mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Continuous Rate 6.5 Mbps to 8.5 Gbps Clock and Data Recovery IC with Integrated Limiting Amp/EQ

Data Sheet

ADN2913

FEATURES

Serial data input: 6.5 Mbps to 8.5 Gbps No reference clock required Exceeds SONET/SDH requirements for jitter transfer/ generation/tolerance Quantizer sensitivity: 6.3 mV typical (limiting amplifier mode) Optional limiting amplifier, equalizer (EQ), and 0 dB EQ inputs Programmable jitter transfer bandwidth to support G.8251 OTN Programmable slice level Sample phase adjust (5.65 Gbps or greater) **Output polarity invert** Programmable LOS threshold via I²C I²C interface to access optional features Loss of signal (LOS) alarm (limiting amplifier mode only) Loss of lock (LOL) indicator **PRBS** generator/detector **Application aware power** 352 mW at 8.5 Gbps, equalizer mode, no clock output 380 mW at 6.144 Gbps, limiting amplifier mode, no clock output

340 mW at 622 Mbps, 0 dB EQ mode, no clock output Power supplies: 1.2 V, flexible 1.8 V to 3.3 V, and 3.3 V 4 mm × 4 mm, 24-lead LFCSP

APPLICATIONS

SONET/SDH OC-1/OC-3/OC-12/OC-48 and all associated FEC rates

1GE, 1GFC, 2GFC, 4GFC, 8GFC, CPRI OS/L.6 up to OS/L.60 Any rate regenerators/repeaters

GENERAL DESCRIPTION

The ADN2913 provides the receiver functions of quantization, signal level detection, and clock and data recovery for continuous data rates from 6.5 Mbps to 8.5 Gbps. The ADN2913 automatically locks to all data rates without the need for an external reference clock or programming. ADN2913 jitter performance exceeds all jitter specifications required by SONET/SDH, including jitter transfer, jitter generation, and jitter tolerance.

The ADN2913 provides manual or automatic slice adjust and manual sample phase adjusts. Additionally, the user can select a limiting amplifier, equalizer, or 0 dB EQ at the input. The equalizer is adaptive or it can be manually set.

The receiver front-end loss of signal (LOS) detector circuit indicates when the input signal level falls below a userprogrammable threshold. The LOS detection circuit has hysteresis to prevent chatter at the LOS output. In addition, the input signal strength can be read through the I²C registers.

The ADN2913 also supports pseudorandom binary sequence (PRBS) generation, bit error detection, and input data rate readback features.

The ADN2913 is available in a compact 4 mm \times 4 mm, 24-lead lead frame chip scale package (LFCSP). All ADN2913 specifications are defined over the ambient temperature range of -40° C to +85°C, unless otherwise noted.

Rev. A

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

ADN2913* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

 ADN2905/ADN2913/ADN2915/ADN2917 Evaluation Board

DOCUMENTATION

Data Sheet

 ADN2913: Continuous Rate 6.5 Mbps to 8.5 Gbps Clock and Data Recovery IC with Integrated Limiting Amp/EQ Data Sheet

User Guides

• UG-877: ADN2905/ADN2913/ADN2915/ADN2917 Evaluation Board Setup and Applications

DESIGN RESOURCES

- ADN2913 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADN2913 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features
Applications1
General Description
Functional Block Diagram1
Revision History
Specifications
Jitter Specifications
Output and Timing Specifications
Timing Diagrams
Absolute Maximum Ratings
Thermal Characteristics9
ESD Caution9
Pin Configuration and Function Descriptions10
Typical Performance Characteristics11
I ² C Interface Timing and Internal Register Descriptions
Register Map14
Theory of Operation
Functional Description
Frequency Acquisition

REVISION HISTORY

2/16—Rev. 0 to Rev. A	
Changes to Figure 5	10
Changes to Table 7	15
Updated Outline Dimensions	
Changes to Ordering Guide	

12/13—Revision 0: Initial Version

Limiting Amplifier	22
Slice Adjust	22
Edge Select	22
Loss of Signal (LOS) Detector	23
Passive Equalizer	24
0 dB EQ	24
Lock Detector Operation	25
Harmonic Detector	25
Output Disable and Squelch	26
I ² C Interface	26
Reference Clock (Optional)	26
Additional Features Available via the I ² C Interface	28
Input Configurations	30
Applications Information	33
Transmission Lines	33
Soldering Guidelines for Lead Frame Chip Scale Package	33
Outline Dimensions	34
Ordering Guide	34

SPECIFICATIONS

 $T_A = T_{MIN}$ to T_{MAX} , $VCC = VCC_{MIN}$ to VCC_{MAX} , $VCC1 = VCC1_{MIN}$ to $VCC1_{MAX}$, $VDD = VDD_{MIN}$ to VDD_{MAX} , VEE = 0 V, input data pattern: PRBS $2^{23} - 1$, ac-coupled, I^2C register default settings, unless otherwise noted.

Table 1.		-			
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DATA RATE SUPPORT RANGE		0.0065		8.5	Gbps
INPUT—DC CHARACTERISTICS					
Peak-to-Peak Differential Input ¹	PIN – NIN			1.0	V
Input Resistance	Differential	95	100	105	Ω
0 dB EQ PATH—CML INPUT					
Input Voltage Range	At PIN or NIN, dc-coupled, RX_TERM_FLOAT = 1 (float)	0.5		VCC	V
Input Common-Mode Level	DC-coupled (see Figure 33), 600 mV p-p differential, RX_TERM_FLOAT = 1 (float)	0.65		VCC – 0.15	V
Differential Input Sensitivity					
OC-48			22		mV p-p
8GFC ²	Jitter tolerance scrambled pattern (JTSPAT), ac-coupled, RX_TERM_FLOAT = 0 (V_{CM} = 1.2 V), BER = 1 × 10 ⁻¹²		200		mV p-p
LIMITING AMPLIFIER INPUT PATH					
Differential Input Sensitivity					
OC-48	$BER = 1 \times 10^{-10}$		6.3		mV p-p
8GFC ²	JTSPAT, BER = 1×10^{-12}		8.3		mV p-p
EQUALIZER INPUT PATH					
Differential Input Sensitivity	15 inch FR-4, 100 Ω differential transmission line,				
	adaptive equalizer (EQ) on		115		
	JISPAI, BER = 1×10^{-12}		115		mv p-p
INPUT—AC CHARACTERISTICS	At 7.5 CHz differential raturn loss can Figure 14		10		dD
	At 7.5 GHZ, differential return loss, see Figure 14		-12		UD
LOSS OF SIGNAL (LOS) DETECT			10		m\/ n n
Loss of Signal Detect	Loss of signal minimum program value		5		mVp-p
	Loss of signal maximum program value		129		mVp-p
Hysteresis (Electrical)			5 7		dB ₩ h-h
LOS Assert Time	AC-coupled ³		135		
	AC-coupled ³		110		μ5 115
			110		μ5
DCO Frequency Error for LOL Assert	With respect to nominal, data collected in lock to reference (LTR) mode		1000		ppm
DCO Frequency Error for LOL Deassert	With respect to nominal, data collected in LTR mode		250		ppm
LOL Assert Response Time	10.0 Mbps		10		ms
·	2.5 Gbps		51		μs
	8.5 Gbps, JTSPAT		25		μs
ACQUISITION TIME					
Lock to Data (LTD) Mode	10.0 Mbps		24		ms
	2.5 Gbps		0.5		ms
	8.5 Gbps, JTSPAT		0.5		ms
Optional LTR Mode ⁴			6.0		ms
DATA RATE READBACK ACCURACY					
Coarse Readback			±5		%
Fine Readback	In addition to reference clock accuracy		±100		ppm

