\mathrm{I}_{\mathrm{DEN}}$, is treated in the same way, which allows for log ratio operation. The input summing nodes (INUM and IDEN) operate at a constant default voltage of 1.5 V. The VSM1 to VSM4 pins flank the INUM and IDEN inputs to provide a guard voltage to minimize leakage currents.
Adaptive photodiode biasing is provided for optical measurements. A monitor current 1.1 times $\mathrm{I}_{\mathrm{NUM}}$ is output at the IMON pin, and an external resistor, $\mathrm{R}_{\mathrm{MNTR}}$, at 10 times the photodiode series resistance (R_{s}) applies a voltage across the photodiode that 1 st order keeps the internal PD junction at 0 V to minimize dark current.

The VLOG output is buffered and can be rescaled through internal gain setting resistors. The internal ILog varies from $-400 \mu \mathrm{~A}$ to $+400 \mu \mathrm{~A}$ as $\mathrm{I}_{\mathrm{NUM}}$ changes over 10 decades from 1 pA to 10 mA . This corresponds to 0.5 V to 2.5 V at the VLOG pin in the default configuration shown in Figure 1.

Accurate 1.5 V (Pin 1P5V) and 2.0 V (Pin 2VLT) reference outputs allow precise repositioning of the intercept using external resistors.
The ADL5304 is available in a 32 -lead, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ LFCSP and specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Figure 1.

Rev. A
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

\section*{COMPARABLE PARTS

View a parametric search of comparable parts.
EVALUATION KITS

- ADL5304 Evaluation Board

DOCUMENTATION

Data Sheet

- ADL5304: High Speed, 200 dB Range, Logarithmic Converter Data Sheet

User Guides

- UG-339: ADL5304 Evaluation Board User Guide

DESIGN RESOURCES

- ADL5304 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS
View all ADL5304 EngineerZone Discussions.
SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features1
Applications 1
General Description 1
Simplified Block Diagram 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Test Circuits 13
REVISION HISTORY
3/16—Rev. 0 to Rev. A
Changes to Specified Current Range Parameter, Table 1 3
Changes to Figure 2 and Table 3 6
Changes to Figure 58 27
Updated Outline Dimensions 29
Changes to Ordering Guide 29
Terminology 16
Theory of Operation 17
Basic Concepts 17
Optical Measurements 17
Circuit Description 18
Applications Information 25
Using the ADL5304 25
Using a Negative Supply 26
Evaluation Board Schematic and Silkscreens 27
Outline Dimensions 29
Ordering Guide 29

9/11-Revision 0: Initial Version

SPECIFICATIONS

$V_{\text {POS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {NEG }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; IDEN $=$ IREF; VSM1 to VSM4, 1P5V, DCBI, and INPS tied together; SCL1 = VLOG; SCL2 = INMS; SCL3 $=$ open; scale $=200 \mathrm{mV} / \mathrm{dec}$; VLOG output load $\mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega$, unless otherwise noted. Upper case indicates a pin name (for example, VLOG) and subscripted indicates signal name (for example, $\mathrm{V}_{\text {LOG }}$).

Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
INPUT INTERFACES Specified Current Range Temperature Drift (INUM and IDEN) Input Guard Offset Voltage	INUM, IDEN, VSMx pins Flows toward each input pin (INUM and IDEN), $\begin{aligned} & -5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{NEG}} \leq-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NEG}}=0 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \end{aligned}$ $\mathrm{V}_{\text {inum }}$ - $\mathrm{V}_{\text {vsum }}$	$\begin{aligned} & 1 \times 10^{-12} \\ & 1 \times 10^{-12} \\ & -2 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \pm 0.6 \end{aligned}$	$\begin{aligned} & 1 \times 10^{-3} \\ & 3 \times 10^{-3} \\ & +2 \end{aligned}$	A A $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ mV
LOGARITHMIC OUTPUT Logarithmic Slope, V_{Y} Logarithmic Intercept, Iz^{2} Logarithmic Offset Logarithmic Law Conformance Error	VLOG pin, referenced to ACOM; input applied to INUM 1 $25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$ Extrapolated input current at VLOG $=0 \mathrm{~V}$ Difference between $\mathrm{V}_{\text {LOG }}$ and $\mathrm{V}_{\text {SUM }}$ with $\mathrm{I}_{\text {num }}=I_{\text {DEN }}$ $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$ Maximum deviation from best fit over 1 nA to $100 \mu \mathrm{~A}$ range	$\begin{aligned} & 195 \\ & -2 \\ & -8 \\ & -0.7 \end{aligned}$	$\begin{aligned} & 200 \\ & \\ & 3.162 \\ & \\ & 25 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & 205 \\ & +3 \\ & +5 \\ & +0.7 \end{aligned}$	$\mathrm{mV} / \mathrm{dec}$ $\mathrm{mV} / \mathrm{dec}$ fA mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ dB
VLOG OUTPUT Output Buffer Offset Voltage Output Buffer Bias Current Incremental Input Resistance Output Range Output Noise Spectral Density ${ }^{3}$ Small Signal Bandwidth Falling Edge Settling Times ${ }^{4}$ Nominal Voltage Swing Output Impedance	INPS, INMS, VLOG, SCL1, SCL2, SCL3 pins Flowing out of the INPS pin Pin INPS Rıopen $I_{\text {num }}>1 \mathrm{nA}$ $\mathrm{I}_{\mathrm{NUM}}=1 \mathrm{nA}$ $\mathrm{I}_{\mathrm{NUM}}=10 \mathrm{nA}$ $I_{\text {num }}=100 \mathrm{nA}$ $I_{\text {num }}>1 \mu \mathrm{~A}$ $I_{\text {num }}=100 \mathrm{nA}$ to 10 nA $I_{\text {num }}=1 \mu \mathrm{~A}$ to 100 nA $I_{\text {num }}=10 \mu \mathrm{~A}$ to $1 \mu \mathrm{~A}$ $\mathrm{I}_{\text {num }}>10 \mu \mathrm{~A}$ For input current range of 1 pA to 10 mA Frequency $<1 \mathrm{MHz}$	-3 $\text { VNEG + } 0.2$ 0.5	+0.1 -1.3 12 <6 25 350 1.2 4 10 2.2 0.5 <0.5 <2	+3 VPOS - 0.2 2.5	```mV \(\mu \mathrm{A}\) \(M \Omega\) V \(\mu \mathrm{V} / \sqrt{ } \mathrm{Hz}\) kHz kHz MHz MHz \(\mu \mathrm{s}\) \(\mu \mathrm{s}\) \(\mu \mathrm{s}\) \(\mu \mathrm{s}\) V \(\Omega\)```
REFERENCE OUTPUTS 1P5V (Referenced to ACOM) Output Current 2VLT (Referenced to ACOM) Output Current IREF 5	1P5V, 2VLT, IREF pins $25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$ Sourcing only $25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$	$\begin{aligned} & 1.495 \\ & -10 \\ & 1.995 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.500 \\ & 30 \\ & 2.000 \\ & 31 \\ & 100 \\ & -70 \end{aligned}$	$\begin{aligned} & 1.505 \\ & +5 \\ & 2.005 \\ & 20 \end{aligned}$	V $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ mA V $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ mA nA $\mathrm{pA} /{ }^{\circ} \mathrm{C}$
PHOTODIODE BIAS Midrange Value Maximum Value IMON Compliance	IMON pin; $I_{\text {MON }}=1.1 \times I_{\text {num }}$ At a photodiode current $=I_{\text {num }}=100 \mathrm{nA}$ At $I_{\text {NUM }}=1 \mathrm{~mA}\left(R_{s} \leq 100 \Omega\right)$, $R_{\text {мNтR }}=10 \times R_{s}$ ($\mathrm{R}_{\mathrm{s}}=$ photodiode series resistance)	$\begin{aligned} & 10.5 \\ & 0 \end{aligned}$	$\begin{aligned} & 110 \\ & 11 \\ & 3.0 \end{aligned}$	11.5	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{~mA} \\ & \mathrm{~V} \end{aligned}$

