

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Quad Voltage Microprocessor Supervisory Circuit

ADM6339

FEATURES

Accurate monitoring of up to four power supply voltages 6 factory-set threshold options: -5.0 V, +1.8 V, +2.5 V, +3.0 V, +3.3 V, and +5.0 V

Adjustable input threshold options: -0.5 V ($\pm 2.0\%$ accuracy), +0.62 V ($\pm 0.8\%$ accuracy), and +1.23 V

200 ms typical reset timeout

Open-drain RESET output (10 µA internal pull-up)

Reset output stage: active low, valid to $IN_1 = 1\ V$ or $IN_2 = 1\ V$

Low power consumption (55 μ A)

Glitch immunity

Specified from -40°C to +85°C

6-lead SOT-23 package

APPLICATIONS

Telecommunications
Microprocessor systems
Data storage equipment
Servers/workstations

FUNCTIONAL BLOCK DIAGRAM

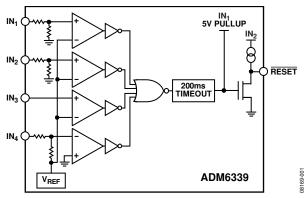


Figure 1.

GENERAL DESCRIPTION

The ADM6339 is a high accuracy supervisory circuit capable of monitoring up to four system supply voltages.

The ADM6339 incorporates a variety of internally pretrimmed undervoltage threshold options for monitoring $-5.0~\rm V, +1.8~\rm V, +2.5~\rm V, +3.0~\rm V, +3.3~\rm V,$ and +5.0 V supply voltages. Tolerance levels of $\pm5\%$ and $\pm10\%$ are available. The device is also available with one to three adjustable threshold options. The adjustable voltage threshold options are +1.23 V, +0.62 V, and -0.5 V. See the Ordering Guide section for a list and description of all available options.

If a monitored power supply voltage decreases below the minimum voltage threshold (or rises above the maximum voltage threshold for the -0.5 V and -5.0 V input options), a single

active low output asserts, triggering a system reset. The output is open drain with a weak internal pull-up to the monitored IN_2 supply of typically 10 $\mu A.$ After all voltages exceed the selected threshold level, the reset signal remains low for the reset timeout period (200 ms typical).

The ADM6339 output remains valid as long as IN_1 or IN_2 exceeds 1 V. Unused monitored inputs should not be allowed to float or to be grounded; instead, they should be connected to a supply voltage greater than their specified threshold voltages.

The ADM6339 is available in a 6-lead SOT-23 package. The device operates over the extended temperature range of -40° C to $+85^{\circ}$ C.

ADM6339* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

 ADM6339: Quad Voltage MicroprocessorSupervisory Circuit Data Sheet

REFERENCE MATERIALS •

Product Selection Guide

- Supervisory Devices Complementary Parts Guide for Altera FPGAs
- Supervisory Devices Complementary Parts Guide for Xilinx FPGAs

Solutions Bulletins & Brochures

• New SOT Supervisors [PPT, Dec 2010]

DESIGN RESOURCES

- · ADM6339 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADM6339 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	4
ESD Caution	4
Pin Configuration and Function Descriptions	5
REVISION HISTORY	
10/10—Rev. 0 to Rev. A	

 Typical Performance Characteristics
 6

 Theory of Operation
 8

 Input Configuration
 8

 Monitoring Negative Voltages < -5.0 V</td>
 8

 User Adjustable Threshold Options
 8

 RESET Output Configuration
 9

 Outline Dimensions
 10

 Ordering Guide
 10

6/09—Revision 0: Initial Version

SPECIFICATIONS

 V_{IN2} = 1.0 V to 5.5 V, T_{A} = -40°C to +85°C, unless otherwise noted. Typical values are V_{IN2} = 3.0 V to 3.3 V, T_{A} = 25°C.

Table 1.