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
POWER SUPPLY VOLTAGE					
VCC		1.14	1.2	1.26	V
VDD		2.97	3.3	3.63	V
VCC1		1.62	1.8	3.63	V
POWER SUPPLY CURRENT	Limiting amplifier mode, clock output enabled				
VCC	1.25 Gbps		277.1	311.0	mA
	3.125 Gbps		256.2	288.3	mA
	4.25 Gbps		270.1	304.0	mA
	6.144 Gbps		303.1	340.4	mA
	8GFC, ² JTSPAT		319.1	359.5	mA
VDD	1.25 Gbps		7.24	8.28	mA
	3.125 Gbps		7.21	8.21	mA
	4.25 Gbps		7.23	8.33	mA
	6.144 Gbps		7.26	8.17	mA
	8GFC, ² JTSPAT		7.20	8.1	mA
VCC1	1.25 Gbps		35.6	46.8	mA
	3.125 Gbps		19.0	24.1	mA
	4.25 Gbps		22.2	28.2	mA
	6.144 Gbps		19.4	24.6	mA
	8GFC, ² JTSPAT		22.2	28.4	mA
TOTAL POWER DISSIPATION					
Clock Output Enabled	Limiting amplifier mode, 1.25 Gbps		420.4		mW
	Limiting amplifier mode, 3.125 Gbps		365.5		mW
	Limiting amplifier mode, 4.25 Gbps		388		mW
	Limiting amplifier mode, 6.144 Gbps		422.5		mW
	Limiting amplifier mode, 8GFC, ² JTSPAT		446.6		mW
Clock Output Disabled	Equalizer mode, 8.5 Gbps		352		mW
	Limiting amplifier mode, 6.144 Gbps		380		mW
	0 dB EQ mode, 622 Mbps		340		mW
OPERATING TEMPERATURE RANGE		-40		+85	°C

¹ See Figure 34.

² Fibre Channel Physical Interface-4 standard, FC-PI-4, Rev 8.00, May 21, 2008.

³ When ac-coupled, the LOS assert and deasert times are dominated by the RC time constant of the ac coupling capacitor and the 100 Ω differential input termination of the ADN2913 input stage. ⁴ This typical acquisition specification applies to all selectable reference clock frequencies in the range of 11.05 MHz to 176.8 MHz.

JITTER SPECIFICATIONS

 $T_A = T_{MIN}$ to T_{MAX} , $VCC = VCC_{MIN}$ to VCC_{MAX} , $VCC1 = VCC1_{MIN}$ to $VCC1_{MAX}$, $VDD = VDD_{MIN}$ to VDD_{MAX} , VEE = 0 V, input data pattern: PRBS $2^{23} - 1$, ac-coupled to 100 Ω differential termination load, I²C register default settings, unless otherwise noted.

Table 2.					
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
PHASE-LOCKED LOOP CHARACTERISTICS					
Jitter Transfer Bandwidth (BW) ¹					
8GFC ²			1242	1676	kHz
OC-48	TRANBW[2:0] = 4 (default)		663	896	kHz
	OTN mode, TRANBW[2:0] = 1		157	181	kHz
OC-12			175		kHz
OC-3			44		kHz
Jitter Peaking					
8GFC ²	20 kHz to 80 MHz		0.004	0.021	dB
OC-48	20 kHz to 10 MHz		0.004	0.023	dB
OC-12			0.01		dB
OC-3			0.01		dB
Jitter Generation					
8GFC ²	Unfiltered		0.005		UI rms
	Unfiltered		0.044		Ul p-p
OC-48	12 kHz to 20 MHz		0.0025		UI rms
	Unfiltered			0.0046	UI rms
	12 kHz to 20 MHz		0.0156		Ul p-p
	Unfiltered			0.0276	Ul p-p
OC-12	12 kHz to 5 MHz		0.0007		UI rms
	Unfiltered			0.0011	UI rms
	12 kHz to 5 MHz		0.0038		Ul p-p
	Unfiltered			0.0076	Ul p-p
OC-3	12 kHz to 1.3 MHz		0.0002		UI rms
	Unfiltered			0.0003	UI rms
	12 kHz to 1.3 MHz		0.0008		Ul p-p
	Unfiltered			0.0018	Ul p-p
Jitter Tolerance	TRANBW[2:0] = 4 (default)				
8GFC, ² JTSPAT					
Sinusoidal Jitter at 340 kHz			6.7		Ul p-p
Sinusoidal Jitter at 5.098 MHz			0.53		Ul p-p
Sinusoidal Jitter at 80 MHz			0.59		Ul p-p
Rx Jitter Tracking Test ³	Voltage modulation amplitude (VMA) = 170 mV p-p at 100 MHz ,				
	at 2.5 GHz excitation frequency ⁴				
510 kHz, 1 UI		10 ⁻¹²	<10 ⁻¹²		BER
100 kHz, 5 UI		10 ⁻¹²	<10 ⁻¹²		BER
OC-48	600 Hz		1528		UI p-p
	6 kHz		378		u-aIU
	100 kHz		16.6		u-aIU
	1 MHz		0.70		Ulp-p
	20 MHz		0.63		Ulp-p
OC-12	30 Hz		193		Ulp-p
	300 Hz		44		Ulp-p
	25 kHz		19.2		Ulp-p
	250 kHz		0.82		Ulp-p
	5 MHz		0.60		UI p-p

Parameter	Test Conditions/Comments	Min Typ Max	Unit
OC-3	30 Hz	50.0	Ul p-p
	300 Hz	24.0	Ul p-p
	6500 Hz	14.4	Ul p-p
	65 kHz	0.80	Ul p-p
	1.3 MHz	0.61	Ul p-p

¹ Jitter transfer bandwidth is programmable by adjusting TRANBW[2:0] in the DPLLA register (Address 0x10).

² Fibre Channel Physical Interface-4 standard, FC-PI-4, Rev 8.00, May 21, 2008.

³ Conditions of FC-PI-4, Rev 8.00, Table 27, 800-DF-EL-S apply. ⁴ Must have zero errors during the tests for an interval of time that is $\leq 10^{-12}$ BER to pass the tests.