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
POWER SUPPLY	VPOS, VNEG				
VPOS		4.5	5.0	5.5	V
Quiescent Current	INUM $=$ IDEN $=10 \mu \mathrm{~A} ; \mathrm{VPOS}=5 \mathrm{~V}, \mathrm{VNEG}=0 \mathrm{~V}$		13.5	16	mA
	$4.5 \mathrm{~V} \leq \mathrm{VPOS} \leq 5.5 \mathrm{~V}$	10		17	mA
VNEG ${ }^{6}$	Nominal 0 V for single supply	0		-5	V
Quiescent Current	INUM $=$ IDEN $=10 \mu \mathrm{~A} ; \mathrm{VPOS}=5 \mathrm{~V}, \mathrm{VNEG}=0 \mathrm{~V}$	-8.5	-7.3		mA
	VNEG $=-5 \mathrm{~V}$	-10.5		-6	mA

${ }^{1}$ Slope is of the same magnitude but opposite sign for input applied to IDEN.
${ }^{2} I_{Z}=I_{\text {REF }} / 10^{\left(V_{O F S} N Y\right)}$. Note that the error of I_{Z} is dependent on three parameters, $I_{\text {REF }}, V_{O F S}$, and V_{Y}. All three of those are trimmed.
${ }^{3}$ Output noise and small signal bandwidth are functions of input current; measured from the INUM input to the VLOG output. See the Typical Performance Characteristics section.
${ }^{4}$ High-to-low currents (falling edge) represent the worst-case settling condition. Low-to-high currents (rising edge) settling times are approximately $2 \times$ faster than the falling edge settling. Settling time is measured to 1 dB error $\left(10 \mathrm{mV} / \mathrm{dB}\right.$; $\mathrm{V}_{\text {Log }}$ settles to within 10 mV of the final value).
${ }^{5}$ IREF applied to IDEN together with 1P5V determines the logarithmic intercept current, Iz , and thereby the accuracy of the intercept.
${ }^{6}$ Using dual-supply operation with the VSMx, DCBI, and INPS pins at ground, VNEG needs to be in the -2 V to -5 V range for proper device function.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
$\mathrm{V}_{\text {Pos }}$	+6V
$V_{\text {NeG }}$	-6V
Input Current to INUM, IDEN	20 mA
Thermal Data, 2-Layer JEDEC Board No Air Flow (Exposed Pad Soldered to PCB)	
$\theta_{\text {JA }}$	$61.6^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {〕c }}$	$1.2{ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Power Dissipation (Exposed Pad Soldered to PC Board)	0.6 W
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 60 sec)	$300^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. NIC = NO INTERNAL CONNECTION.
2. CONNECT THE EXPOSED PADDLE TO THE VSM1 TO VSM4 PINS TO PROVIDE LOW LEAKAGE GUARD.

Figure 2. 32-Lead LFCSP Pin Configuration
Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,25	NIC	No Internal Connection.
2,3,7,8	VSM1 to VSM4	Guard Pins for the INUM and IDEN Inputs. Connect these pins to the 1P5V, DCBI, and INPS pins for default single-supply setup; connect to ground if INUM (photodiode bias) is desired to be at ground (must have -5 V < VNEG <-2 V).
4	INUM	Numerator Current Input.
5	IDEN	Denominator Current Input. Connect to the IREF pin for most applications.
6	IREF	100 nA Trimmed Reference Current Output. Connect to the IDEN pin for most applications.
9	VDEN	Voltage Output of Denominator Log Amplifier. Connect this pin to the INDN pin and decouple with an external $0.1 \mu \mathrm{~F}$ capacitor to ground.
10	INDN	Denominator Voltage Input to Temperature Compensation Circuit.
11	COMM	Main Ground.
12	NMFS	Numerator Speed Bias (Nominal $1 \mathrm{k} \Omega$ Resistor to VNEG Pin).
13	VNEG	Negative Supply.
14	DNFS	Denominator Speed Bias (Nominal $1 \mathrm{k} \Omega$ Resistor to VNEG Pin).
15,18	ACOM	Analog Common, Low Noise Reference Ground. Important that both pins are always grounded.
16	HFCP	High Frequency Compensation.
17	2VLT	2.0 V Reference Output.
19	SCL3	$7.5 \mathrm{k} \Omega$ Scaling Resistor (See Figure 1). Default is NIC.
20	SCL2	$5 \mathrm{k} \Omega$ Scaling Resistor (See Figure 1). Default is to connect to the INMS pin.
21	SCL1	$5 \mathrm{k} \Omega$ Scaling Resistor (See Figure 1). Default is to connect to the VLOG pin.
22	VLOG	Primary Logarithmic Output. For $\mathrm{I}_{\text {IUM }}=\mathrm{I}_{\text {den }}$, the VLOG pin is at the voltage applied to the INPS pin.
23	INMS	Output Buffer Amplifier Inverting Input.
24	INPS	Output Buffer Amplifier Noninverting Input. The INPS, DCBI, and VSM1 to VSM4 pins must be tied together.
26	1P5V	1.5 V Reference Output. Connect to the INPS, DCBI, and VSM1 to VSM4 pins for single-supply operation.
27	DCBI	Approximately 1.3 mA Bias Current. Connect this pin to the VSM1 to VSM4 pins. See Pin 2, Pin 3, Pin 7, and Pin 8 description.
28	BSDC	Internal Bias Node. Decouple with a series connection of 4Ω and $1 \mu \mathrm{~F}$ to ground.
29	VPOS	Positive Supply.
30	IMON	Photodiode Monitor Output. $I_{\text {MON }}=1.1 \times \mathrm{I}_{\text {NUM }}$.
31	INNM	Numerator Voltage Input to Temperature Compensation Circuit.
32	VNUM	Voltage Output of Numerator Log Amplifier. Connect this pin to the INNM pin. For the fastest response, do not add an external capacitor.
0	EPAD	Exposed paddle. Connect the exposed paddle to the VSM1 to VSM4 pins to provide low leakage guard.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{POS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NEG}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; IDEN $=$ IREF; VSM1 to VSM4, 1P5V, DCBI, and INPS tied together; SCL1 = VLOG; SCL2 = INMS; SCL3 $=$ open; scale $=200 \mathrm{mV} / \mathrm{dec} ;$ VLOG output load $R_{L}>2 \mathrm{k} \Omega$, unless otherwise noted.