Parameter	Min	Тур	Max	Units	Test Conditions/Comments
OPERATING VOLTAGE RANGE (V _{IN2}) ^{1, 2}	1.0		5.5	V	
INPUT CURRENT					
IN _x Input Current		25	40	μΑ	V_{INx} = nominal input voltage for 1.8 V, 2.5 V, and 5.0 V supplies
,		55	115	μΑ	V_{IN2} = nominal input voltage for 3.0 V and 3.3 V supplies. V_{IN2} is also the device power supply. The supply splits into 25 μ A for the resistor divider and 30 μ A for other circuits.
	-0.1		+0.1	μΑ	$V_{INx} = 0 \text{ V to } V_{IN2}$ (input threshold voltage = 1.23 V).
		0.4	1.5	μΑ	$V_{IN1} = 1.5 \text{ V}$ (ADM6339K and ADM6639L models only).
		-15	-20	μΑ	$V_{INx} = -5.0 \text{ V}$ (IN _x input threshold voltage = -5.0 V).
	-0.1		+0.1	μΑ	$V_{INx} = 0.62 \text{ V}$ (IN _x input threshold voltage = 0.62 V).
	-1	-3	-5	μΑ	$V_{INx} = -0.5 \text{ V}$ (IN _x input threshold voltage = -0.5 V).
THRESHOLD VOLTAGE					
Fixed Threshold Voltage (V_{TH})	4.50	4.63	4.75	V	5.0 V (-5% tolerance) threshold.
V _{INx} Decreasing	4.25	4.38	4.50	V	5.0 V (-10% tolerance) threshold.
	3.00	3.08	3.15	V	3.3 V (–5% tolerance) threshold.
	2.85	2.93	3.00	V	3.3 V (-10% tolerance) threshold.
	2.70	2.78	2.85	V	3.0 V (-5% tolerance) threshold.
	2.55	2.63	2.70	V	3.0 V (-10% tolerance) threshold.
	2.13	2.19	2.25	V	2.5 V (-10% tolerance) threshold.
	1.53	1.58	1.62	V	1.8 V (-10% tolerance) threshold.
V _{INx} Increasing	-4.75	-4.63	-4.50	٧	-5.0 V (+5% tolerance) threshold.
	-4.50	-4.38	-4.25	٧	-5.0 V (+10% tolerance) threshold.
Adjustable Threshold Voltage (V _{TH})					
V _{INx} Decreasing	1.20	1.23	1.26	V	
	0.615	0.620	0.625	V	
V _{INx} Increasing	-0.497	-0.487	-0.477	V	−0.5 V threshold.
RESET THRESHOLD HYSTERESIS (V _{HYST})		0.3		% V _{TH}	
		0.47		% V _{TH}	IN₄, ADM6339Q model.
RESET THRESHOLD TEMPERATURE COEFFICIENT (TCV $_{TH}$)		60		ppm/°C	
IN _x to RESET DELAY (t _{RD})		30		μs	$V_{INx} = V_{TH}$ to $(V_{TH} - 50 \text{ mV})$ for all inputs except -0.5 V and -5.0 V $V_{INx} = V_{TH}$ to $(V_{TH} + 50 \text{ mV})$ for -5.0 V and -0.5 V inputs only.
RESET TIMEOUT PERIOD (t _{RP})	140	200	280	ms	
RESET OUTPUT LOW (VoL)			0.4	V	$V_{IN2} = 5.0 \text{ V}, I_{SINK} = 2 \text{ mA}.$
			0.4	٧	$V_{IN2} = 2.5 \text{ V}, I_{SINK} = 1.2 \text{ mA}.$
			0.4	V	$V_{IN2} = V_{IN1} = 1 \text{ V, } I_{SINK} = 50 \mu\text{A.}$
			0.4	V	$V_{IN1} = 1V$, $V_{IN2} = 0$ V, $I_{SINK} = 20 \mu A$
			0.4	V	$V_{IN1} = 0 \text{ V}, V_{IN2} = 1 \text{ V}, I_{SINK} = 20 \mu\text{A}$
RESET OUTPUT HIGH (V _{OH})	$0.8 \times V_{IN2}$			V	$V_{IN2} \ge 2.55 \text{ V}$, $I_{SOURCE} = 6 \mu A$, RESET not asserted.
RESET OUTPUT HIGH SOURCE CURRENT (I _{OH})		10		μΑ	$V_{IN2} \ge 2.55 \text{ V}, \overline{\text{RESET}} \text{ not asserted.}$

 $^{^1}$ The <u>device</u> is powered by Input IN₂. 2 The RESET output is guaranteed to be in the correct state for IN₁ or IN₂ down to 1 V.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
V _{CC} , RESET, GND	−0.3 V to +6 V
Continuous RESET Current	20 mA
IN _x (Positive Reset Threshold)	-0.3 V to +6 V
IN_4 (Negative Reset Threshold, $-5 V$)	−6 V to +0.3 V
IN ₄ ADM6339Q Model (Negative Reset Threshold, –0.5 V)	-2 V to +0.3 V
Storage Temperature Range	−65°C to +125°C
Operating Temperature Range	−40°C to +85°C
Lead Temperature (10 sec)	300°C
Junction Temperature	135°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 3. Thermal Resistance