OUTPUT AND TIMING SPECIFICATIONS

T_A = T_{MIN} to T_{MAX}, VCC = VCC_{MIN} to VCC_{MAX}, VCC1 = VCC1_{MIN} to VCC1_{MAX}, VDD = VDD_{MIN} to VDD_{MAX}, VEE = 0 V, input data pattern: PRBS 2^{23} – 1, ac-coupled to 100 Ω differential termination load, I²C register default settings, unless otherwise noted.

Table 3.					
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
CML OUTPUT CHARACTERISTICS					
Data Differential Output Swing	8GFC, ¹ DATA_SWING[3:0] setting = 0xC (default)	540	600	666	mV p-p
	8GFC, ¹ DATA_SWING[3:0] setting = 0xF (maximum)	662	725	778	mV p-p
	8GFC, ¹ DATA_SWING[3:0] setting = 0x4 (minimum	190	214	245	mV p-p
Clock Differential Output Swing	8GFC, ¹ CLOCK_SWING[3:0] setting = 0xC (default)	426	518	588	mV p-p
	8GFC, ¹ CLOCK_SWING[3:0] setting = 0xF (maximum)	489	603	680	mV p-p
	8GFC, CLOCK_SWING[3:0] setting = 0x4 (minimum)	166	213	245	mV p-p
Output High Voltage	V _{OH} , dc-coupled	VCC – 0.05	VCC – 0.025	VCC	V
Output Low Voltage	V _{oL} , dc-coupled	VCC – 0.36	VCC – 0.325	VCC – 0.29	V
CML OUTPUT TIMING CHARACTERISTICS					
Rise Time	20% to 80%, at 8GFC, ¹ DATOUTN/DATOUTP	20.4	33.1	44	ps
	20% to 80%, at 8GFC, ¹ CLKOUTN/CLKOUTP	23.1	29.7	35.8	ps
Fall Time	80% to 20%, at 8GFC, ¹ DATOUTN/DATOUTP	23	34.2	46.8	ps
	80% to 20%, at 8GFC, ¹ CLKOUTN/CLKOUTP	25	31.3	37.1	ps
Setup Time, Full Rate Clock	t _s (see Figure 2)		0.5		UI
Hold Time, Full Rate Clock	t _H (see Figure 2)		0.5		UI
Setup Time, Half Rate/DDR Clock	t _s (see Figure 3)		0.5		UI
Hold Time, Half Rate/DDR Clock	t _H (see Figure 3)		0.5		UI
I ² C INTERFACE DC CHARACTERISTICS	LVTTL				
Input High Voltage	VIH	2.0			v
Input Low Voltage	VIL			0.8	v
Input Current	$V_{\text{IN}} = 0.1 \times \text{VDD}$ or $V_{\text{IN}} = 0.9 \times \text{VDD}$	-10.0		+10.0	μΑ
Output Low Voltage	V_{OL} , $I_{OL} = 3.0 \text{ mA}$			0.4	V
I ² C INTERFACE TIMING	See Figure 22				
SCK Clock Frequency				400	kHz
SCK Pulse Width High	t _{HIGH}	600			ns
SCK Pulse Width Low	t _{LOW}	1300			ns
Start Condition Hold Time	t _{HD;STA}	600			ns
Start Condition Setup Time	t _{su;sta}	600			ns
Data Setup Time	t _{su;DAT}	100			ns
Data Hold Time	t _{HD;DAT}	300			ns
SCK/SDA Rise/Fall Time	t _R /t _F	$20 + 0.1 C_b^2$		300	ns
Stop Condition Setup Time	t _{su;sto}	600			ns
Bus Free Time Between Stop and Start Conditions	t _{BUF}	1300			ns

Data Sheet

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
LVTTL DC INPUT CHARACTERISITICS					
(I ² C_ADDR Pin)					
Input Voltage					
High	VIH	2.0			V
Low	VIL			0.8	V
Input Current					
High	$I_{IH}, V_{IN} = 2.4 V$			5	μΑ
Low	$I_{IL}, V_{IN} = 0.4 V$	-5			μΑ
LVTTL DC OUTPUT CHARACTERISITICS					
(LOS/LOL Pins)					
Output Voltage					
High	V_{OH} , $I_{OH} = +2.0 \text{ mA}$	2.4			V
Low	V_{OL} , $I_{OL} = -2.0 \text{ mA}$			0.4	V
REFERENCE CLOCK CHARACTERISTICS	Optional LTR mode				
Input Compliance Voltage	V™ (no input offset, no input current),	0.55		1.0	V
(Common-Mode Voltage Referred	see Figure 30, ac-coupled input				
to Ground)					
Minimum Input Drive	See Figure 30, ac-coupled, differential input		100		mV p-p diff
Reference Frequency		11.05		176.8	MHz
Required Accuracy ³	AC-coupled, differential input		100		ppm

¹ Fibre Channel Physical Interface-4 standard, FC-PI-4, Rev 8.00, May 21, 2008. ² C_b is the total capacitance of one bus line in picofarads (pF). If mixed with high speed (HS) mode devices, faster rise/fall times are allowed (refer to the Philips ¹/₂C Bus Specification, Version 2.1).

³ Required accuracy in dc-coupled mode is guaranteed by design as long as the clock common-mode voltage output matches the reference clock commonmode voltage range.

TIMING DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage (VCC = 1.2 V)	1.26 V
Supply Voltage (VDD and VCC1 = 3.3 V)	3.63 V
Maximum Input Voltage (REFCLKP/REFCLKN, NIN/PIN)	1.26 V
Minimum Input Voltage (REFCLKP/REFCLKN, NIN/PIN)	$V_{\text{EE}}-0.4V$
Maximum Input Voltage (SDA, SCK, I ² C_ADDR)	3.63 V
Minimum Input Voltage (SDA, SCK, I ² C_ADDR)	$V_{\text{EE}}-0.4V$
Maximum Junction Temperature	125°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 10 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL CHARACTERISTICS

Thermal Resistance

Thermal resistance is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages, for a 4-layer board with the exposed pad soldered to VEE.

Table 5. Thermal Resistance

Package Type	θ _{JA} 1	θ _{JB} ²	θ」23	Unit
24-Lead LFCSP	45	5	11	°C/W

¹ Junction to ambient.

² Junction to board.