Figure 3. VLOG Vs. INUM for Multiple Temperatures

Figure 4. V LOG vs. IDEN for Multiple Temperatures; $I_{\text {NUM }}=100 \mathrm{nA}$

Figure 5. V Log vs. Inum for Multiple Values of Iden (Decade Steps from 100 pA to 1 mA)

Figure 6. Law Conformance Error vs. Inum for Multiple Temperatures; Normalized to $25^{\circ} \mathrm{C}$

Figure 7. Law Conformance Error vs. IDEN for Multiple Temperatures; $I_{\text {NUM }}=100 \mathrm{nA}$; Normalized to $25^{\circ} \mathrm{C}$

Figure 8. Law Conformance Error vs. I INUM for Multiple Values of IDEN (Decade Steps from 100 pA to 1 mA)

Figure 9. V Log vs. IDEN for Multiple Values of Inum (Decade Steps from 100 pA to 1 mA)

Figure 10. Law Conformance Error Distribution vs. Inum (3 σ Either Side of Mean)

Figure 11. Law Conformance Error Distribution vs. Inum for $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ (3 σ Either Side of Mean)

Figure 12. Law Conformance Error vs. I DEN for Multiple Values of $I_{\text {NUM }}$ (Decade Steps from 100 pA to 1 mA)

Figure 13. Law Conformance Error Distribution vs. INUM for $-40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$ (3 σ Either Side of Mean)

Figure 14. (Vinum $\left.-V_{\text {sum }}\right)$ vs. Inum for Multiple Temperatures

Figure 15. IREF Current vs. Temperature

Figure 16. 1P5V Drift vs. Temperature

Figure 17. 1P5V vs. I LOAD (Positive Current Defined into 1P5V Pin)

Figure 18. $I_{\text {MON }}$ Histogram at $I_{\text {NUM }}=1 \mathrm{~mA}$

Figure 19. 2VLT Drift vs. Temperature

Figure 20. 2VLT vs. ILOAD (Positive Current Defined into 2VLT Pin)

Figure 21. Small Signal AC Response from $I_{\text {NUM }}$ to $V_{\text {LOG }}$ for $I_{\text {NUM }}$ in Decade Steps from 1 nA to $1 \mathrm{~mA}, \mathrm{I}_{\mathrm{DEN}}=100 \mathrm{nA}$

Figure 22. Spot Noise Spectral Density at VLOG vs. Frequency for Inum in Decade Steps from 1 nA to 1 mA (Noise at lower frequencies, where NSD is flat, is limited by resistance used to generate dc lnum current. See the Noise vs. Current section for further explanation.)

Figure 23. Pulse Response for $I_{\text {Num }}$ in Decade Steps from 1 nA to 1 mA , $I_{D E N}=100 \mathrm{nA}$

Figure 24. Small Signal $A C$ Response from $I_{D E N}$ to $V_{\text {LOG }}$ for $I_{D E N}$ in Decade Steps from 10 nA to $1 \mathrm{~mA} ; \mathrm{I}_{\text {num }}=100 \mathrm{nA}$

Figure 25. Spot Noise Spectral Density at VLOG vs. Inum in Decade Frequency Steps from 100 Hz to 10 MHz

Figure 26. Normalized Falling Edge Settling of Inum to Within $1 d B$ (Error $=10 \mathrm{mV} / \mathrm{dB}$)

Figure 27. Pulse Response for $I_{D E N}$ in Decade Steps from 1 nA to 1 mA ; $I_{\text {NUM }}=100 \mathrm{nA}$

Figure 28. Imon Pulse Response vs. Inum

Figure 29. Slope Drift vs. Temperature for 200 mV/dec (3 σ to Either Side of Mean)

Figure 30. Logarithmic Offset Drift vs. Temperature (3 σ to Either Side of Mean)

Figure 31. $\left(V_{\text {num }}-V_{\text {sum }}\right)$ Histogram at $25^{\circ} \mathrm{C}$

Figure 32. 1P5V Histogram

Figure 33. 2VLT Histogram

Figure 34. Distribution of Logarithmic Slope (Nominally $200 \mathrm{mV} / \mathrm{dec}$)

Figure 35. Distribution of $I_{\text {REF }}$ (Nominally 100 nA)

Figure 36. Distribution of $V_{\text {LOG }}$ for $I_{\text {NUM }}=I_{\text {DEN }}=100 \mathrm{nA}$ (Nominally 1.500 V)

Figure 37. Supply Current vs. Temperature (|VPos|, |VvneG \mid)

TEST CIRCUITS

Figure 38. Setup for Measuring Logarithmic/Slope/Offset Conformance

Figure 39. Setup for Measuring Bandwidth

Figure 40. Setup for Measuring Pulse Settling

Figure 41. Setup for Measuring Photodiode Pulse Response

Figure 42. Setup for Measuring Output

Figure 43. Setup for Measuring IMON Pulse Response

TERMINOLOGY

Optical Power

Optical power is defined as photon energy per unit of time measured as radiant flux (Φ) or radiant power, which is radiant energy (Q) per unit time.

Photodiode Responsivity

Photodiode (PD) responsivity, ρ, is a constant that correlates optical power ($\mathrm{Popt}_{\text {O }}$) with PD current (I_{PD}).

$$
\begin{equation*}
I_{P D}=\rho \times P_{O P T} \tag{1}
\end{equation*}
$$

where typical values for ρ of InGaAs p-intrinsic-n (PIN) photodiodes are in the range of $0.6 \mathrm{~A} / \mathrm{W}$ to $1 \mathrm{~A} / \mathrm{W}$. In the case of $1 \mathrm{~A} / \mathrm{W}$, this means that for 1 mW of incident optical power, Popt, the PD delivers 1 mA of current, $\mathrm{I}_{\text {PD }}$.

When the photodiode current input to the ADL5304 is divided by the responsivity, the log slope directly represents the change in input optical power, Popt.

Dark Current

All reverse-biased diodes develop a current due to the random generation of electrons/holes in the depletion region. In photodiodes, this current occurs with no incident light falling on the diode and is called the dark current, I_{DK}. Dark current limits the minimum signal that can be reliably detected. For high speed InGaAs PIN photodiodes, the Idк is typically around 5 nA . For a photodiode with a responsivity of $1 \mathrm{~A} / \mathrm{W}$, a $5 \mathrm{nA} \mathrm{I}_{\mathrm{DK}}$ limits minimum measureable optical power to -53 dBm .

Logarithmic Function

The logarithmic function is

$$
\begin{equation*}
V_{L O G}=V_{Y} \times \log _{10}\left(\frac{I_{N U M}}{I_{Z}}\right) \tag{2}
\end{equation*}
$$

Logarithmic Slope

Logarithmic slope is the change in output voltage $\left(\mathrm{V}_{\mathrm{LOG}}\right)$ for a given change in input current usually shown as a semi-log graph where one input current ($\mathrm{I}_{\text {NUM }}$ or $\mathrm{I}_{\text {Den }}$) is plotted on a log scale, and the output voltage $\left(\mathrm{V}_{\text {LOG }}\right)$ is plotted on a linear scale. The other input current is fixed. Typically, slope is denoted as V_{Y} with units of $\mathrm{mV} /$ decade or $\mathrm{mV} / \mathrm{dB}$. For the ADL5304, in the default configuration, $V_{Y}=200 \mathrm{mV} /$ decade $(10 \mathrm{mV} / \mathrm{dB})$.

