: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

Operating frequencies
ADL5590: 869 MHz to 960 MHz
ADL5591: 1805 MHz to 1990 MHz
Output compression point P1dB: 16 dBm
Output third-order intercept point OIP3
ADL5590: 29 dBm at 900 MHz
ADL5591: $\mathbf{3 0} \mathbf{~ d B m}$ at 1900 MHz
Noise floor: $\mathbf{- 1 5 7} \mathbf{~ d B m} / \mathbf{H z}$
Sideband suppression
ADL5590: <-50 dBc at $900 \mathbf{M H z}$
ADL5591: <-47 dBc at 1900 MHz
Baseband common-mode bias: 1.5 V
LO leakage
ADL5590: $\mathbf{- 5 0} \mathbf{~ d B c}$ at 900 MHz, Pout $^{\mathbf{~}} \mathbf{5 \mathrm { dBm }}$
ADL5591: - $\mathbf{4 4} \mathbf{~ d B c}$ at 1900 MHz, Pout $=5 \mathrm{dBm}$
Single supply: 4.75 V to 5.25 V
Package: 36-lead, $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ LFCSP

APPLICATIONS

Wireless infrastructure

Optimized for GSM transmitters

GENERAL DESCRIPTION

This family of monolithic RF quadrature modulators is designed for use from 869 MHz to 960 MHz and from 1805 MHz to 1990 MHz . Excellent phase accuracy and amplitude balance enable high performance, direct RF modulation for communications systems.

The ADL5590 and ADL5591 can be used as direct RF modulators in digital communications systems such as those using the Global System for Mobile Communications (GSM) network. In addition, the devices are compatible with enhanced data rates for GSM evolution (EDGE).

This family is fabricated using an advanced silicon-germanium bipolar process from Analog Devices, Inc., and is available in a 36-lead, exposed pad LFCSP. The devices operate from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

ADL5590/ADL5591

TABLE OF CONTENTS

\qquad
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications3
REVISION HISTORY
4/16-Rev. 0 to Rev. A
Changes to Figure 1 1
Changes to Figure 2 6
Changes to Figure 3 7
Updated Outline Dimensions 8
Changes to Ordering Guide 8
Absolute Maximum Ratings 5
ESD Caution5
Pin Configuration and Function Descriptions 6
Basic Connections 7
Outline Dimensions 8
Ordering Guide 8

5/07—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{LO}=2 \mathrm{dBm}$; baseband I / Q amplitude $=1 \mathrm{~V}$ p-p differential sine waves in quadrature with a 1.5 V dc bias; baseband I / Q frequency $\left(\mathrm{f}_{\mathrm{BB}}\right)=1 \mathrm{MHz}$, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Operating Frequency Range ADL5590		$\begin{aligned} & 869 \\ & 1805 \end{aligned}$		$\begin{aligned} & 960 \\ & 1990 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
ADL5590 @ $\mathrm{f}_{\mathrm{RF}}=880 \mathrm{MHz}$ Output Power vs. Frequency vs. Temperature Sideband Suppression LO Leakage Output Return Loss Output P1 dB Output IP3 Output IP2 Output Noise Density Output Noise Floor Modulation Spectrum RMS Error Vector Magnitude Peak Error Vector Magnitude	$\begin{aligned} & \mathrm{V}_{\mathrm{IQ}}=1.0 \mathrm{~V} \mathrm{p} \text {-p differential } \\ & \mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz} \text { to } 894 \mathrm{MHz} \\ & 0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to } 0^{\circ} \mathrm{C} \end{aligned}$ $\mathrm{f}_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{BB}}=4.5 \mathrm{MHz}$, Pout $=0 \mathrm{dBm}$ per tone $\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}$, Pout $=0 \mathrm{dBm}$ per tone Pout $=5 \mathrm{dBm}, 6 \mathrm{MHz}$ carrier offset Baseband inputs biased to 1.5 V Relative to carrier in 30 kHz , Pout $=3 \mathrm{dBm}, 8$ PSK 250 kHz carrier offset 400 kHz carrier offset 600 kHz carrier offset 1.2 MHz carrier offset Pout $=3 \mathrm{dBm}, 8 \mathrm{PSK}$ Pout $=3 \mathrm{dBm}, 8$ PSK	3.75	5.9 ± 0.1 0.01 0.01 -50 -50 2.8 16 29 66 -155 -156.6 -42.5 -71.1 -78.5 -79.1 0.5 1.5	8.0	dBm dB $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ dBc dBc dB dBm dBm dBm $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBm} / \mathrm{Hz}$ dBc dBc dBc dBc \% \%
ADL5590 @ fRF $=940 \mathrm{MHz}$ Output Power vs. Frequency vs. Temperature Sideband Suppression LO Leakage Output Return Loss Output P1 dB Output IP3 Output IP2 Output Noise Floor Modulation Spectrum RMS Error Vector Magnitude Peak Error Vector Magnitude	$\begin{aligned} & \mathrm{V}_{\mathrm{IQ}}=1.0 \mathrm{~V} \text { p-p differential } \\ & \mathrm{f}_{\mathrm{RF}}=925 \mathrm{MHz} \text { to } 960 \mathrm{MHz} \\ & 0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to } 0^{\circ} \mathrm{C} \end{aligned}$ f_{1} BB $=3.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{BB}}=4.5 \mathrm{MHz}$, Pout $=0 \mathrm{dBm}$ per tone $\mathrm{f} 1_{\mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{f} 2_{\mathrm{BB}}=4.5 \mathrm{MHz}, \mathrm{P}_{\text {out }}=0 \mathrm{dBm}$ per tone Baseband inputs biased to 1.5 V Relative to carrier in 30 kHz , Pout $=3 \mathrm{dBm}, 8$ PSK 250 kHz carrier offset 400 kHz carrier offset 600 kHz carrier offset 1.2 MHz carrier offset Pout $=3 \mathrm{dBm}, 8$ PSK Pout $=3 \mathrm{dBm}, 8$ PSK	3.5	5.7 ± 0.1 0.01 0.01 -50 -50 3.2 16 29 70 -156.6 -42.5 -71.1 -78.5 -79.1 0.4 1.4	7.75	dBm dB $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ dBc dBc dB dBm dBm dBm $\mathrm{dBm} / \mathrm{Hz}$ dBc dBc dBc dBc \% \%
$\begin{aligned} & \text { ADL5591 @ } f_{\text {RF }}=1850 \mathrm{MHz} \\ & \text { Output Power } \\ & \text { vs. Frequency } \\ & \text { vs. Temperature } \end{aligned}$ Sideband Suppression	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=1850 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IQ}}=1.0 \mathrm{~V} \mathrm{p} \text {-p differential } \\ & \mathrm{f}_{\mathrm{RF}}=1805 \mathrm{MHz} \text { to } 1880 \mathrm{MHz} \\ & 0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to } 0^{\circ} \mathrm{C} \end{aligned}$	3.0	5.0 ± 0.1 0.011 0.011 -47	7.0	dBm dB $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ dBc