³ Junction to case.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Type ¹	Description
1	VCC	Р	1.2 V Supply for Limiting Amplifier.
2	PIN	AI	Positive Differential Data Input (CML).
3	NIN	AI	Negative Differential Data Input (CML).
4	VEE	Р	Ground for Limiting Amplifier.
5	LOS	DO	Loss of Signal Output (Active High).
6	LOL	DO	Loss of Lock Output (Active High).
7	VEE	Р	Digital Control Oscillator (DCO) Ground.
8	VCC1	Р	1.8 V to 3.3 V DCO Supply.
9	VDD	Р	3.3 V High Supply.
10	CLKOUTN	DO	Negative Differential Recovered Clock Output (CML).
11	CLKOUTP	DO	Positive Differential Recovered Clock Output (CML).
12	VEE	Р	Ground for CML Output Drivers.
13	VCC	Р	1.2 V Supply for CML Output Drivers.
14	DATOUTN	DO	Negative Differential Retimed Data Output (CML).
15	DATOUTP	DO	Positive Differential Retimed Data Output (CML).
16	DNC	DI	Do Not Connect. Leave this pin unconnected or tie it to VEE (ground).
17	VDD	Р	3.3 V High Supply.
18	VCC	Р	1.2 V Core Digital Supply.
19	SCK	DI	Clock for I ² C Interface.
20	SDA	DIO	Bidirectional Data for I ² C Interface.
21	VCC	Р	1.2 V Core Digital Supply.
22	I ² C_ADDR	DI	$I^{2}C$ Address Setting. Sets the device $I^{2}C$ address = 0x80 when $I^{2}C_{ADDR} = 0$. Sets the device $I^{2}C$ address = 0x82 when $I^{2}C_{ADDR} = 1$.
23	REFCLKN	DI	Negative Reference Clock Input (Optional).
24	REFCLKP	DI	Positive Reference Clock Input (Optional).
	EPAD	Р	Exposed Pad (VEE). The exposed pad on the bottom of the device package must be connected to VEE electrically. The exposed pad works as a heat sink.

¹ P = power, AI = analog input, DI = digital input, DO = digital output, DIO = digital input/output.

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = 25^{\circ}$ C, VCC = 1.2 V, VCC1 = 1.8 V, VDD = 3.3 V, VEE = 0 V, input data pattern: PRBS 2^{15} – 1, ac-coupled inputs and outputs, unless otherwise noted.

Figure 14. Typical S11 Spectrum Performance

Figure 15. Sensitivities of SONET/SDH Data Rates (BER = 10^{-10})

Figure 16. BER in Equalizer Mode vs. EQ Compensation at 8GFC (Measured with an 8GFC Signal of 400 mV p-p diff, on 15-Inch FR4 Traces, with Variant EQ Compensation, Including Adaptive EQ)

Figure 17. Sensitivities of non-SONET/SDH Data Rates (BER = 10^{-12})

I²C INTERFACE TIMING AND INTERNAL REGISTER DESCRIPTIONS

REGISTER MAP

Writing to register bits other than those labeled in Table 7 is not recommended and may cause unintended results.

Table 7. Internal Register Map¹

Reg Name	R/W	Addr (Hex)	Default (Hex)	DZ	D6	D5	D4	D3	D2	D1	DO
Readback/Sta	tus	(110,4)	(ITCX)	07	20	00	54	23	02		50
FREOMEASO	R	0x0	х				EREO0[7:0] (R	ATE FREO(7:0)		
FREQMEAS1	R	0x1	X		EREO1[7:0] (BATE_EREO[15:8])						
FREOMEAS2	R	0x2	X		FREQ2(7:0) (RATE_FREQ(23:16))						
FREO RB1	R	0x4	X		VCOSEI [7:0]						
FREQ_RB2	R	0x5	X	x	FULLBATE		DIVR	ATE[3:0]		VCO	SFI [9:8]
STATUSA	R	0x6	X	X	X	LOS	LOL	LOS done	Static LOL	X	RATE
						status	status				MEAS_ COMP
General Contr	ol										
CTRLA	R/W	0x8	0x10	0	C	DR_MODE[2:0]	0	Reset static LOL	RATE_ MEAS_ EN	RATE_ MEAS_ RESET
CTRLB	R/W	0x9	0x00	SOFTWARE_ RESET	INIT_ FREQ_ ACQ	CDR bypass	LOL_ CONFIG	LOS_PDN	LOS polarity	0	0
CTRLC	R/W	0xA	0x05	0	0	0	0	0	REFCLK_ PDN	0	1
FLL Control				•					•		
LTR_MODE	R/W	0xF	0x00	0	LOL data	FREF_	RANGE[1:0]		DATA_TO_RE	F_RATIO[3:0]	
D/PLL Control			•	•		•					
DPLLA	R/W	0x10	0x1C	0	0	0	EDGE_	SEL[1:0]		TRANBW[2:0]
DPLLD	R/W	0x13	0x06	0	0	0	0	0	ADAPTIVE_ SLICE_EN	DLL_S	LEW[1:0]
Phase	R/W	0x14	0x00	0	0	0	0		SAMPLE_F	HASE[3:0]	
Slice	W	0x15	Х	Extended slice				Slice[6:0]			
LA_EQ	R/W	0x16	0x08	RX_TERM_ FLOAT	INPUT_S	EL[1:0]	ADAPTIVE_ EQ_EN		EQ_BOOST[3:0]		
Slice Readback	R	0x73	х				SLICE	_RB[7:0]			
Output Contro	ol			•							
OUTPUTA	R/W	0x1E	0x00	0	0	Data squelch	DATOUT_ DISABLE	CLKOUT_ DISABLE	DDR_ DISABLE	DATA_ POLARITY	CLOCK_ POLARITY
OUTPUTB	R/W	0x1F	0xCC		DATA_SW	NG[3:0]			CLOCK_S	WING[3:0]	<u> </u>
LOS Control											
LOS_DATA	R/W	0x36	0x00				LOS_D	DATA[7:0]			
LOS_CTRL	R/W	0x74	0x00	0	0	LOS_ WRITE	LOS_ ENABLE	LOS_ RESET	LC	S_ADDRESS[2:0]
LOS_THRESH	R/W	0x38	0x0A				LOS_THRI	ESHOLD[7:0]			
PRBS Control	_		_	-	_				-		
PRBS Gen 1	R/W	0x39	0x00	0	0	DATA_ CID_BIT	DATA_ CID_EN	0	DATA_ GEN_EN	DATA_GEI	N_MODE[1:0]
PRBS Gen 2	R/W	0x3A	0x00				DATA_CID	LENGTH[7:0]			
PRBS Gen 3	R/W	0x3B	0x00				PROG_	DATA[7:0]			
PRBS Gen 4	R/W	0x3C	0x00				PROG_E	DATA[15:8]			
PRBS Gen 5	R/W	0x3D	0x00				PROG_D	ATA[23:16]			
PRBS Gen 6	R/W	0x3E	0x00				PROG_D	ATA[31:24]			
PRBS Rec 1	R/W	0x3F	0x00	0	0	0	0	DATA_ RECEIVER_ CLEAR	DATA_ RECEIVER_ ENABLE	DATA_I MOI	Receiver_ De[1:0]
PRBS Rec 2	R	0x40	0x00				PRBS_ERRO	R_COUNT[7:0]			
PRBS Rec 3	R	0x41	0x00	х	Х	Х	x	X	Х	Х	PRBS_ ERROR
PRBS Rec 4	R	0x42	Х		•		DATA_LO	DADED[7:0]	•	•	

				-			-				
Reg Name	R/W	Addr (Hex)	Default (Hex)	D7	D6	D5	D4	D3	D2	D1	D0
PRBS Rec 5	R	0x43	Х		DATA_LOADED[15:8]						
PRBS Rec 6	R	0x44	Х		DATA_LOADED[23:16]						
PRBS Rec 7	R	0x45	Х		DATA_LOADED[31:24]						
ID/Revision	ID/Revision										
REV	R	0x48	0x54		REV[7:0]						
ID	R	0x49	0x15		ID[7:0]						
HI_CODE	R	0x20	0xA8		Reserved						
LO_CODE	R	0x21	0x00		Reserved						

¹ X means don't care.