Logarithmic Intercept

Logarithmic intercept, I_{z}, is an extrapolated value representing the input current where $\mathrm{V}_{\text {LOG }}=0 \mathrm{~V}$. In single-supply operation (the VSMx pins $=\mathrm{DCBI}=\mathrm{INPS}=1 \mathrm{P} 5 \mathrm{~V}$), $\mathrm{V}_{\text {LOG }}$ is always positive, and when the ADL5304 is operating in the default configuration of $\mathrm{I}_{\mathrm{dEN}}=\mathrm{I}_{\text {ReF }}=100 \mathrm{nA}$, the logarithmic intercept occurs at $\mathrm{I}_{\text {NUM }}=3.162 \mathrm{fA}$.

In the case of dual-supply operation of the device, the intercept can be shifted to different values depending on where the VSM1 to VSM4, DCBI, and INPS pins are biased; the only recommended values are either 1.5 V via connection to the 1 P 5 V pin, as in the case of single-supply operation, or ground when a dual supply is used.
For example, if connected to ground, then the intercept is at $\mathrm{I}_{\mathrm{Z}}=$ $\mathrm{I}_{\text {DEN }}=\mathrm{I}_{\text {NUM }}$ for which $\log \left(\mathrm{I}_{\text {NUM }} / \mathrm{I}_{\text {DEN }}\right)=0$. This is how most people interpret the function $\log (x)$.

The most practical way to define intercept is to simply always use $\log _{10}\left(\mathrm{I}_{\mathrm{NUM}} / \mathrm{I}_{\mathrm{DEN}}\right)=0$ as the reference point. The only consequence is that a Vors needs to be introduced depending on how the output buffer gain and offset is set up.

$$
\begin{equation*}
V_{L O G}=V_{Y} \times \log _{10}\left(\frac{I_{N U M}}{I_{D E N}}\right)+V_{O F S} \tag{3}
\end{equation*}
$$

For the default single-supply setup, as shown in Figure 1, $\mathrm{V}_{\mathrm{Y}}=$ $0.2 \mathrm{~V} /$ decade and $\mathrm{V}_{\text {ofs }}=1.5 \mathrm{~V}$ (derived from the 1 P 5 V pin), and $\mathrm{I}_{\text {Den }}$ is supplied by the on-chip trimmed $\mathrm{I}_{\text {Ref }}=100 \mathrm{nA}$.
The relationship between I_{z} and $\mathrm{V}_{\text {ofs }}$ is as follows:

$$
\begin{equation*}
I_{Z}=\frac{I_{\text {DEN }}}{10^{\left(\frac{V_{\text {OFS }}}{V_{Y}}\right)}}=\frac{I_{\text {REF }}}{10^{\left(\frac{V_{1 P 5 V}}{V_{Y}}\right)}}=\frac{100 \mathrm{nA}}{10^{\left(\frac{1.5 \mathrm{~V}}{0.2 \mathrm{~V} / \mathrm{dec}}\right)}} \tag{4}
\end{equation*}
$$

Because $\mathrm{I}_{\text {REF }}$ and V_{Y} are trimmed for the default setup with $\mathrm{V}_{\text {OFS }}=$ $1.500 \mathrm{~V}, \mathrm{I}_{\mathrm{Z}}$ should also be a stable quantity; however, because it is a calculated value determined by the $\mathrm{I}_{\text {REF }}, \mathrm{V}_{\mathrm{IP5V}}$, and V_{Y} parameters, its distribution is the combination of the three parameters and wider than the original parameters.
The ideal single- and dual-supply ADL5304 responses are shown in Figure 44.

Figure 44. Ideal Transfer Function

THEORY OF OPERATION

BASIC CONCEPTS

The ADL5304 exploits the logarithmic relationship between base emitter voltage, V_{BE}, and the collector current, I , of a bipolar junction transistor (see Equation 5). This is the fundamental basis of the extended class of translinear circuits. A log amp based on this unique property of the bipolar transistor is called a translinear log amp to distinguish it from log amps designed for RF applications, which use different principles while having similar objectives.

$$
\begin{equation*}
V_{B E}=V_{T} \log \left(I_{C} / I_{S}\right) \tag{5}
\end{equation*}
$$

Two scaling quantities appear in Equation 5: the thermal voltage, $\mathrm{V}_{\mathrm{T}}=\mathrm{kT} / \mathrm{q}$, and the saturation current, I . The thermal voltage is of crucial importance in determining the logarithmic slope in a translinear $\log \mathrm{amp}$. V_{T} has a process invariant value of 25.69 mV at $\mathrm{T}=25^{\circ} \mathrm{C}$ and varies in proportion to the absolute temperature (PTAT). Saturation current, unlike V_{T}, is a process and device dependent parameter. Saturation current is typically approximately $10^{-16} \mathrm{~A}$ at $25^{\circ} \mathrm{C}$, but exhibits enormous variation over temperature, by a factor of more than a billion.
The temperature dependence of saturation current is compensated in the ADL5304 by using a second reference transistor, having an identical variation, to stabilize the intercept by using the difference between the two $\mathrm{V}_{\text {BES }}$.
Input currents, $I_{\text {NUM }}$ and $\mathrm{I}_{\mathrm{DEN}}$, are the numerator and denominator of the logarithmic argument that follows:

$$
\begin{equation*}
\Delta V_{B E}=V_{T} \log \left(I_{N U M} / I_{D E N}\right) \tag{6}
\end{equation*}
$$

In \log ratio applications, both $\mathrm{I}_{\text {NUM }}$ and $\mathrm{I}_{\mathrm{Den}}$ may each vary over the full specified range of 1 pA to 10 mA . However, in default operation, Iden takes the internally preset current of $I_{\text {Ref }}=100 \mathrm{nA}$.
Equation 6 shows that the $\Delta V_{B E}$ is still PTAT, but the required logarithmic slope must be temperature stable; therefore, this is corrected using proprietary circuit techniques. Using this correction the relationship between a photodiode current, I_{PD}, applied to INUM, and the voltage appearing at the output at VLOG is

$$
\begin{equation*}
V_{L O G}=V_{Y} \log _{10}\left(I_{P D} / I_{z}\right) \tag{7}
\end{equation*}
$$

where:
V_{Y} is the log slope voltage (and, for the case of base-10 logarithms, it is also the volts per decade).
I_{Z} is the extrapolated log intercept.

The relationship between V_{Y} and $\Delta V_{\text {BE }}$ is a factor close to 3.333 in the default configuration from $\left(V_{\text {NUM }}-V_{\text {DEN }}\right)$ to the output of VLOG. Because a decade change in the input current ratio results in close to a $60 \mathrm{mV} /$ decade change in $\Delta \mathrm{V}_{\mathrm{BE}}$; multiplying this by 3.333 results in $0.2 \mathrm{~V} /$ decade. During fabrication, V_{Y} is trimmed to $0.2 \mathrm{~V} /$ decade $(10 \mathrm{mV} / \mathrm{dB})$, $\mathrm{I}_{\text {ReF }}$ to $100 \mathrm{nA}, \mathrm{V}_{\text {OFS }}$ to 1.500 V , and I_{z} to 3.162 fA . When $\mathrm{I}_{\mathrm{PD}}=1 \mathrm{pA}$, the output $\mathrm{V}_{\text {Log }}$ has a value of 0.5 V (see Figure 44). I_{z} is small because $\mathrm{V}_{\text {LOG }}$ is always above ground potential even at the lowest end of the dynamic range, when using $V_{\text {OFs }}=1.500 \mathrm{~V}$. If a negative supply is used, this voltage can cross zero at the intercept value.
The output for the value of $I_{P D}$ can be calculated using Equation 8. For example, with an input current of 100 nA ,

$$
\begin{equation*}
V_{L O G}=0.2 \mathrm{~V} \log _{10}(100 \mathrm{nA} / 3.162 \mathrm{fA})=1.500 \mathrm{~V} \tag{8}
\end{equation*}
$$

The slope and intercept can be adjusted to suit the application, to either higher or lower values, without significant loss of calibration accuracy.