Package Type	θ _{JA}	Unit		
6-Lead SOT-23	169.5	°C/W		

ESD CAUTION

ESD (electrostatic discharge) sensitive device.Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

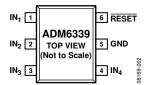


Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN ₁	Monitored Input Voltage 1.
2	IN ₂	Monitored Input Voltage 2. IN₂ is the power supply input for the ADM6339.
3	IN ₃	Monitored Input Voltage 3.
4	IN ₄	Monitored Input Voltage 4.
5	GND	Ground.
6	RESET	Active Low $\overline{\text{RESET}}$ Output. $\overline{\text{RESET}}$ goes low when an input drops below the specified threshold (or above in the case of the -0.5V and -5.0V input options). After all inputs rise above the threshold voltage, $\overline{\text{RESET}}$ remains low for 200 ms (typical) before going high. $\overline{\text{RESET}}$ is open drain with a weak internal pull-up to IN ₂ , typically 10 μ A.

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{\rm IN2} = V_{\rm CC} = 3.0$ V, $T_{\rm A} = 25$ °C, unless otherwise noted.

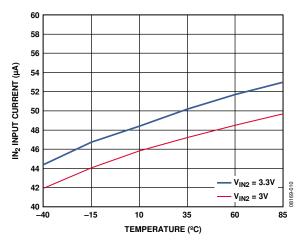


Figure 3. IN₂ Input Current vs. Temperature

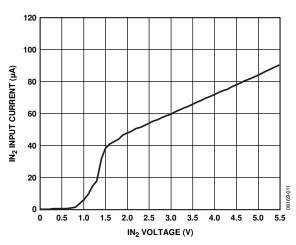


Figure 4. IN₂ Input Current vs. IN₂ Voltage

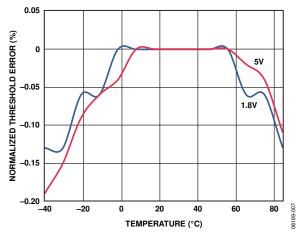


Figure 5. Normalized Threshold Error vs. Temperature

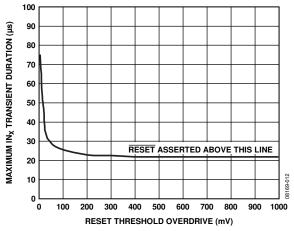


Figure 6. Maximum IN_x Transient Duration vs. Reset Threshold Overdrive

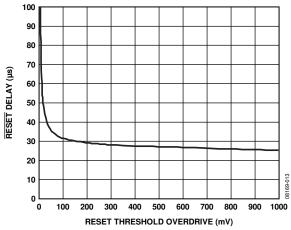


Figure 7. \overline{RESET} Delay vs. Reset Threshold Overdrive (IN $_{\times}$ Decreasing)

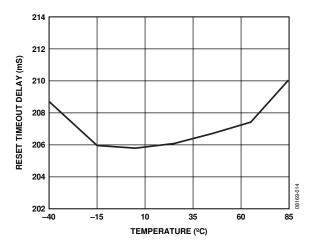


Figure 8. Reset Timeout Delay vs. Temperature

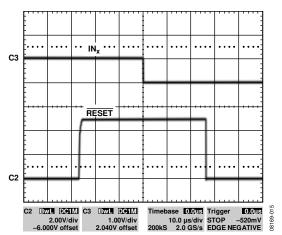


Figure 9. RESET Pull-Up and Pull-Down Response (10 μs/Div)

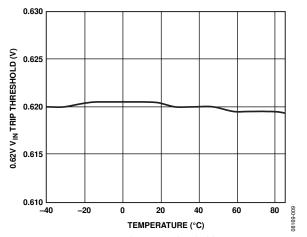


Figure 10. 0.62 V Input Voltage Trip Threshold vs. Temperature

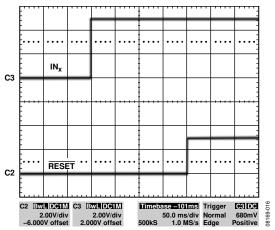


Figure 11. RESET Timeout Delay (50 ms/Div)

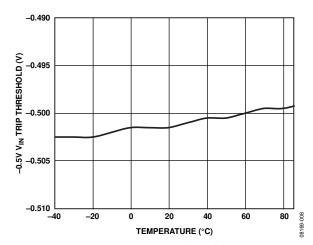


Figure 12. –0.5 V Input Voltage Trip Threshold vs. Temperature

THEORY OF OPERATION

The ADM6339 is a compact, low power supervisory circuit that is capable of monitoring up to four voltages in a multisupply application.