Table 8. Status Register, STATUSA (Address 0x6)

Bits	Bit Name	Bit Description		
D5	LOS status	0 = no loss of signal		
		1 = loss of signal		
D4	LOL status	0 = locked		
		1 = frequency acquisition mode		
D3	LOS done	0 = LOS action not completed		
		1 = LOS action completed		
D2	Static LOL	0 = no LOL event since last reset		
		1 = LOL event since last reset; clear using reset static LOL bit, Bit D2 in Register 0x8		
D0	RATE_MEAS_COMP	Rate measurement complete		
		0 = frequency measurement incomplete		
		1 = frequency measurement complete; clear using RATE_MEAS_RESET bit, Bit D0 in Register 0x8		

Table 9. Control Register, CTRLA (Address 0x8)

Bits	Bit Name	Bit Description
D7		Reserved to 0.
D6:D4	CDR_MODE[2:0]	CDR modes.
		001 = lock to data (LTD).
		011 = lock to reference (LTR).
		000, 010, 1xx = reserved.
D3		Reserved to 0.
D2	Reset static LOL	Set to 1 to clear static LOL (Bit D2 in Register 0x6).
D1	RATE_MEAS_EN	Fine data rate measurement enable. Set to 1 to initiate a rate measurement.
D0	RATE_MEAS_RESET	Rate measurement reset. Set to 1 to clear a rate measurement.

Table 10. Control Register, CTRLB (Address 0x9)

Bits	Bit Name	Bit Description
D7	SOFTWARE_RESET	Software reset. Write a 1 followed by a 0 to reset the device.
D6	INIT_FREQ_ACQ	Initiate frequency acquisition. Write a 1 followed by a 0 to initiate a frequency acquisition (optional).
D5	CDR bypass	CDR bypass.
		0 = CDR enabled.
		1 = CDR bypassed.
D4	LOL_CONFIG	LOL configuration.
		0 = normal LOL.
		1 = static LOL.
D3	LOS_PDN	LOS power-down.
		0 = normal LOS.
		1 = LOS powered down.
D2	LOS polarity	LOS polarity.
		0 = active high LOS pin.
		1 = active low LOS pin.
D1:D0		Reserved to 0.

Table 11. Control Register, CTRLC (Address 0xA)				
Bits	Bit Name	Bit Description		
D7:D3		Reserved to 0.		
D2	REFCLK_PDN	Reference clock power-down. Write a 0 to enable the reference clock.		
D1		Reserved to 0.		
D0		Reserved to 1.		

Table 12. Lock to Reference Clock Mode Programming Register, LTR_MODE (Address 0xF)

Bits	Bit Name	Bit Description
D7		Reserved to 0
D6	LOL data	LOL data
		0 = valid recovered clock vs. reference clock during tracking
		1 = valid recovered clock vs. data during tracking
D5:D4	FREF_RANGE[1:0]	f _{REF} range
		00 = 11.05 MHz to 22.1 MHz
		01 = 22.1 MHz to 44.2 MHz
		10 = 44.2 MHz to 88.4 MHz
		11 = 88.4 MHz to 176.8 MHz
D3:D0	DATA_TO_REF_RATIO[3:0]	Data to reference ratio ¹ (N $\ge 2^{(N-1)}$, where N is the decimal equivalent of the binary code)
		0000 = 1/2
		0001 = 1
		0010 = 2
		0011 = 4
		0100 = 8
		1010 = 512

¹ Data ÷ DIV_f_{Ref}, where DIV_f_{Ref} is the divided down reference referred to the 11.05 MHz to 22.1 MHz band (see the Reference Clock (Optional) section). Data Rate/ $2^{(LTR_MODE[3:0]-1)} = REFCLK/2^{LTR_MODE[5:4]}$

Bits	Bit Name	Bit Description
D7:D5		Reserved to 0.
D4:D3	EDGE_SEL[1:0]	Edge for phase detection. See the Edge Select section for more information.
		00 = rising and falling edge data.
		01 = rising edge data.
		10 = falling edge data.
		11 = rising and falling edge data.
D2:D0	TRANBW[2:0]	Transfer bandwidth. Scales the transfer bandwidth. Default value is 4, resulting in the 8GFC default BW shown in Table 2. See the Transfer Bandwidth section for more information.
		Transfer BW = Default BW \times (TRANBW[2:0]/4)

Table 13. D/PLL Control Register, DPLLA (Address 0x10)

Table 14. D/PLL Control Register, DPLLD (Address 0x13)

Bits	Bit Name	Bit Description
D7:D3		Reserved to 0.
D2	ADAPTIVE_SLICE_EN	Adaptive slice enable. 1 = enables automatic slice adjust.
D1:D0	DLL_SLEW[1:0]	DLL slew. Sets the BW of the DLL. See the DLL Slew section for more information.

Table 15. Phase Control Register, Phase (Address 0x14)

Bits	Bit Name	Bit Description
D7:D4		Reserved to 0.
D3:D0	SAMPLE_PHASE[3:0]	Adjust the phase of the sampling instant for data rates above 5.65 Gbps in steps of 1/32 UI. This register is in twos complement format. See the Sample Phase Adjust section for more information.

Table 16. Slice Level Control Register, Slice (Address 0x15)

Bits	Bit Name	Bit Description
D7	Extended slice	Extended slice enable.
		0 = normal slice mode.
		1 = extended slice mode.
D6:D0	Slice[6:0]	Slice is a digital word that sets the input threshold. See the Slice Adjust section for more information. When slice[6:0] = 0000000, the slice function is disabled.

Table 17. Input Stage Programming Register, LA_EQ (Address 0x16)

Bits	Bit Name	Bit Description
D7	RX_TERM_FLOAT	Rx termination float.
		0 = termination common-mode driven.
		1 = termination common-mode floated (V _{CC} = 1.2 V).
D6:D5	INPUT_SEL[1:0]	Input stage select.
		00: limiting amplifier.
		01: equalizer.
		10: 0 dB EQ.
		11: undefined.
D4	ADAPTIVE_EQ_EN	Enable adaptive EQ.
		0 = manual EQ control.
		1 = adaptive EQ enabled.
D3:D0	EQ_BOOST[3:0]	Equalizer gain. These bits set the EQ gain. See the Passive Equalizer section for more information.