OPTICAL MEASUREMENTS

It is important to understand the transducer aspects of a photodiode when interpreting the photodiode current relative to the incident optical power.
In purely electrical circuits, current applied to a resistive load results in a power proportional to the square of the current. For a photodiode interface, however, there is a difference in scaling because photon-generated photodiode current (I_{PD}) flows in an element biased at a fixed voltage. IPD is equal to the optical power ($\mathrm{P}_{\mathrm{OPT}}$) absorbed in the detector times the responsivity of the photodiode (ρ).

$$
\begin{equation*}
I_{P D}=\rho \times P_{O P T} \tag{9}
\end{equation*}
$$

A similar relationship exists between the intercept current, I_{z}, and effective intercept power, P_{z}.

$$
\begin{equation*}
I_{Z}=\rho \times P_{Z} \tag{10}
\end{equation*}
$$

Therefore, the Vout equation for the ADL5304 may be written as

$$
\begin{equation*}
V_{L O G}=V_{Y} \log _{10}\left(P_{O P T} / P_{Z}\right) \tag{11}
\end{equation*}
$$

For the ADL5304 operating in its default mode, an Iz of 3.162 fA corresponds to a P_{z} of 3.95 fW for a diode having a responsivity of $0.8 \mathrm{~A} / \mathrm{W}$. An optical power of $12.5 \mu \mathrm{~W}$ therefore generates

$$
\begin{equation*}
V_{L O G}=0.2 \mathrm{~V} \log _{10}(12.5 \mu \mathrm{~W} / 3.95 \mathrm{fW})=1.900 \mathrm{~V} \tag{12}
\end{equation*}
$$

In optical applications, the interpretation of $V_{\text {Log }}$ is as an equivalent optical power; therefore, the slope for calculation purposes remains $10 \mathrm{mV} / \mathrm{dB}$ (for either current or power).

Decibel Scaling

When signal power is expressed in decibels above a reference level (for example, dBm , when the reference is 1 mW), logarithmic conversion has already been implicitly performed. Therefore, the log ratio in the previous expressions becomes a simple difference. Be careful in assigning variable names, because P is often used to denote actual power as well as this same power expressed in decibels. These are very different quantities. Misunderstandings can be avoided by using D to denote decibel powers.
When V_{Y} (the volts/decade) is converted to its decibel value, $V_{Y}{ }^{\prime}=\mathrm{V}_{\mathrm{Y}} / 10$ (because there are 10 dB per decade in the context of a power measurement), it can be written

$$
\begin{equation*}
V_{L O G}=20 \mathrm{mV}\left(D_{O P T}-D_{Z}\right) \tag{13}
\end{equation*}
$$

where:
$D_{\text {OPT }}$ is the optical power expressed in decibels above a reference level.
D_{z} denotes the equivalent intercept power relative to the same level.
Using the previous example and assuming a reference power of 1 mW , a P Popt of $12.5 \mu \mathrm{~W}$ corresponds to a $\mathrm{D}_{\text {OPT }}$ of
$10 \log _{10}(12.5 \mu \mathrm{~W} / 1 \mathrm{~mW})=-19.03 \mathrm{dBm}$; the equivalent intercept power of 3.95 fW corresponds to a D_{z} of -114.03 dBm . Therefore,

$$
\begin{equation*}
V_{L O G}=20 \mathrm{mV}(-19.03-(-114.03))=1.900 \mathrm{~V} \tag{14}
\end{equation*}
$$

the same result calculated with Equation 12.

CIRCUIT DESCRIPTION

The ADL5304 addresses a wide variety of interfacing conditions to meet the needs of fiber optic supervisory systems, as well as many nonoptical applications. This section explains the general structure of this log amp. The ADL5304 is an order of magnitude faster than any previous log amp that Analog Devices, Inc., has made, through careful FET amp design; the key limitation in the speed at low currents.

Figure 45 is a simplified schematic of the front-end section of the ADL5304. The numerator current, $I_{\text {NUM }}$, is received at the INUM pin. The voltage at this node is equal to that on the two adjacent guard pins, VSM2 and IDEN, differing only by the offset voltage of the JFET op amp that supports the operation of the Translinear Device Q1 that converts the $\mathrm{I}_{\text {NUM }}$ current to a logarithmic voltage. VSM2 is needed to provide the collectoremitter bias for Q1, and it is preset to 1.5 V via the external connection to Pin 1P5V.

Figure 45. Simplified Front-End Schematic
In conventional translinear log amps, the collector and base of Q1 are both held at ground potential, this is not possible in a single-supply part.
A second transistor, Q2, operates at a collector current of $\mathrm{I}_{\mathrm{DEN}}$. In most applications, this is the reference of $I_{\text {ref }}=100 \mathrm{nA}$, supplied internally and laser trimmed.
The difference between the two $\mathrm{V}_{\text {bes }}$ with Q 1 accepting a photodiode current of $I_{\text {NUM }}=I_{\text {PD }}$ is

$$
\begin{equation*}
V_{B E I}-V_{B E 2}=V_{T} \log _{10}\left(I_{P D} / I_{\text {REF }}\right) \tag{15}
\end{equation*}
$$

By adding an accurate PTAT voltage of magnitude,

$$
\begin{equation*}
V_{O F S}=V_{T} \log _{10}\left(I_{\text {REF }} / I_{Z}\right)=1.500 \mathrm{~V} \tag{16}
\end{equation*}
$$

resulting in

$$
\begin{align*}
& V_{B E 1}-V_{B E 2}+V_{O F S}=\mathrm{V}_{\mathrm{T}}\left[\log _{10}\left(I_{P D} / I_{\text {REFF }}\right)+\log _{10}\left(I_{\text {REF }} / I_{Z}\right)\right] \\
& =(k T / q) \log _{10}\left(I_{P D} / I_{Z}\right) \tag{17}
\end{align*}
$$

The temperature variation of kT / q is then eliminated by an analog divider that essentially puts a variable proportional to temperature underneath the T in Equation 17 and raising the magnitude of kT / q to a stable value of 0.2 V . Therefore, for photodiode applications,

$$
\begin{equation*}
V_{L O G}=0.2 \mathrm{~V} \log _{10}\left(I_{P D} / I_{Z}\right) \tag{18}
\end{equation*}
$$

When the VSM1to VSM4, DCBI, and INPS pins are tied to ground and $\mathrm{V}_{\text {NEG }}<-2 \mathrm{~V}$, the offset ($\mathrm{V}_{\text {ofs }}$) is removed, leaving the more general form.