ADL5590/ADL5591

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, VPS1 to VPS5	5.5 V
IBBP, IBBN, QBBP, QBBN	$0 \mathrm{~V}, 3 \mathrm{~V}$
LOIP	10 dBm
Internal Power Dissipation	1155 mW
θ_{JA} (Exposed Pad Soldered Down)	$40^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$132^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Soldering Temperature	$260^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

GND 1	Uujujujut	27 GND
GND 2	©	26 QBBP
VPS1 3	ADL5590/	25 QBBN
LOIP 4	\because ADL5590	24 GND
GND 5	\because ADL5591	23 VOUT
LOIN 6	-) TOP VIEW	22 GND
GND 7	- (Not to Scale)	21 IBBN
GND 8	-	20 IBBP
GND 9		19 GND
	읃Nㄲㄴํํํㄷํ	
NOTES 1. EXPOSED PAD. CONNECT THE EXPOSED PAD TO		

Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 2, 5, 7 to 12, 14, 16 to 19, 22, 24, 27 to $30,32,34$ to 36	GND	Ground. Connect to ground plane via a low impedance path.
3, 13, 15, 31, 33	VPS1, VPS2, VPS3, VPS4, VPS5	Positive Supply Voltage. Connect all pins to the same supply. To ensure adequate external bypassing, connect $0.1 \mu \mathrm{~F}$ capacitors between each pin and ground.
4,6	LOIP, LOIN	Local Oscillator Input. 50Ω single-ended local oscillator input. Pins must be ac-coupled. AC-couple LOIN to ground and drive LO through LOIP.
20, 21, 25, 26	IBBP, IBBN, QBBN, QBBP	Baseband Inputs. Differential in-phase and quadrature baseband inputs. These high impedance inputs must be dc-biased to approximately 1.5 V dc. These inputs are not self-biased and must be externally biased.
23	VOUT	RF Output. Single-ended, 50Ω, internally biased RF output. Pin must be ac-coupled to the load.
	Exposed Pad	Exposed Pad. Connect the exposed pad to the ground plane via a low impedance path.

Data Sheet

BASIC CONNECTIONS

Figure 3. Basic Connections for Operation

ADL5590/ADL5591

OUTLINE DIMENSIONS

THE EXPOSED PAD, REFER TO
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
THE PIN CONFIGURATION A
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.

COMPLIANT TO JEDEC STANDARDS MO-220-WJJD-1
Figure 4. 36-Lead Lead Frame Chip Scale Package [LFCSP] $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-36-4)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADL5590ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 -Lead LFCSP, $7^{\prime \prime}$ Tape and Reel	$\mathrm{CP}-36-4$
ADL5591ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 -Lead LFCSP, $7^{\prime \prime}$ Tape and Reel	CP-36-4

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ LO drive in excess of 5 dBm can be provided to further reduce noise at 6 MHz carrier offset.