Bits	Bit Name	Bit Description
D7:D6		Reserved to 0
D5	Data squelch	Squelch
		0 = normal data
		1 = squelch data
D4	DATOUT_DISABLE	Data output disable
		0 = data output enabled
		1 = data output disabled
D3	CLKOUT_DISABLE	Clock output disable
		0 = clock output enabled
		1 = clock output disabled
D2	DDR_DISABLE	Double data rate
		0 = DDR clock enabled
		1 = DDR clock disabled
D1	DATA_POLARITY	Data polarity
		0 = normal data polarity
		1 = flip data polarity
D0	CLOCK_POLARITY	Clock polarity
		0 = normal clock polarity
		1 = flip clock polarity

Table 18. Output Control Register, OUTPUTA (Address 0x1E)

Bits	Bit Name	Bit Description
D7:D4	DATA_SWING[3:0]	Adjust data output amplitude. Step size is approximately 50 mV differential.
		Default register value is 0xC. Typical differential data output amplitudes are
		0x1 = invalid.
		0x2 = invalid.
		0x3 = invalid.
		0x4 = 200 mV.
		0x5 = 250 mV.
		0x6 = 300 mV.
		0x7 = 345 mV.
		0x8 = 390 mV.
		0x9 = 440 mV.
		0xA = 485 mV.
		0xB = 530 mV.
		0xC = 575 mV.
		0xD = 610 mV.
		0xE = 640 mV.
		0xF = 655 mV.
D3:D0	CLOCK_SWING[3:0]	Adjust clock output amplitude. Step size is approximately 50 mV differential.
		Default register value is 0xC. Typical differential clock output amplitudes are
		0x1 = invalid.
		0x2 = invalid.
		0x3 = invalid.
		0x4 = 200 mV.
		0x5 = 250 mV.
		0x6 = 300 mV.
		0x7 = 345 mV.
		0x8 = 390 mV.
		0x9 = 440 mV.
		0xA = 485 mV.
		0xB = 530 mV.
		0xC = 575 mV.
		0xD = 610 mV.
		0xE = 640 mV.
		0xF = 655 mV.

THEORY OF OPERATION

The ADN2913 implements clock and data recovery for data rates between 6.5 Mbps and 8.5 Gbps. A front end is configurable to either amplify or equalize the nonreturn-to-zero (NRZ) input waveform to full-scale digital logic levels, or to bypass a full digital logic signal.

The user can choose one of three input stages to process the data: a high gain limiting amplifier with better than 10 mV sensitivity, a high-pass passive equalizer with up to 10 dB of boost at 5 GHz, or a 0 dB EQ buffer with 600 mV sensitivity.

An on-chip LOS detector works with the high sensitivity limiting amplifier. The default threshold for the LOS detector is the sensitivity of the device, with a maximum threshold level of 128 mV p-p. The limiting amplifier slice threshold can use a factory trim setting, a user defined threshold set by the I²C interface, or an adjusted level for the best eye opening at the phase detector.

When the input signal is corrupted due to FR-4 or other impairments in the printed circuit board (PCB) traces, a passive equalizer can be one of the signal integrity options. The equalizer high frequency boost is configurable through the I²C registers. A user enabled adaptation is included that automatically adjusts the equalizer to achieve the widest eye opening. The equalizer can be manually set for any data rate, but adaptation is available only at data rates greater than 5.5 Gbps.

When a signal is presented to the clock and data recovery (CDR) system, the ADN2913 acts as a delay-locked and phase-locked loop (PLL) circuit for clock recovery and data retiming from an NRZ encoded data stream. Input data is sampled by a high speed clock. A digital downsampler accommodates data rates spanning three orders of magnitude. Downsampled data is applied to a binary phase detector (see Figure 23).

The phase of the input data signal is tracked by two separate feedback loops. A high speed delay-locked loop (DLL) path combines a digital integrator with a digitally controlled phase shifter (PSH) on the DCO clock to track the high frequency components of jitter. A separate PLL composed of a digital integrator and DCO tracks the low frequency components of jitter. The initial frequency of the DCO is set by a third loop that compares the DCO frequency with the input data frequency. This third loop also sets the decimation ratio of the digital downsampler.

The delay-locked and PLLs together track the phase of the input data. For example, when the clock lags the input data, the phase detector drives the DCO to a higher frequency and decreases the delay of the clock through the phase shifter; both of these actions serve to reduce the phase error between the clock and data. Because the loop filter is an integrator, the static phase error is driven to zero.

Another view of the circuit is that the phase shifter implements the zero required for frequency compensation of a second-order PLL. This zero is placed in the feedback path and, therefore, does not appear in the closed-loop transfer function. Because this circuit has no zero in the closed-loop transfer, jitter peaking is eliminated.

The combination of the delay-locked and PLLs simultaneously provide wideband jitter tolerance and narrow-band jitter filtering. The simplified block diagram in Figure 23 shows that Z(s)/X(s) is a second-order low-pass jitter transfer function that provides excellent filtering. The low frequency pole is formed by dividing the gain of the PLL by the gain of the DLL, where the upsampling and zero-order hold in the DLL has a gain approaching N at the transfer bandwidth of the loop. Note that the jitter transfer has no zero, unlike an ordinary second-order PLL. This means that the main PLL loop has no jitter peaking, making the circuit ideal for signal regenerator applications, where jitter peaking in a cascade of regenerators can contribute to hazardous jitter accumulation.

The error transfer, e(s)/X(s), has the same high-pass form as an ordinary PLL up to the slew rate limit of the DLL with a binary phase detector. This transfer function can be optimized to give excellent wideband jitter tolerance because the jitter transfer function, Z(s)/X(s), provides the narrow-band jitter filtering.

Data Sheet

The delay-locked and PLLs contribute to overall jitter tolerance. At low frequencies of input jitter on the data signal, the integrator in the loop filter provides high gain to track large jitter amplitudes with small phase error. In this case, the oscillator is frequency modulated and jitter is tracked as in an ordinary PLL. The amount of low frequency jitter that can be tracked is a function of the DCO tuning range. A wider tuning range gives larger tolerance of low frequency jitter. The internal loop control word remains small for small jitter frequency so that the phase shifter remains close to the center of the range and, thus, contributes little to the low frequency jitter tolerance.

At medium jitter frequencies, the gain and tuning range of the DCO are not large enough to track input jitter. In this case, the DCO control word becomes large and saturates. As a result, the DCO frequency remains at an extreme of the tuning range.

The size of the DCO tuning range, therefore, has only a small effect on the jitter tolerance. The DLL control range is now larger; therefore, the phase shifter tracks the input jitter. An infinite range phase shifter is used on the clock. Consequently, the minimum range of timing mismatch between the clock at the data sampler and the retiming clock at the output is limited by the depth of the FIFO to 32 UI.