$$
\begin{equation*}
V_{L O G}=0.2 \mathrm{~V} \log _{10}\left(I_{\text {NUM }} / I_{D E N}\right) \tag{19}
\end{equation*}
$$

Bandwidth vs. Current

Both the response time and wideband noise of translinear log amps are functions of the transistor collector current, I_{C}, and only slightly amenable to improvement by circuit design. The bandwidth falls at low values of I_{C} due to the effects of junction capacitances in Q1 and the decrease in transconductance $\left(\mathrm{g}_{\mathrm{m}}\right)$ of a bipolar transistor, which is a linear function of I_{c}, or in the case of a photodiode application, the photocurrent, $I_{p D}$. The corresponding incremental emitter resistance is

$$
\begin{equation*}
r_{e}=1 / g_{m}=V_{T} / I_{P D}=k T / q I_{P D} \tag{20}
\end{equation*}
$$

and becomes extremely high at low currents ($260 \mathrm{M} \Omega$ at $\mathrm{I}_{\mathrm{C}}=$ $100 \mathrm{pA})$. Therefore, even minute capacitances associated with the transistor can generate very long time constants.
If the net effect of these capacitances is represented loosely as C_{J}, the corresponding low-pass corner frequency is

$$
\begin{equation*}
f_{-3 d B}=q I_{P D} / 2 \pi k T C_{J} \tag{21}
\end{equation*}
$$

showing the proportionality of bandwidth to current. Using a value of 0.3 pF for C_{J}, this becomes $20 \mathrm{MHz} / \mu \mathrm{A}$. The small signal bandwidth at $\mathrm{I}_{\mathrm{PD}}=100 \mathrm{pA}$ is thus only 2 kHz . However, whereas this simple model can be useful in making the basic point, it excludes many other effects that limit its accuracy. At high currents, the subsequent signal processing limits the maximum overall bandwidth.

Noise vs. Current

For an ideal bipolar transistor, the voltage noise spectral density, $S_{\text {NSD }}$, referred to $V_{\text {BE }}$, and caused by shot-noise mechanisms, evaluates to

$$
\begin{equation*}
S_{N S D}=14.6 / \sqrt{ } I_{C} \mathrm{nV} / \sqrt{ } \mathrm{Hz}\left(T_{A}=27^{\circ} \mathrm{C}\right) \tag{22}
\end{equation*}
$$

where I_{C} is in $\mu \mathrm{A}$. For example, at an I_{C} of $1 \mathrm{nA}, \mathrm{S}_{\text {NSD }}$ evaluates to approximately $0.5 \mu \mathrm{~V} / \sqrt{ } \mathrm{Hz}$.

Figure 46. Noise Spectral Density of VBE VS. IC

Assuming a 20 kHz net system bandwidth at this current, the integrated noise voltage is $70 \mu \mathrm{~V} \mathrm{rms}$. The theoretical noise of V_{BE} vs. IC is shown in Figure 46. However, the log scaling of the V_{BE} is approximately $3 \mathrm{mV} / \mathrm{dB}$, and in the ADL5304, this is increased to a slope of $10 \mathrm{mV} / \mathrm{dB}$ at the VLOG pin. Therefore, the noise at VLOG, predicted by Equation 22, is multiplied by a factor of 3.33. Secondary sources of noise, mostly in the analog divider used for temperature stabilization of the slope and the input FET buffer amplifiers, add to this basic noise. The measured data are shown in Figure 22.

Note how at low frequencies the NSD flattens for input currents less than 10 nA , this noise is limited by the resistor that makes the dc current. A $10 \mathrm{M} \Omega$ resistor was used for these three currents with a dc bias voltage across the resistor of $1 \mathrm{mV}, 10 \mathrm{mV}$, and 100 mV , respectively.
A $10 \mathrm{M} \Omega$ resistor makes a noise current of $40.7 \mathrm{fA} / \sqrt{ } \mathrm{Hz}$, which is converted via the g_{m} of the logging transistor into a noise voltage. This voltage adds to the noise voltage of the bipolar transistor itself, as shown in Figure 46. The r_{e} of the transistor is $1 / \mathrm{g}_{\mathrm{m}}$ and equal to $25.85 \mathrm{M} \Omega$ at I_{C} equals 1 nA . Together with the noise current of the source resistor, this makes a noise voltage at the emitter of the logging transistor (VNUM) of $1.05 \mu \mathrm{~V} / \sqrt{ } \mathrm{Hz}$; this contrasts with the noise voltage of the transistor itself of $0.46 \mu \mathrm{~V} / \sqrt{ } \mathrm{Hz}$ (approximately $0.5 \mu \mathrm{~V} / \sqrt{ } \mathrm{Hz}$). The total combined noise is approximately $1.15 \mu \mathrm{~V} / \sqrt{ } \mathrm{Hz}$.

The effect of the $10 \mathrm{M} \Omega$ resistor at 100 pA of dc current becomes even more pronounced because the noise at VNUM due to the source resistor is $10.5 \mu \mathrm{~V} / \sqrt{ } \mathrm{Hz}$, whereas the transistor only contributes $1.46 \mu \mathrm{~V} / \sqrt{ } \mathrm{Hz}$ for a total of $10.6 \mu \mathrm{~V} / \sqrt{ } \mathrm{Hz}$.
Therefore, unless the resistor that makes the dc current becomes very large, in general, measurement at the lower currents is limited by the noise of the source resistor. This problem does not exist when using a photodiode because the resistance of the photodiode increases at the same rate as the logging transistor (see Figure 47).

Figure 47. Setup for Measuring Noise for $I_{\text {NUM }}=100 \mathrm{pA}, I_{\text {NUM }}=1 \mathrm{nA}$, and $I_{\text {NUM }}=10 \mathrm{nA}$

Filtering to Improve Noise and Dynamic Behavior

The noise at the output of a log amp, particularly at low current levels, leads to uncertainty in the measurement. Noise amplitude is limited by the finite bandwidth.

If measurement speed is not of primary concern, additional filtering can reduce noise. Figure 48 shows the recommended locations for additional external filtering. Note the ADL5304 consists of a current-to-voltage (transimpedance) conversion ($\mathrm{I}_{\mathrm{NUM}}$ or $\mathrm{I}_{\mathrm{DEN}}$ to $\mathrm{V}_{\mathrm{NUM}}-\mathrm{V}_{\mathrm{den}}$), followed by a voltage-to-current conversion ($\mathrm{V}_{\mathrm{NUM}}-\mathrm{V}_{\mathrm{DEN}}$ to $\mathrm{I}_{\text {LOG }}$), and then followed by another current-to-voltage conversion ($\mathrm{I}_{\mathrm{Log}}$ to $\mathrm{V}_{\mathrm{LOG}}$).
Typically, capacitors are not used on the numerator side ($\mathrm{I}_{\mathrm{NUM}}$) to keep the speed of the device as high as possible. On the denominator side ($\mathrm{I}_{\mathrm{den}}$), additional filtering is useful to reduce noise. In applications where I_{num} is used as the reference to the logarithmic equation and Iden is a variable, for example, where a reverse logarithmic slope is desired, filtering can be done on the numerator side ($\mathrm{I}_{\mathrm{num}}$).