The device includes several factory-set voltage threshold options for monitoring -5.0 V, +1.8 V, +2.5 V, +3.0 V, +3.3 V, and +5.0 V supplies. The ADM6339 is available with one to three adjustable threshold options. The adjustable voltage threshold options available are +1.23 V, +0.62 V, and -0.5 V. See the Ordering Guide section for a list and description of all available options.

INPUT CONFIGURATION

Built-in hysteresis improves the ADM6339's immunity to short input transients, without noticeably reducing the threshold accuracy. The internal comparators each have a hysteresis of 0.3% with respect to the reset threshold voltage. (The IN $_4$ input of the ADM6339Q model has a hysteresis of 0.47% with respect to its reset threshold voltage of -0.487 V.)

Monitored inputs are resistant to short power supply glitches. Figure 6 depicts the ADM6339 glitch immunity data. To increase noise immunity in noisy applications, place a 0.1 μF capacitor between the IN $_2$ input and ground. Adding capacitance to IN $_1$, IN $_3$, and IN $_4$ also improves noise immunity.

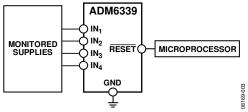


Figure 13. Typical Applications Circuit

 IN_2 must always be used for normal operation because it is the device's power supply input. Do not allow unused monitor inputs to float or to be grounded. Unused IN_3 or IN_4 inputs with positive thresholds can be connected directly to the IN_2 input. Unused IN_4 options with negative thresholds must be tied to a more negative supply.

MONITORING NEGATIVE VOLTAGES < -5.0 V

A number of ADM6339 models include a pretrimmed threshold option to monitor $-5.0~\rm V$ voltage levels. Use a low impedance resistor divider network similar to that shown in Figure 14 to monitor supplies more negative than $-5.0~\rm V$.

The current through the external resistor divider should be greater than the input current for the -5.0 V monitor options.

For an input monitor current error of <1%, the resistor network current should be greater than or equal to 2 mA (for I_{IN4} = 20 μ A maximum). Set R_2 = 2.5 k Ω . Calculate R_1 based on the desired V_{INTH} reset threshold voltage, using the following equation:

$$R_1 = R_2((V_{INTH}/V_{TH}) - 1)$$

where:

 $R_2 \le 2.49 \text{ k}\Omega$.

 $V_{\mbox{\scriptsize INTH}}$ is the desired threshold voltage.

 V_{TH} is the internal threshold voltage.

For example, when monitoring a nominal voltage of -12 V, $V_{\rm INTH}=-11.1$ V, $V_{\rm TH}=-4.63$ V, and $R_2=2.49$ k Ω . Therefore, using the previous equation, $R_1=3.48$ k Ω .

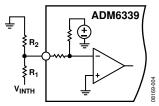


Figure 14. Negative Voltage Monitoring

USER ADJUSTABLE THRESHOLD OPTIONS

The ADM6339 offers the choice of three adjustable IN_x input threshold voltages: +1.23 V, +0.62 V, or -0.5 V.

When using an adjustable threshold of 1.23 V (typical), to monitor a voltage greater than 1.23 V, connect a resistor divider network to the device as shown in Figure 15. V_{INTH} , the desired threshold voltage, can be expressed as

$$V_{INTH} = 1.23 \text{ V}((R_1 + R_2)/(R_2))$$

The ADM6339 has a guaranteed input current of $\pm 0.1~\mu A$ on its 1.23 V adjustable input. Resistor values up to 100 k Ω can be used for R_2 with <1% error.

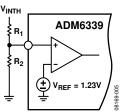


Figure 15. Setting the 1.23 V Adjustable Monitor

The same approach is taken when using the 0.62~V (typical) adjustable threshold input. Use the following equation to solve for the values of R_1 and R_2 :

$$V_{INTH} = 0.62 \text{ V}((R_1 + R_2)/(R_2))$$

The 0.62 V (typical) adjustable threshold input offers high threshold accuracy of $\pm 0.8\%$.