There are two ways to acquire the data rate. The default mode is for the frequency to lock to the input data, where a finite state machine extracts frequency measurements from the data to program the DCO and loop division ratio so that the sampling frequency matches the data rate to within 250 ppm. The PLL is enabled, driving this frequency difference to 0 ppm. The second mode is to lock to the reference, in which case the user provides a reference clock between 11.05 MHz and 176.8 MHz. Division ratios must be written to a serial port register.

FUNCTIONAL DESCRIPTION FREQUENCY ACQUISITION

The ADN2913 acquires the frequency from the input data over a range of data frequencies from 6.5 Mbps to 8.5 Gbps. The lock detector circuit compares the frequency of the DCO and the frequency of the incoming data. When these frequencies differ by more than 1000 ppm, the LOL pin is asserted and a new frequency acquisition cycle is initiated. The DCO frequency is reset to the lowest point of the range, and the internal division rate is set to the lowest value of N = 1, which is the highest octave of data rates. The frequency detector then compares this sampling rate frequency to the data rate frequency and either increases N by a factor of 2 if the sampling rate frequency is greater than the data rate frequency, or increases the DCO frequency if the data rate frequency is greater than the sampling rate frequency. Initially, the DCO frequency is incremented in large steps to aid fast acquisition. As the DCO frequency approaches the data frequency, the step size is reduced until the DCO frequency is within 250 ppm of the data frequency, at which point LOL is deasserted.

When LOL is deasserted, the frequency-locked loop is turned off. The PLL or DLL pulls in the DCO frequency until the DCO frequency equals the data frequency.

LIMITING AMPLIFIER

The limiting amplifier has differential inputs (PIN and NIN) that are each internally terminated with 50 Ω to an on-chip voltage reference (V_{CM} = 0.95 V typically). The inputs must be ac-coupled. Input offset is factory trimmed to achieve better than 10 mV p-p typical sensitivity with minimal drift. The limiting amplifier can be driven differentially or single-ended. DC coupling of the limiting amplifier is not possible because the user must supply a common-mode voltage to exactly match the internal common-mode voltage; otherwise, the internal 50 Ω termination resistors absorb the difference in common-mode voltages.

Another reason that the limiting amplifier cannot be dc-coupled is that the factory trimmed input offset becomes invalid. The offset is adjusted to zero by differential currents from the slice adjust DAC (see Figure 1). With ac coupling, all of the current goes to the 50 Ω termination resistors on the ADN2913. However, with dc coupling, this current is shared with the external drive circuit, and calibration of the offset is lost. In addition, the slice adjust must have all the current from the slice adjust DAC go to the resistors; otherwise, the calibration is lost (see the Slice Adjust section).

SLICE ADJUST

The quantizer slicing level can be offset by $\pm 100 \text{ mV}$ in 1.6 mV steps or by $\pm 15 \text{ mV}$ in 0.24 mV steps to mitigate the effect of amplified spontaneous emission (ASE) noise or duty cycle distortion. The quantizer slice adjust level is set by the slice[6:0] bits in Register 0x15.

Accurate control of the slice threshold requires the user to read back the factory trimmed offset, which is stored as a 7-bit number in the slice readback register (Register 0x73). Use Table 20 to decode the measured offset of the device, where an LSB corresponds to 0.24 mV.

Table 20. Program	Slice Level, Normal Slice Mode
(Extended Slice = 0)	

Slice[6:0]	Decimal Value	Offset	
0000000	0	Slice function disabled	
0000001	1	–15 mV	
1000000	64	0 mV	
1111111	127	+14.75 mV	

The amount of offset required for manual slice adjustment is determined by subtracting the offset of the device from the desired slice adjust level. Use Table 20 or Table 21 to determine the code word to be written to the slice register.

An extended slice with coarser granularity for each LSB step is found in Table 21. Setting the extended slice bit (Bit 7) = 1 in Register 0x15 scales the full-scale range of the slice adjust by a factor of 6.

Table 21. Program Slice Level, Extended Slice Mode
(Extended Slice = 1)

(Extended once T)			
Slice[6:0]	Decimal Value	Offset	
0000000	128	Slice function disabled	
0000001	129	–100 mV	
	•••		
1000000	192	0 mV	
	•••		
1111111	255	+100 mV	

When manual slice is desired, disable the dc offset loop, which drives duty cycle distortion on the data to 0. Adaptive slice is disabled by setting ADAPTIVE_SLICE_EN = 0 in Register 0x13.

EDGE SELECT

A binary, or Alexander phase, detector drives both the DLL and PLL at all division rates. Duty cycle distortion on the received data leads to a dead band in the phase detector transfer function if phase errors are measured on both rising and falling data transitions. This dead band leads to jitter generation of unknown spectral composition whose peak-to-peak amplitude is potentially large.

The recommended usage of the device when the dc offset loop is disabled is to compute phase errors exclusively on either the rising data edges with EDGE_SEL[1:0] (Bits[D4:D3] in Register 0x10) = 1 (decimal) or falling data edges with EDGE_SEL[1:0] = 2. The alignment of the clock to the rising data edges with EDGE_ SEL[1:0] = 1 is represented by the top two curves in Figure 24.

Data Sheet

Duty cycle distortion with narrow 1s moves the significant sampling instance where data is sampled to the right of center. The alignment of the clock to the falling data edges with EDGE_SEL[1:0] = 2 is represented by the first and third curves in Figure 24. The significant sampling instance moves to the left of center. Sample phase adjustment for rates above 5.65 Gbps can move the significant sampling instance to the center of the narrow 1 (or narrow 0) for best jitter tolerance.

DLL Slew

Jitter tolerance beyond the transfer bandwidth of the CDR is determined by the slew rate of the DLL implementing a delta modulator on phase. Setting $DLL_SLEW[1:0] = 2$ (the default value) in Register 0x13, configures the DLL to track 0.75 UI p-p jitter at the highest frequency breakpoint in the SONET/SDH jitter tolerance mask. This frequency scales with the rate as f_{p4} = Rate (Hz)/2500 (for example, 1.0 MHz for OC-48). Peak-to-peak tracking in UI at f_{P4} obeys the expression (1 + DLL_SLEW)/4 UI p-p.

In some applications, full SONET/SDH jitter tolerance is not needed. In this case, DLL SLEW[1:0] can be set to 0, giving lower jitter generation on the recovered clock and better high frequency jitter tolerance.

Sample Phase Adjustment

The phase of the sampling instant can be adjusted using the I²C interface when the devices operate at data rates of 5.65 Gbps or higher by writing to SAMPLE_PHASE[3:0] (Bits[D3:D0] in Register 0x14). This feature allows the user to adjust the sampling instant to improve the BER and jitter tolerance. Although the default sampling instant chosen by the CDR is sufficient in most applications, when dealing with degraded input signals, the BER and jitter tolerance performance can be improved by manually adjusting the phase.

A total adjustment range of 0.5 UI is available, with 0.25 UI in each direction, in increments of 1/32 UI. SAMPLE_PHASE[3:0] is a twos complement number. The relationship between data and the sampling clock is shown in Figure 26.