Figure 48. Possible External Filtering Locations

The C1D capacitor effectively reduces the bandwidth of the denominator input stage. A few picofarads of capacitance ($<5 \mathrm{pF}$) reduce the bandwidth significantly for currents below approximately $1 \mu \mathrm{~A}$, though whereas 1 nF to 10 nF are normally enough to reduce the bandwidth up to the maximum 10 mA of input current. When measurement speed is of primary importance, it is better to add filtering after the FET amp outputs, in which case, C2D, RD, and C3D are the best locations. The resistor in this case should not be much larger than $1 \mathrm{k} \Omega$ because there is a bias current that is approximately $35 \mu \mathrm{~A}$ that flows from the temperature compensation block into each of the VDEN and VNUM pins. Inserting a resistor, as shown in Figure 48, lifts up the voltages at the INNM and/or INDN pins and potentially causes headroom problems in the temperature compensation block.
When $I_{\text {DeN }}$ is used as the reference, as is normally done, then it is recommended that C1D is zero, C2D is a $0.1 \mu \mathrm{~F}$ ceramic decoupling capacitor, RD is a short, and C 3 D is not placed.
Adding a capacitor, CFB, adds additional filtering at the buffer output. This capacitor also helps to optimize the pulse response by placing a zero across the feedback resistor ($2.5 \mathrm{k} \Omega$ in the default configuration). A good value to start with is 22 pF , this introduces a zero at 2.9 MHz that can improve the pulse responses for input currents above approximately $100 \mu \mathrm{~A}$.

Photodiode Bias

The ADL5304 provides for adaptive photodiode bias. A monitoring transistor, Q3, connected in parallel with Q1 (see Figure 49), samples $1 / 10^{\text {th }}$ the input current, $\mathrm{I}_{\mathrm{NUM}}$. This sampled current is multiplied by a factor of 11 to give an effective output current at the IMON pin of 1.1 times $\mathrm{I}_{\mathrm{NUM}}$. Because the photodiode produces $\mathrm{I}_{\mathrm{NUM}}$, the additional current has to flow in an external resistor, $\mathrm{R}_{\mathrm{MNTR}}$, equal to $10 \times \mathrm{R}_{\mathrm{s}}$, where R_{s} is the value of the internal parasitic series resistance of the photodiode. This ensures that the actual junction of the photodiode is biased as close as possible to 0 V to minimize dark current. The CMON capacitor provides potential filtering and dynamic currents during fast transients. The value for best bias response depends on the photodiode used and should be determined experimentally. Nominally, CMON $=0$.
If the adaptive bias is not used, the IMON pin must be connected to ground. It is easy to provide a 0.5 V reverse bias across the diode by using the 2VLT reference and connecting it to the cathode. Because the ADL5304 forces the voltage at INUM very close to 1.500 V , the trimmed 2.000 V ensures a precise 0.5 V reverse bias for the PD.

Figure 49. Adaptive Photodiode Bias
One example of dual-supply operation is shown in Figure 50, where the 2.000 V (the 2VLT pin) reference ensures a precisely controlled, reverse bias across the PD. The user can use other reverse bias voltages but needs to provide them separately. Note that when the VSMx pins are grounded, the DCBI and INPS pins must also be grounded.

Figure 50. PD Bias with Vsum $a t$ Ground and Using 2.000 V

Reference Outputs

The ADL5304 has three trimmed precision references, two voltages, and one current ($\mathrm{I}_{\text {Ref }}$). The voltages are 1.500 V and 2.000 V at the 1 P 5 V and 2VLT pins, respectively. The 1 P 5 V reference is intended to provide the bias to the VSM1 to VSM4, DCBI, and INPS pins; it can sink up to 10 mA and source a maximum of about 5 mA .
The 2VLT reference can source up to 20 mA of current, but it cannot sink any current. The primary use of the 2.0 V reference is for photodiode bias, or to generate reference currents other than the 100 nA provided by $\mathrm{I}_{\text {ReF. }}$. Together with a precision resistor, the 1.5 V and 2.0 V references can reliably generate any current up to approximately 5 mA .

The $\mathrm{I}_{\text {ref }}$ current, nominally 100 nA , flows out of the IREF pin and is primarily used as an input to the IDEN pin to provide the denominator current, Iden. The choice of 100 nA places it in the middle of the 1 pA to 10 mA range. I Iref can also be used as the input to the INUM pin and thereby invert the basic log response of the ADL5304. If $I_{\text {DEN }}=I_{\text {REF }}, V_{\text {LOG }}$ increases with increasing $I_{\text {NUM }}$. Whereas if $\mathrm{I}_{\text {NUM }}=\mathrm{I}_{\text {REF }}$ and the input current is applied to IDEN, $V_{\text {Log }}$ decreases with increasing $I_{\text {Den }}$.

Buffer Amplifier

A buffer amplifier completes the signal chain that takes the I $_{\text {LOG }}$ current from the temperature compensation block and converts it to a voltage at the VLOG pin. The buffer amplifier gain and offset can be configured to provide different logarithmic slope and intercept at the $V_{\text {LOG }}$ output. On-chip resistors provide optimized scale factors and intercepts via the SCL1, SCL2, and SCL3 pins.
For example, in Figure 51, the default setup provides a scale of $0.2 \mathrm{~V} /$ decade and an intercept of 3.162 fA . Vofs $=\mathrm{V}_{\text {LOG }}=1.5 \mathrm{~V}$ when the internal $I_{\text {Log }}=0 \mathrm{~A}$, which corresponds to $\mathrm{I}_{\text {num }}=\mathrm{I}_{\mathrm{den}} . \mathrm{I}_{\text {Log }}$ varies from $-400 \mu \mathrm{~A}$ to $+400 \mu \mathrm{~A}$ with a scale of $80 \mu \mathrm{~A} /$ decade over the full 200 dB input current range. In the default configuration, $\mathrm{I}_{\text {LOG }}$ is negative for $\mathrm{I}_{\text {NUM }}>\mathrm{I}_{\text {DEN }}$ and positive for $\mathrm{I}_{\text {NUM }}<\mathrm{I}_{\text {DEN }}$. If the input current is applied to the IDEN pin and the reference current ($\mathrm{I}_{\text {REF }}$) to the INUM pin, the slope of $\mathrm{V}_{\text {LOG }}$ is negative and the range is inverted, that is, $\mathrm{V}_{\text {LOG }}$ is 2.5 V for $\mathrm{I}_{\mathrm{DEN}}=1 \mathrm{pA}$, and $\mathrm{V}_{\text {LOG }}$ is 0.5 V for $I_{\text {den }}=10 \mathrm{~mA}$.

Figure 51. Buffer Amplifier in Default Configuration
The buffer amplifier is a voltage feedback op amp with supplies between VPOS and VNEG. For single-supply operation, the VNEG pin is tied to ground, and the INPS pin, the positive input of the op amp, to the 1 P 5 V pin.