When monitoring a voltage more negative than -0.5 V, a scheme similar to that previously described in the Monitoring Negative Voltages <-5.0 V section is used. For an input monitor current error of <1%, the resistor network current should be $\geq\!500~\mu\text{A}$ (for $I_{\rm IN4}=5~\mu\text{A}$ maximum). Calculate $R_{\rm I}$ based on the desired $V_{\rm INTH}$ reset threshold voltage, using the following equation:

$$R_1 = R_2((V_{INTH}/V_{TH}) - 1)$$

where $V_{\rm INTH}$ is the desired threshold voltage and $V_{\rm TH}$ is the internal threshold voltage, -0.487~V (typical).

RESET OUTPUT CONFIGURATION

The \overline{RESET} output asserts low if a monitored INx voltage drops below its voltage threshold (or goes above its associated threshold in the case of the -0.5~V and -5.0~V input options). After all voltages exceed their associated threshold level, the reset signal remains low for the reset timeout period, t_{RP} (200 ms typical).

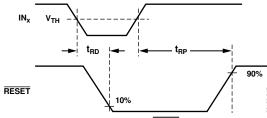


Figure 16. ADM6339 RESET Timing

RESET is open drain with a weak internal pull-up to IN_2 of $10~\mu A$ (typical). Many applications that interface with other logic devices do not require an external pull-up resistor. However, if an external pull-up resistor is required and it is connected to a voltage ranging from 0 V to 5.5 V, the resistor overdrives the internal pull-up. Reverse current flow from the external pull-up voltage to IN_2 is prevented by the internal circuitry.

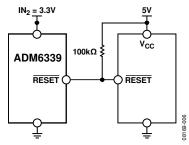
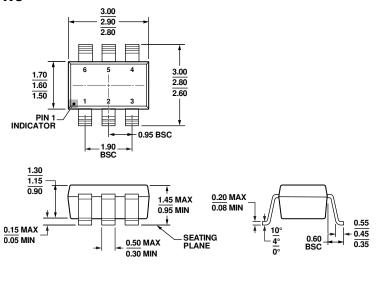



Figure 17. Interfacing with a Different Logic Supply Voltage

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-178-AB

121608-A

Figure 18. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6)

Dimensions shown in millimeters

ROUND SPROCKET HOLES

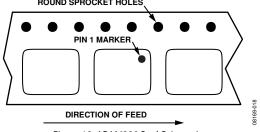


Figure 19. ADM6339 Reel Orientation

ORDERING GUIDE

ONDERING GOIDE									
	Nominal Input Voltage (V)				Tolerance Temperature	Package	Package		
Model ^{1, 2}	IN ₁	IN ₂	IN₃	IN ₄	(%)	Range	Description	Option	Branding
ADM6339AARJZ-RL7	5.0	3.3	2.5	Adj (1.23)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBF
ADM6339BARJZ-RL7	5.0	3.3	2.5	Adj (1.23)	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBH
ADM6339CARJZ-RL7	5.0	3.3	1.8	Adj (1.23)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBJ
ADM6339DARJZ-RL7	5.0	3.3	1.8	Adj (1.23)	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBK
ADM6339EARJZ-RL7	5.0	3.0	2.5	Adj (1.23)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBL
ADM6339FARJZ-RL7	5.0	3.0	2.5	Adj (1.23)	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBM
ADM6339GARJZ-RL7	5.0	3.0	1.8	Adj (1.23)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBN
ADM6339HARJZ-RL7	5.0	3.0	1.8	Adj (1.23)	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBP
ADM6339IARJZ-RL7	5.0	3.3	2.5	1.8	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBQ
ADM6339JARJZ-RL7	5.0	3.3	2.5	1.8	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBR
ADM6339KARJZ-RL7	Adj (1.23)	3.3	2.5	Adj (1.23)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBS
ADM6339LARJZ-RL7	Adj (1.23)	3.3	2.5	Adj (1.23)	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBU
ADM6339MARJZ-RL7	5.0	3.0	Adj (1.23)	-5.0	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MB6
ADM6339NARJZ-RL7	5.0	3.0	Adj (1.23)	-5.0	5	-40°C to +85°C	6-Lead SOT-23	RJ-6	MB7
ADM6339OARJZ-RL7	5.0	3.3	Adj (1.23)	-5.0	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MB8
ADM6339PARJZ-RL7	5.0	3.3	Adj (1.23)	-5.0	5	−40°C to +85°C	6-Lead SOT-23	RJ-6	MB5
ADM6339QARJZ-RL7	Adj (0.62)	3.3	Adj (0.62)	Adj (-0.5)	10	-40°C to +85°C	6-Lead SOT-23	RJ-6	MBX

 $^{^{1}}$ Z = RoHS Compliant Part.

² Nominal input voltage is specified with 10% tolerance.

NOTES

NOTES