DATA

CLOCK

Transfer Bandwidth

The transfer bandwidth can be adjusted using the I²C interface by writing to TRANBW[2:0] in Register 0x10. The default value is 4. When set to values below 4, the transfer bandwidth is reduced. When set to values above 4, the transfer bandwidth is increased. The resulting transfer bandwidth is based on the following formula:

$$Transfer \ BW = (Default \ Transfer \ BW) \times \left(\frac{TRANBW[2:0]}{4}\right)$$

For example, at OC-48, the default transfer bandwidth is 650 kHz. The resulting transfer bandwidth when TRANBW[2:0] is changed is

TRANBW[2:0] = 1: transfer BW = 162.5 kHz TRANBW[2:0] = 2: transfer BW = 325 kHz TRANBW[2:0] = 3: transfer BW = 487.5 kHz TRANBW[2:0] = 4: transfer BW = 650 kHz (default) TRANBW[2:0] = 5: transfer BW = 812.5 kHz TRANBW[2:0] = 6: transfer BW = 975 kHz TRANBW[2:0] = 7: transfer BW = 1137.5 kHz

Reducing the transfer bandwidth is commonly used in OTN applications. Never set TRANBW[2:0] = 0 because this value makes the CDR open loop. Also, note that setting TRANBW[2:0] to a value greater than 4 may cause a slight increase in jitter generation and potential jitter peaking.

LOSS OF SIGNAL (LOS) DETECTOR

The receiver front-end LOS detector circuit detects when the input signal level falls below a user adjustable threshold.

There is typically 6 dB of electrical hysteresis on the LOS detector to prevent chatter on the LOS pin. Therefore, if the input level falls below the programmed LOS threshold, causing the LOS pin to assert, the LOS pin is not deasserted until the input level increases to 6 dB (2×) above the LOS threshold (see Figure 25).

The LOS detector and the slice level adjust can be used simultaneously on the ADN2913. Therefore, any offset added to the input signal by the slice[6:0] bits does not affect the LOS detector measurement of the absolute input level.

LOS Power-Down

By default, the LOS detector is enabled and consumes power. The LOS detector is placed in a low power mode by setting $LOS_PDN = 1$ (Bit D3 in Register 0x9).

LOS Threshold

The LOS threshold has a range between 0 mV and 128 mV and is set by writing the number of millivolts (mV) to Register 0x36 followed by toggling the LOS_ENABLE bit in Register 0x74 while LOS_ADDRESS is set to 1. The following is a procedure for writing the LOS threshold:

- 1. Write 0x21 to LOS_CTRL (Register 0x74).
- 2. Write the desired threshold in millivolts to LOS_DATA (Register 0x36).
- 3. Write 0x31 to LOS_CTRL (Register 0x74).
- 4. Write 0x21 to LOS_CTRL (Register 0x74).

The LOS threshold can be set to a value between 0 mV and 63 mV in 1 mV steps and from 64 mV to 128 mV in 2 mV steps. In the lower range, all of the bits are active, giving 1 mV/LSB resolution, where Bit D0 is the LSB. In the upper range, Bit D0 is disabled (that is, D0 = 0), making Bit D1 the LSB and resulting in 2 mV/LSB resolution.

The LOS_CTRL register contains the necessary address and write enable bits to program this LOS threshold.

Signal Strength Measurement

The LOS detector measures and digitizes the peak-to-peak amplitude of the received signal. A single shot measurement is taken by writing the following sequence of bytes to LOS_CTRL at Address 0x74: 0x7, 0x17, 0x7. When LOS_ENABLE goes low, the peak-to-peak amplitude in millivolts is loaded into LOS_ DATA[7:0] (Register 0x36). The contents of LOS_DATA change only when LOS_ENABLE (Bit D4 in Register 0x74) is toggled low to high to low while LOS_ADDRESS[2:0] (Bits[D2:D0] in Register 0x74) is set to 7.

PASSIVE EQUALIZER

A passive equalizer is available at the input to equalize large signals that have undergone distortion due to PCB traces, vias, or connectors. The adaptive EQ functions only at data rates greater than 5.5 Gbps. Therefore, at rates less than 5.5 Gbps, the EQ must be manually set.

The equalizer can be manually set using the LA_EQ register (Register 0x16). An adaptive loop is also available to optimize the EQ setting based on characteristics of the received eye at the phase detector. If the channel is known in advance, set the EQ manually to obtain the best performance; however, the adaptive EQ finds the best setting in most cases.

Table 22 lists typical EQ settings for several trace lengths. The values in Table 22 are based on measurements taken on a test board with simple FR-4 traces. Table 23 lists the typical maximum reach in inches of FR-4 of the EQ at several data rates. If a real channel includes lossy connectors or vias, the FR-4 reach length is lower. For any real-world system, it is highly recommended to test several EQ settings with the real channel to ensure the best signal integrity.

Table 22. EQ Settings vs. Trace Length on FR-4			
Trace Length (Inches)	Typical EQ Setting		
6	10		
10	12		
15	14		
20 to 30	15		

Table 22	FO	Settings vs	Trace	Lenoth	on FR-4
1 aute 22.	ĽŲ	Settings vs.	ITACC	Length	0II I'K-4

Table 23. Typical EQ Reach on FR-4 vs. Maximum DataRates Supported

Maximum Data Rate (Gbps)	Typical EQ Reach on FR-4 (Inches)
4	30
8	20
10	15
11	10

0 dB EQ

The 0 dB EQ path connects the input signal directly to the digital logic inside the ADN2913. The 0 dB EQ is useful at lower data rates where the signal is large (therefore, the limiting amplifier is not needed and power can be saved by deselecting the limiting amplifier) and unimpaired (therefore, the equalizer is not needed). The signal swing of the internal digital circuit is 600 mV p-p differential, the minimum signal amplitude that must be provided as the input in 0 dB EQ mode.

In 0 dB EQ mode, the internal 50 Ω termination resistors can be configured in one of two ways, either floated or tied to V_{CC} = 1.2 V (see Figure 31 and Table 27). By setting the RX_TERM_FLOAT bit (Bit D7 in Register 0x16) to 1, these 50 Ω termination resistors are floated internal to the ADN2913 (see Figure 35). By setting the RX_TERM_FLOAT bit to 0, these 50 Ω termination resistors are connected to V_{CC} = 1.2 V (see Figure 36). In both termination cases, the user must ensure a valid common-mode voltage on the input.

When the termination is floated, the two 50 Ω resistors are a purely differential termination. The input must conform to the range of signals shown in Figure 33.

When the termination is connected to a 1.2 V VCC power supply (see Figure 36 and Figure 37), the common-mode voltage is created by the driver circuit and the 50 Ω resistors on the ADN2913. For example, the driver can be an open-drain switched current (see Figure 36), and the 50 Ω resistors return this current to VC_c. In Figure 36, the common-mode voltage is created by both the current and the resistors.