If a ground referenced input is desired at the INUM or IDEN pins, then the INPS and DCBI pins together with the VSMx pins must be tied to ground, and VNEG needs to be less than -2 V . If larger slopes are required, VPOS can increase to +5 V , and VNEG can increase to -5 V . For example, if the SCL3 pin is connected to VLOG, and SCL1 and SCL2 remain open, the internal $7.5 \mathrm{k} \Omega$ resistor, together with the $80 \mu \mathrm{~A} /$ decade $\mathrm{I}_{\text {LOG }}$, provides a slope of $0.6 \mathrm{~V} /$ decade at the VLOG pin. Implementation of slopes of $0.2 \mathrm{~V} /$ decade to $0.8 \mathrm{~V} /$ decade is easily accomplished.

Setting the Log Slope and Intercept

The choice of optimal slope and intercept depends on the application and supply voltage(s). For example, when an input current range of less than the full 200 dB is desired, a higher slope can be chosen to better use the full voltage span available at VLOG, and perhaps optimally position it to suit the input capacity of a subsequent analog-to-digital converter (ADC). Very high slopes, such as $0.8 \mathrm{~V} /$ decade, can be realized, allowing a smaller range of I_{PD} to be measured at high sensitivity.
Any other intercept and slope can be realized using external resistors, but these do not, in general, form accurate ratios to the on-chip resistors. Therefore, some inaccuracies should be expected. If the SCL1, SCL2, and SCL3 pins are not connected and a resistor is placed between the INMS and VLOG pins, the $\mathrm{I}_{\text {LOG }}$ current is forced through the external resistor and thereby has a log slope that is $80 \mu \mathrm{~A} /$ decade times $\mathrm{Rext}^{\text {; }}$, Vofs is equal to the voltage applied to the INPS pin.

Table 4. VLOG Scaling Options

Option	Pin SCL1	Pin SCL2	Pin SCL3	Pin INPS	Pin INMS	V_{Y} (V/dec)	$\mathrm{Iz}_{\mathbf{z}}(\mathrm{A})$	Vors (V)
$\begin{aligned} & \text { Single-Supply Operation (VNEG = } 0 \text { V; } \\ & \text { VSMx }=\text { DCBI }=\text { INPS }=1 \mathrm{P} 5 \mathrm{~V} \text {) } \end{aligned}$								
$1{ }^{1}$	VLOG	INMS	Open	1P5V	SCL2	0.2	3.16 f	1.5
2	VLOG	INMS	VLOG	1P5V	SCL2	0.15	0.01 f	1.5
3	VLOG	INMS	Ground	1P5V	SCL2	0.2	0.01 f	2.0
4	VLOG	Open	Ground	1P5V	Open	0.4	56.2 f	2.5
5	VLOG	Open	Open	1P5V	Open	0.4	17.8 p	1.5
6	Open	Open	VLOG	1P5V	Open	0.6	316 p	1.5
7	Open	VLOG	Open	1P5V	Open	0.8	1.33 n	1.5
8	VLOG	INMS	2VLT	1P5V	SCL2	0.2	21.6 f	1.333
Dual-Supply Operation (VNEG <-2 V; VSMx = DCBI = INPS = Ground)								
9^{2}	VLOG	INMS	Open	Ground	SCL2	0.2	100 n	0
10	VLOG	INMS	VLOG	Ground	SCL2	0.15	100 n	0
11	VLOG	Open	Open	Ground	Open	0.4	100 n	0
12	Open	Open	VLOG	Ground	Open	0.6	100 n	0
13	Open	VLOG	Open	Ground	Open	0.8	100 n	0

${ }^{1}$ Default setup for single supply and VSMx $=1.5 \mathrm{~V}$.
${ }^{2}$ Default setup for dual supply and VSMx = ground.

The default setups are noted in Table 4.
Other intercepts are achieved by injecting different currents into the IDEN pin, for example, if $\mathrm{I}_{\mathrm{DEN}}=1 \mu \mathrm{~A}$, as shown in Figure 52, the VLOG transfer function is simply shifted by one decade to the right. One way of doing this is to put a precision $500 \mathrm{k} \Omega$ resistor between the 2 VLT and IDEN pins in the singlesupply default setup. The intercept is moved up to 31.62 fA , and all output voltages for a given $I_{N U M}$ are lowered by one decade, that is, by 0.2 V at $\mathrm{V}_{\text {log }}$. For example, the new $\mathrm{I}_{\mathrm{den}}=1 \mu \mathrm{~A}$, and $V_{\text {LOG }}=1.3 \mathrm{~V}$ for $\mathrm{I}_{\mathrm{NUM}}=100 \mathrm{nA}$.

This is particularly useful if the slope is already as desired but the desired intercept cannot be achieved with the on-chip resistors. Only a shift toward the right makes sense because a shift to the left requires excessively large resistors.

Figure 52. Intercept Shifted One Decade Right via External Resistor, Reference Current IDEN $=1 \mu \mathrm{~A}$

Slope Inversion

Table 4 lists only those slopes that are positive because this is the expected normal operation in measurement mode. The slopes can be inverted by two methods. By using $\mathrm{I}_{\mathrm{NUM}}=\mathrm{I}_{\text {ref }}=100 \mathrm{nA}$, in which case, the intercepts, I, are at larger currents mirrored from the values shown in Table 4 around the 100 nA reference current. For example, for the default setup with $V_{Y}=0.2 \mathrm{~V} /$ decade and $\mathrm{I}_{\mathrm{Z}}=3.162 \mathrm{fA}$, swapping INUM and IDEN connections result in $\mathrm{V}_{\mathrm{Y}}=-0.2 \mathrm{~V} /$ decade and $\mathrm{I}_{\mathrm{Z}}=3.162 \mathrm{~A}$.
The second method is to simply swap the connections between the VNUM and VDEN pins and the inputs to the temperature compensation cell (INNM and INDN), as shown in Figure 53 (compare to Figure 52). This technique is particularly useful if both negative log slope and adaptive photodiode biasing via Imon are desired together.

Figure 53. Simple Slope Inversion Method

ADL5304

Log Ratio Operation

Because the ADL5304 has two equal inputs, $\mathrm{I}_{\mathrm{NUM}}$ and $\mathrm{I}_{\mathrm{DEN}}, \log$ ratio operation is possible. The only difference between $\mathrm{I}_{\text {NUM }}$ and $I_{\text {den }}$ is that the $I_{m o n}$ current derives from the $I_{\text {num }}$ signal and allows adaptive photodiode bias at this input only. Assuming that the ratio $\mathrm{I}_{\mathrm{num}} / \mathrm{I}_{\mathrm{den}}$ can, in general, be either greater or less than unity, $V_{\text {log }}$ can be of either polarity, requiring a negative supply in some cases. The value of $\mathrm{V}_{\text {LOG }}$ depends on the minimum ratio and the slope chosen for the application.

For example, if the ratio can vary from 1:1000 to 1000:1 and a slope of $20 \mathrm{mV} / \mathrm{dB}$ is required, the peak swing is $\pm 1.2 \mathrm{~V}$ around Vofs.
Option 5 in Table 4 provides this with an intercept I_{z} of 17.8 pA ($\mathrm{V}_{\text {OFS }}=1.5 \mathrm{~V}$) with $\mathrm{V}_{\text {LOG }}= \pm 1.2 \mathrm{~V}$ around $\mathrm{V}_{\text {OFS }}=1.5 \mathrm{~V}$, which results in $0.3 \mathrm{~V} \leq \mathrm{V}_{\text {LOG }} \leq 2.7 \mathrm{~V}$.

